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Abstract Programming by demonstration techniques facilitate the programming
of robots. Some of them allow the generalization of tasks through parameters, al-
though they require new training when trajectories different from the ones used
to estimate the model need to be added. One of the ways to re-train a robot is by
incremental learning, which supplies additional information of the task and does
not require teaching the whole task again. The present study proposes three tech-
niques to add trajectories to a previously estimated task-parameterized Gaussian
mixture model. The first technique estimates a new model by accumulating the
new trajectory and the set of trajectories generated using the previous model. The
second technique permits adding to the parameters of the existent model those
obtained for the new trajectories. The third one updates the model parameters by
running a modified version of the Expectation-Maximization algorithm, with the
information of the new trajectories. The techniques were evaluated in a simulated
task and a real one, and they showed better performance than that of the existent
model.
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1 Introduction

Programming by Demonstration (PbD) is a technique that allows a robot to learn
how to perform a task from the demonstration of the same task [3] by a human
being or another robot. This approach is used in low structured environments as
it enables users with no knowledge in programming to teach new tasks to robots.
Robots programmed using PbD should acquire the following abilities [2,4]: i) to
make generalizations in new situations, ii) to recover from failures at execution,
iii) to incrementally learn. This study is concerned with the last of this abilities.

One of the techniques used in PbD is the Task-Parameterized Gaussian Mixture
Model (abbreviated in this work as TPGMM), which was presented by Calinon
et al in 2012 [7]. When robots handle objects, their movements highly depend
on the targets given and the object positions which could be defined by using
reference frameworks. Specifically, the movement of the robot is conditioned by
those frameworks which are called task parameters. Instead of representing each
trajectory as a different model, the technique is based on a single model that
encodes the different trajectories as a function of the parameters of a task. The
model is based on the properties of a product of Gaussians.

This document proposes techniques that allow to add new trajectories to an
existing TPGMM. Obviously, added trajectories are different from the ones used
when estimating the existing TPGMM. The mentioned techniques are: i) Gene-
rative, ii) Model addition and, iii) Direct update. Strategies hereby presented
operate under the assumption that trajectories with which the existing TPGMM
was trained are not available, that the number of Gaussians is fixed for both the
existing model and the incremented one, and that this number is suitable to suf-
ficiently model the trajectories. The generative and direct update techniques are
based on Calinon & Billard’s work [6], where the authors proposed techniques that
allow the increment of Gaussian mixture models (GMM), and the model addition
of GMM technique is based on Hall & Hicks’s [10] work. In this work we deal with
task-parameterized GMM, in contrast to the two previously mentioned methods
that deal only with GMM. Another difference is that, in the TPGMM model ad-
dition, the RMS error of the trajectories is employed as optimization function,
contrary to the model’s dependent function employed by Hall and Hicks.

The first proposed technique estimates a new model by using the previous
model and the previous task parameters to generate trajectories. Using the gen-
erated trajectories and the ones that desire to be added, a set of trajectories is
obtained and with them, the new TPGMM is estimated. The second technique
is based on the addition of Gaussian Mixture Models (GMM) proposed by [10],
which allows direct “adding” of the parameters of two models; in this case, the
first term of the addition is the existent model parameters, the second term is the
model parameters estimated with the new trajectories, and the result is the new
model parameters. The third one is based on a modified version of the equations of
the Expectation-Maximization (EM) algorithm, which estimates the model para-
meters. The modified equations separate the components related to the existent
model parameters from the components that require new trajectories; therefore
the model is directly updated with its parameters and the new trajectories.

The novelty in these techniques is that they produce new TPGMM models
which facilitate the re-training of robots by demonstration, as it is not necessary
to teach the robot all the trajectories again or to have these trajectories saved for
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its estimation. However for retraining, the generative and model addition tech-
niques require the storage of the task parameters from the previous trajectories.
Contrarily, the direct update technique does not require so.

The techniques were validated by using simulated and real tasks. In the sim-
ulated task, a set of trajectories obtained manually was used; in the testing of a
real task, trajectories were obtained with a WAM robot [19] performing the task of
putting a sleeve on a mannequin arm for different positions forward or backwards.
The Root Mean Square (RMS) error calculated between demonstrations and re-
productions shows the performance of the techniques and how these improve the
model response compared to that produced if only the existing model was used.

This paper has the following structure. In Section 2, some related studies are
described. A brief of task-parameterized Gaussian mixture models is provided
in Section 3. Proposed strategies are presented in Section 4. Test, results and
a discussion of advantages and disadvantages of each technique are presented in
Section 5. Finally, conclusions are drawn at the end of the paper.

2 Related Work

The TPGMM technique is described by Calinon et al [7] as a technique that allows
the creation of new trajectories parameterized by points related to the task. The
authors apply this technique to tasks such as following movements of objects with
one or two arms and the task of sweeping by using two arms. The same model
has also been employed to learn collaborative impedance-based robot behaviors as
in the work of Rozo et al [18]. The work by Calinon et al [5] compares TPGMM
techniques with other strategies that permit generalizing trajectories from demon-
strated ones and task-related parameters. The comparison contrasts three groups
of techniques: i) Strategies using N models for M demonstrations, ii) Multiple ref-
erence frames, iii) Coding in a single model. The task was rolling a pizza dough;
the results graphically show, with four metrics, that the TPGMM technique gives
a better performance over the others. On the other hand, a modification to the
previous studies which allows generating new trajectories, even when one or sev-
eral parameters are missing in the task, was presented by Alizadeh et al [1]. The
modification is that only the parameters of the existing task were considered when
calculating the equations. Incremental learning is not mentioned in these studies.

In PbD of robots, incremental learning can be divided into tasks incremental
learning [15,16] and skills incremental learning. A skill describes a basic action, for
example, transport and manipulation; a task is a skill sequence [16]. The present
work focuses on skills incremental learning.

Some works that allow to increase the number of trajectories in PbD have
been presented as in the work of Calinon & Billard [6], where a technique that
allows adding trajectories to an existing GMM is shown. The authors propose
two types of strategies: direct and generative. The direct strategy is based on the
assumption that new paths are very similar to the previous ones used to estimate
the model; therefore, the EM algorithm to adjust the model is executed a number
of additional times, but using the new trajectories. In the generative technique
the existent model is used to generate random points that are gathered together
with new trajectories. With this set, a model is estimated and there is a learning
ratio that provides a little forgetting of the past trajectories. For the generative
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technique, one of the differences of this proposal is that trajectories are added to a
task-parameterized model and that there is no learning factor, since it is necessary
to remember all trajectories with the smallest possible error.

Grollman et al [9] proposed a technique in PdD, in which a mobile robot in-
crementally learns input-output maps. The technique is called dogged learning,
and it combines Locally Weighted Projection Regression (LWPR) and Mixed Ini-
tiative Control (MIC). Regression allows incremental learning; control is adjusted
through demonstrations and then the robot carries out the actions; in addition,
learning becomes interactive and the robot asks the human when facing new situ-
ations. Whereas the technique allows a robot to learn how to make generalizations
in front of a variation of an input vector, its design does not permit that the
incremental learning that taking place directly with trajectories related to task
parameters.

Kulic et al [11] present a technique that allows to increment movement primi-
tives by using a factorial hidden Markov model and a decision tree. The starting
point is a database of initial primitive movements; when a new movement is found,
the decision tree classifies it as the most similar one in the database; then, by us-
ing clustering techniques, the primitive movement is added to the group. Even
though the technique works for several movements, it does not deal with the issue
of generalizing new trajectories. A similar study was presented by Lee et al [14],
but this time by using PCA and GMM before the classification.

In 2010, Cederborg et al [8] proposed a technique based on Gaussian Mixture
Regression (GMR); the technique allows to increase the trajectories through a
database with a KD-tree and GMR. It generates a GMR model in real time when
needed. The data to estimate the model is recovered from the database through a
quick search. Whereas the technique allows the reproduction of trajectories when
the initial position changes, it does not allow variations in other parameters as it
does in our case.

Lee and Ott [12,13] proposed a technique that allows to refine existent tra-
jectories by using a compliance control, kinesthetic learning and a modification
of the Hidden Markov Models technique (HMM). During the execution of the
trajectory, the compliance controller allows the human to make corrections in a
kinesthetic way, and such corrections are incrementally added to the model for
subsequent reproductions. In the incremental technique, the authors generate a
single trajectory by using the past model; with this trajectory and the new one,
the HMM model is recalculated. In the current study, trajectories are added to a
task-parameterized model so that the trajectories may vary in shape and location
when the parameters are changed.

Due to the above-mentioned aspects, and to the authors knowledge, there
are few studies in trajectory generalization that permit incremental task learning
and that are a contribution to the development of generalization techniques in
programming by demonstration.

3 Brief of Task-Parameterized Gaussian Mixture Models

Calinon et al [7] proposed the Task-PGMM technique, here a brief of this is
presented. In order to estimate the model, M demonstrations are used as start-
ing point, each with Tm points of data which build a set of data {ξn}Nn=1 with
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N =
∑M
m=1 Tm, and ξn = [tn, yn]T ∈ RD+1, where D is the dimension of each data

point and {tn, yn} the time and Cartesian space. Each demonstration is associ-
ated with the task parameters {An,j , bn,j}NP

j=1, representing NP reference frames,
related by An,j transformation matrices and bn,j displacement vectors. Indexes n
and j represent the time sample and the j − th reference frame.

The model parameters are {πi,Zµi,j ,Z
Σ
i,j}, , which represent the mixture co-

efficients, the centers and the matrices of covariance for each frame j and the i

mixture component; with these parameters, the µn,i resulting center of the model
and the Σn,i matrix of covariance of each i component, are calculated as the pro-
duct of the Gaussians linearly transformed as in the work of Rozo et al [17]:

N (µn,i,Σn,i) =

NP∏
j=1

N (An,jZ
µ
i,j + bn,j ,An,jZ

Σ
i,jA

T
n,j). (1)

By using the product property of the normal distributions, the centroid and the
matrix of the covariance in the previous equation are given by:

µn,i = Σn,i

NP∑
j=1

(An,jZ
Σ
i,jA

T
n,j)

−1(An,jZ
µ
i,j + bn,j),

Σn,i =

NP∑
j=1

(An,jZ
Σ
i,jA

T
n,j)

−1

−1

.

(2)

The model parameters are iteratively estimated by using a modification of the
Expectation-Maximization procedure Calinon et al [7]. Each iteration has two
steps: calculating the posterior probability of the model and calculating the model
parameters based on that probability. The difference with the traditional EM is
that the algorithm takes into account the task parameters. The TPGMM repro-
duction is performed with Gaussian Mixture Regression (GMR), as in the work of
Rozo et al [17], or Alizadeh et al [1].

4 Proposed Incremental Task-Parameterized GMM Techniques

In this section the incremental task-parameterized GMM techniques are presented,
the generative and direct update techniques are based on the work of Calinon et

al [6], and the technique of model parameters adding in that of Hall & Hicks [10].
The incremental estimation techniques require the knowledge of the previous
TPGMM as well as the new trajectories to be added and his respective task para-
meters. The number of Gaussians is fixed in this proposal for both the existing and
the incremented models. Note that such number has to be adjusted to correctly
model all trajectories.

4.1 The Generative Technique

From the generative GMM technique proposed by Calinon et al [6], the equations
were adapted to deal with task-parameterized Gaussian mixtures models. The
trajectories related to the task parameters used to estimate the existent model are
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generated by using the existent model. The new TPGMM is estimated with the
set of these trajectories and the new ones that are to be added. The technique has
the following steps:

1. The same number of trajectories is generated by using the existing model.
The assumption is that the task parameters of the previous trajectories are
known. The task parameters storage only requires a small amount of memory,
compared to store of the data of the existent trajectories.

2. The new trajectories are added to the generated ones, creating a new dataset.
3. With the dataset obtained in the previous step, the initial parameters of the

model are calculated.
4. A new model is estimated by using the modified EM algorithm, which is the

same as that of the TPGMM.

Given the existent task-parameterized Gaussian mixture model and the task para-
meters (A, b), GMR is used to reproduce the M trajectories. Then, a mobile av-
erage filter is applied to each one, obtaining the generated trajectories ξg . A set
is formed with these and the new trajectories ξn:

ξc = [ξg, ξn],

Ac = [A,An],

bc = [b, bnew].

(3)

A new initial model is estimated with the previous information using the data
time-division technique. The definitive values are estimated with the obtained
model, by using the modified EM algorithm.

4.2 The Model Addition Technique

This technique permits adding an existing model with that estimated from the
new trajectories that are to be added. It is based on the addition of GMM models
proposed in 2004 by Hall & Hicks [10]. The modification presented here was to
convert GMM equations into task-parameterized GMM ones. The technique has
the following steps:

1. The model of the new trajectory or trajectories is estimated.
2. The model obtained in the previous step is concatenated with the existing one.
3. The model resulting from the concatenation is simplified by using an optimiza-

tion process.

Concatenation: Given two task-parameterized GMM models: {αi,Zνi,j ,Z
C
i,j}, {ὰi, Z̀

ν
i,j , Z̀

C
i,j}

with distribution probability:

p(ξ) =

K1∑
i=1

αiN (ξ|Zνi,j ,Z
C
i,j), (4)

q(ξ) =

K2∑
i=1

ὰiN (ξ|Z̀
ν
i,j , Z̀

C
i,j). (5)
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For j = 1, ..., NP reference frames, the added probability is:

r(ξ) = f1p(ξ) + f2q(ξ),

r(ξ) = f1

K1∑
i=1

αiN (ξ|Zνi,j ,Z
C
i,j) + f2

K2∑
i=1

ὰiN (ξ|Z̀
ν
i,j , Z̀

C
i,j),

r(ξ) =

K1+K2∑
i=1

βiN (ξ|Zϑi,j ,Z
Ξ
i,j).

(6)

equation (6) is equal to concatenated model {βi,Zϑi,j ,Z
Ξ
i,j}, that has (K1 + K2)

components, where f2 = 1− f1.

Simplification: Given the elements of the concatenated model, it can be sim-
plified into another model with K components where K < K1 +K2. Simplification
is carried out based on a mixture matrix w, between the concatenated model and
the simplified:

πl =

K1+K2∑
i=1

wi,lβi (7)

Zµl,j =
1

πl

K1+K2∑
i=1

wi,lβiZ
ϑ
i,j , (8)

ZΣl,j =
1

πl

(
K1+K2∑
i=1

wi,lβi

(
ZΞi,j +Zϑi,j(Z

ϑ
i,j)

T
))
−Zµl,j(Z

µ
l,j)

T , (9)

with the restrictions:

K1+K2∑
i=1

wi,j = 1 (10)

K1+K2∑
i=1

wi,jαi < 1 (11)

Different to the optimization function described by [10], in order to find the mix-
ture matrix w, which presents slow convergence, an optimization function was
used based on the error between the generated and incremented trajectories with
the simplified model result ones. The weights that permit obtaining the simplified
model are found by using an initial matrix and the function that needs to be min-
imized. The initial values of w was heuristically selected, as follows:

w = 0.45

[
IK1×K
IK2×K

]
, (12)

where I is the identity matrix. The function to be minimized that was used is
based on the RMS error:

f =
1

Tm

M∑
m=1

Tm∑
k=1

‖ym(k)− ysm(k)‖2, (13)
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where ym is the set made by the trajectories reproduced using the previous model
with existent task parameters and the added desire trajectories, and ysm are the
equivalent trajectories reproduced by the simplified model using the task para-
meters (all trajectories) and are recalculated at each iteration during the mini-
mization process. The Matlab function used for optimization is “fminsearchcon”,
which allows to include restrictions as those described in Eq. (10) and (11). Al-
though for ym, the existent task parameters are needed, their storage only requires
a small amount of memory, compared to store of the data of the existent trajec-
tories.

4.3 Direct Update Technique

Similar to generative technique, the equations of direct update GMM described by
[6] were modified into task-parameterized GMM ones. In this technique, enclosed
in the equations of the Expectation-Maximization algorithm EM, the components
related to existent model parameters are separated from the components related
to those of the new trajectories. The technique assumes that the posterior proba-
bilities set is similar for both the existent trajectories and the new ones.

By defining the existent model parameters as {π,Zµ,ZΣ} with K Gaussians,
and the new trajectories ξ̃ to be increased, composed of Tm samples and M̃ demons-
tration trajectories, Ñ = M̃Tm data points of D+ 1 dimension are obtained. From
the existent TPGMM model parameters and the new trajectories, the model is
updated with the next steps:

1. Computation of the initial expectation vector from initial mixed coefficients
and N existent data points:

Ei = Nπi (14)

2. With the new trajectories that want to increase, an initial TPGMM {π̃, Z̃µ, Z̃Σ},
is estimated by using the data division time technique.

3. The modified EM algorithm is applied an additional quantity of times:

E-step:

h̃n,i =
π̃iN (ξ̃n|µ̃n,i, Σ̃n,i)∑NK

k π̃kN (ξ̃n|µ̃n,k, Σ̃n,k)
, (15)

where µ̃n,i and Σ̃n,i is calculated like in Eq. (2).
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M-step:

Ẽi =
Ñ∑
n=1

h̃n,i,

π̃i =
Ei + Ẽi

N + Ñ
,

Z̃
µ
i,j =

EiZ
µ
i,j +

Ñ∑
n=1

h̃n,iÃ
−1
n,j [ξ̃n − b̃n,j ]

Ei + Ẽi
,

Z̃
Σ
i,j =

s1 + s2

Ei + Ẽi
,

with:

s1 = Ei[Z
Σ
i,j + (Zµi,j − Z̃

µ
i,j)(Z

µ
i,j − Z̃

µ
i,j)

T ],

s2 =
Ñ∑
n=1

h̃n,iÃ
−1
n,j [ξ̃n − µ̂n,i,j ][ξ̃n − µ̂n,i,j ]

T Ã
−T
n,j ,

µ̂n,i,j = Ãn,jZ̃
µ
i,j + b̃n,j .

(16)

5 Tests and Results

The generative and model addition techniques were validated by using two tests:
the simulation of a sweeping task, and the task of putting a sleeve on a man-
nequin arm using a WAM robot. The TPGMM reproduction for the existent and
proposed techniques are performed with GMR [17,1], and the result trajectories
filtered with two samples mobile filter. For the comparison of the trajectories that
occur in each task, the RMS error between the demonstrated trajectory ξd and
the reproduced one y, the following equation is used:

eRMS =
1

Tm

Tm∑
k=1

‖y(k)− ξd(k)‖, (17)

where Tm is the total of samples in the demonstrated trajectory. With this equa-
tion, the following comparisons can be established:

– The reproduction using the existing estimated model with the initial trajecto-
ries, compared to the ones obtained with the proposed techniques that added
given trajectory.

– The reproduction using the TPGMM calculated with the set of initial trajecto-
ries and the added ones, compared to the reproduction of the models obtained
by using the proposed techniques.

The previous tests intend to observe and analyze pros and cons of the proposed
techniques. For the addition model method, the f1 value was set in 0, 5 for both
the sweeping simulation and the task of putting a sleeve on a mannequin.

For simplicity and easy understanding of the figures, and considering that the
performance of the direct update technique is not high, the results of this technique
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Fig. 1: Trajectories of the simulation test. a) Used to estimate the existing model (trajectories
1 to 6). b) Used to increment (trajectories 7 to 10). The circle indicates the starting point
of the trajectory, the triangle represents the position of the object to be swept away and the
square the position of the collector-dustpan.

are shown in the multiple addition trajectories test and Fig. 17 from the Discussion
Section.

5.1 The Simulation of Sweeping

The simulation of sweeping an object starts with the end effector at an initial
point; then the end effector moves to the object to be swept and takes it to the
collection point [1]. The trajectories (see Fig. 1) were obtained manually by using
a computer mouse. The points that made up the trajectory were re-sampled using
the spline function of Matlab. The trajectories in Fig. 1a were used to estimate
the existing model, and the trajectories in Fig. 1b were the ones added for testing
purposes. The task parameters were: the starting point, the object location and
the collector (i.e. dustpan) location. The matrix A and the vector b, as shown
in Appendix A.1, are calculated by using the previous mentioned positions. It
was heuristically established in four the model states. That value was used for
calculating the existent model as well as for calculating generative and model
addition techniques.

An example of reproduction using the task parameters of trajectory number
7 (yellow line) is shown in Fig. 2. The existent model responses (dashed line in
black); generative technique (dashed line in green), and dashed red line depicts the
response of the model addition technique. When using the proposed techniques,
an improvement can be seen in the model response compared to the one produced
by the model calculated with only the existing trajectories.

Figure 3 shows a comparison of RMS error generated when using the model
calculated with the initial trajectories, against the proposed techniques added with
each of the trajectories (7 to 10). When using the proposed techniques, a reduction
in the error can be noticed in all of the added trajectories. The addition model
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Fig. 2: Example of the reproduction using the task parameters of the trajectory number 7 (in
yellow). The dashed line in black: Existing model. Dashed line in green: Generative technique.
Dashed line in red: Model addition.
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Fig. 3: Root mean square error for the simulation task and comparison between the existing
model and the incremented models. Cyan: the existing TPGMM model. Green: Generative
technique. Red: Model addition.

technique is the one showing the smallest error in the incremented trajectory, which
is probably due to: i) the reconstruction, in the case of the generative technique,
involves error generation; and ii) the optimization present in the addition technique
reduces the RMS error.

The error variance is not show in Fig. 3 because the proposed techniques do
not depend on the initialization or estimation of random values, and the error is
always the same for each time.

Figure 4 compares the RMS error of the incremented TPGMM with a given
trajectory against the proposed techniques. This figure also shows that, except for
a few cases, the error is similar in all the techniques and that the addition model
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Fig. 4: Root mean square error for the simulation task and comparison between the TPGMM
incremented (batch re-estimate) against the proposed incremented models. Blue: Incremented
TPGMM. Green: the generative technique. Red: Model addition technique.
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Fig. 5: Different positions of the object to be swept. The positions marked with an asterisk
are related to trajectories used to estimate the existent TPGMM; and the ones marked with
triangles correspond to the trajectories that are incremented.

is the technique that generates the lowest error value between the two incremental
techniques for the initial trajectories (1 to 6). It should be noticed that the error
obtained by the TPGMM technique is calculated by using the information of the
demonstrated trajectories, both existing and added ones, which results in a smaller
error value.

For the example presented in Fig. 4, only one trajectory is added for each test.
The example below presents the addition of multiple trajectories.
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Existent Generative Model Addition Direct

Fig. 6: Root mean square error for the different positions of the object to be swept. In cyan,
the error of the existent model. a) In green, the generative technique; b) In red, the addition
model technique; c) In magenta, direct update technique; the positions marked with asterisks
are the trajectories used to estimate the existent TPGMM; the ones marked with triangles,
are the added trajectories.

Testing the addition of multiple trajectories

Figure 5 shows the points that form a square resulting from varying the position
object to be swept and leaving starting and end position fixed. A trajectory was
carried out manually for each position of the square. In this test, the results of
generative, model addition and direct update techniques are presented.

The existent model was estimated by using the central points (numbered as-
terisks with values smaller or equal to 25) and the new models were estimated
by using all trajectories in the external square (triangles numbered with values
greater than 25). Figure 6 shows the root mean square error for each demonstrate
trajectory and produced by using the existent TPGMM (cyan). It also shows, in
green, the root mean square error using the reproduction generated by the gene-
rative technique, in Fig. 6b in red, using the model addition technique and, in
Fig. 6c in magenta, the direct update technique. The added trajectories are shown
with a black triangle and in almost all the added trajectories the error is smaller.
In this case, the error of proposed techniques does not decrease much as in the
previous test, due to the fact that the existent model error is lower, because it is
estimated with 9 trajectories (depicted as a central square marked with asterisks)
and the external trajectories are similar to the central ones.

Figure 7 shows the reproductions by using the resulting models from the three
techniques and the corresponding task parameters of the number one initial tra-
jectory. The result trajectory obtained from the existent model is shown in black
dashed line; the one from the generative technique in green dashed line; the model
addition technique in red; and, the direct update technique in magenta. This last-
named is the farthest one from the original trajectory (continuous gray line).
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Fig. 7: Example of the reproduction using the task parameters of the initial trajectory 1. The
dashed line in black: Existing model. Dashed line in green: Generative technique. Dashed line
in red: Model addition. Dashed line in magenta: Direct update.
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Fig. 8: Two examples of the arm position. Left: Arm towards the front. Right: Arm towards
the back.

5.2 Performing a Real Task

The task of putting a shirt sleeve on a mannequin arm was implemented. It involves
diverse trajectories when changing the position and curvature of the mannequin
arm for both cases, that is, when the arm is towards the front and the back.
Figure 8 shows two examples of the mannequin arm positions and Fig. 9 shows
the trajectories obtained by kinesthetic demonstration.

A TPGMM with the trajectories of the arm towards the front was estimated
obtaining the existing model. Then, with the generative and model addition tech-
niques, the existing model was increased with each of the trajectories of the hand
towards the back.
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Fig. 9: Demonstrations used in the real task. Upper: Trajectories arm to the front. Lower:
Trajectories arm to the back.

a) Hand. b) Elbow. c) Shoulder.

Fig. 10: Obtaining the task parameters by recording the robot’s pose.

The following parameters were selected for the task: point on the hand, point on
the elbow, and point on the shoulder. Figure 10 shows the way of the readings of the
parameters for the task were acquired. The end-effector was oriented perpendicular
to the ground in all measurements in order to make it simpler to obtain new
parameters. As shown in Appendix A.2, the position and orientation of the end-
effector were used to calculate the matrix A (direction) and the displacement
vector b (position).

Four states were used in order to reproduce the trajectories with the TPGMM
technique as well as the proposed techniques. Figure 11 shows an example of re-
productions using the parameters of trajectory 6 (line in yellow). Figure 11a shows
the response trajectories of the model estimated with the arm towards the front
(dashed line in black) and with the generative technique model (in green). Fig-
ure 11b shows the addition model technique response (in red). Similar to the test
of the simulation previously presented, when the proposed techniques were used,
an improvement was noticed over the reproduction obtained using the calculated
model with the existing trajectories.

Figure 12 shows the comparison of root mean square errors for the real task
between the model estimated with the initial trajectories against the one obtained
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Fig. 11: Trajectories reproduced using the model estimated with the trajectories of the arm
towards the front and the models obtained with the proposed techniques. Demonstrated tra-
jectory number 6 in yellow; reproduction using the model estimated with the trajectories of
the arm towards the front, in black dashed line; generative technique line in green; addition
model technique line in red. Lines and points in gray represent existent trajectories and task
parameters.

when adding each of the trajectories (5 a 8). There is a reduction in the error using
the proposed techniques for all the added trajectories; in this case, the proposed
trajectories have similar errors, when incrementing each of the trajectories with
the hand moved towards the back.

Figure 13 shows a comparison of the root mean square error for the real task,
between the TPGMM technique estimated with the set of initial trajectories and
a given added trajectory against the error obtained using the proposed techniques.
The proposed techniques RMS errors shows similar or slightly greater values for
the initial trajectories than the obtained with the incremented TPGMM, which is
calculated with initial and incremented demonstrations. Figure 14 shows frames of
two sequences of putting-on the sleeve task by the robot; Sup.) mannequin hand
towards the back; Below) mannequin hand towards the front.
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Fig. 12: Root mean square error for the real task. Comparing the existent model against the
incremented models with each trajectory (5 to 8). Estimated with the trajectories of the arm
to the front, in cyan. Generative technique in green. Model Addition in red.
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Fig. 13: RMS error for the real task and comparison of the incremented TPGMM (batch
re-estimate) against the incremented proposed techniques result models. Estimated with the
trajectories of the arm to the front and one to the back, in blue (batch re-estimate). Generative
technique, in green. Model addition technique, in red.

Trajectories with distant task parameters

The three trajectories shown in Fig. 15 for the putting-on the sleeve task were
used. Note that the parameters are far from the ones used for the hand towards
the front and the hand towards the back.

In this case, the existent TPGMM is estimated with the trajectories of the
hand towards the front and the generative and model addition techniques with the
incrementing trajectories shown in Fig. 15. Figure 16 shows the root mean square
error obtained by the TPGMM calculated with the set of trajectories having the
mannequin arm to the front and one of the three trajectories shown in Fig. 15,
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Fig. 14: Frames of two sequences on the task of putting the sleeve by the robot. Sup.) man-
nequin hand towards the back. Below) mannequin hand towards the front.
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Fig. 15: Trajectories with distant task parameters.

compared to the error obtained using the proposed techniques incremented by each
of the mentioned trajectories. Figure 16 shows that the generative technique is the
one yielding the lowest error of the ones proposed, for the existent trajectories.

6 Discussion

Regarding the execution time spent to estimate the new model by each of the
algorithms, the direct update technique takes 10 seconds in average for all tests,
the generative technique takes 20 seconds in average for all tests, and the model
addition technique takes in average 80 seconds for the simulated trajectories and
120 seconds for the trajectories of putting-on the sleeve. Even though the execu-
tion time of the latter is considerably high, it is shorter than the one a kinesthetic
training of a robot would take including all the demonstrated trajectories if those
were not known. In contrast of the results of an existent model estimated with few
demonstrations, the proposed techniques achieve an average of 40% error reduc-
tion, as shown in Figures 3,12 and 16a.



Incremental Learning of Skills in a Task-Parameterized Gaussian Mixture Model 19

5A 6A 7A
0

0.2

0.4

0.6

0.8

a)

Trajectory

R
M

S
 e

rr
o
r 

[m
]

 

 

1 2 3 4 +5A
0

0.02

0.04

0.06

0.08

0.1

0.12

b)

R
M

S
 e

rr
o
r 

 [
m

]

Trajectory

1 2 3 4 +6A
0

0.02

0.04

0.06

0.08

0.1

0.12

c)

R
M

S
 e

rr
o
r 

 [
m

]

Trajectory
1 2 3 4 +7A

0

0.05

0.1

0.15

0.2

d)

R
M

S
 e

rr
o
r 

[m
]

Trajectory

Existent Re−estimate Generative Model Addition

Fig. 16: RMS error for the real task using th three trajectories with distant parameters. Esti-
mated with the arm to the front trajectories, in cyan. Estimated with the trajectories of the
arm to the front and one with far parameter, in blue. Generative technique, in green. Model
addition technique, in red.

Figure 17 shows the RMS bar diagrams for all tests. The results are grouped by
trajectory type: initial and incremented. In the simulation sweeping test, the model
addition has the best results. In the multiple trajectories and sleeve putting tests,
the generative technique matches the results of the model addition technique. In
the distant task parameters test, the generative technique obtained the best results.
Errors resulting from the proposed techniques are generally similar or slightly
greater than those of the incremented TPGMM (Fig. 18). Nevertheless, it should
be taken into account that the incremented TPGMM is directly estimated with
initial and incremented demonstrations. In the case of the initial demonstrations,
the largest increase of RMS error is observed in the model addition and is about
9%.

The generative technique has the advantage of being faster than the addition
model one, and the error is similar to that obtained with the incremented TPGMM
directly estimated with the information of the trajectories. The disadvantage is
that, if the generative technique is applied again on a model resulting from the
addition using such technique, the error would accumulate.

The resulting trajectories of applying the the direct update technique tend to
be more distant from the demonstrated ones, as was shown in Fig. 7. It is possible
that at least for the TPGMM case, this effect may be due to the fact that added
trajectories have a subsequent probability different from the existent trajectories,
which is the mathematical basis of the direct update technique.

Using the proposed techniques with multiple trajectories yields better results
than only one trajectory at a time.
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b) Adding multiple trajectories.
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c) Real task of putting a sleeve.
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Fig. 17: Root mean square error for all tests and the three proposed techniques. Results
are grouped by trajectory type: initial and incremented. In blue with the batch re-estimate
TPGMM; in green, generative technique; in red, the model addition technique; and, in magenta,
the direct update technique.
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Fig. 18: General results from the proposed techniques. The RMS errors and time are normal-
ized. In dark blue: Existing model. In green: Generative technique. In red: Model addition. In
magenta: Direct update.
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7 Conclusions

Three techniques, generative, model addition and direct update, were proposed to
add trajectories to a task-parameterized GMM model previously estimated. Using
simulated and real tasks, the performance of these techniques was tested. The best
response was obtained using the proposed techniques and such response is better
than the one that an existent model would produce.

During the tests, the trajectories added to estimate the incremented model
may be different, which allows the new model to behave differently at the expense
of a little increase in the error when reproducing past trajectories.

The proposed techniques for incremental learning of TPGMM models produced
satisfactory results: RMS error reduction by 40% on average with respect to the
results of using the existing model; and similar or only 9% greater errors when
compared with those obtained by a batch re-estimation of the TPGMM model.
Even though it takes the longest estimation time, the technique of model addition
renders the best results as it allows continuous addition of trajectories. In sec-
ond place, it is the generative technique that presents an acceptable compromise
between estimation time and RMS errors of initial and incremented trajectories.
The execution time of the three proposed techniques is similar, as they produce
TPGMM models.

As a future work we plan to find techniques that reduce the time that the
optimization takes in the model addition technique. Also we would like to find al-
ternative techniques that allow to incrementally build models, using EM algorithm.
In addition, we will try to improve the results of the direct update technique.
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Appendix

Task parameter calculation

A.1 Simulated Trajectories case:
The calculation of A and b is carried out using two points (p1 and p2) on the
Cartesian space; p1 point is related to some of the parameters of the task: starting
point, object location or ending point; p2 point results from 3 samples away from
point p1.

The transformation matrix A is made up of three vectors v1,v2, and v3:

A =


1 0 0 0
0 v1x v2x v3x
0 v1y v2y v3y
0 v1z v2z v3z

 . (18)

Vector v2 is the normal one to the difference p2 − p1, and vectors v1 and v3 are
perpendicular to v2; A is a transformation matrix that contains information of
the orientation of point p1 regarding point p2. In the case of the object location
parameter, the identity matrix is used.
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Table 1: p1 and p2 values, for each task parameter.

Task parameter p1 p2

hand hand position elbow position

elbow elbow position -

shoulder shoulder position elbow position

The displacement vector b is formed using p1 point, as follows:

b = [0, p1x, p1y, p1z]
T (19)

A.2 The real task case:
The calculation of A and b is carried out by using two points (p1 and p2) on the
Cartesian space. The point p1 is related to any of the task parameters; Table 1
shows p1 and p2 for each case. The variable b of the task parameters is described
by 8 values:

b =



t

x

y

z

qx

qy

qz

qw


, (20)

where t is the time, [x, y, z] is the Cartesian position and [qx, qy, qz, qw] is the
orientation in quaternion.

The position values [x, y, z] are used to calculate A:

A =



1 0 0 0 0 0 0 0
0 v1x v2x v3x 0 0 0 0
0 v1y v2y v3y 0 0 0 0
0 v1z v2z v3z 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (21)

Vector v2 is the normal vector to the difference p2−p1, and the vectors v1 and v3
are perpendicular to v2. A is a transformation matrix that contains information
of the orientation of point p1 regarding point p2. In the case of the elbow location
parameter, the identity matrix is used.
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