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Sequential Non-Rigid Structure from Motion
using Physical Priors
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Abstract—We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible
surfaces from a monocular image sequence. For this purpose, we make use of the EKF-SLAM (Extended Kalman Filter based
Simultaneous Localization And Mapping) formulation, a Bayesian optimization framework traditionally used in mobile robotics for
estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent
the object’s surface mechanics by means of Navier’s equations, which are solved using a FEM (Finite Element Method). With
these main ingredients, we can further model the material’s stretching, allowing us to go a step further than most of current
techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and
synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides
simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does
not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second.

Index Terms—Non-Rigid Structure from Motion, Extended Kalman Filter, Finite Element Method, Tracking.
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1 INTRODUCTION

S Imultaneously reconstructing a 3D rigid scene while
estimating the trajectory of a monocular camera

is a well studied problem in computer vision. Global
optimization techniques based on Bundle Adjustment
(BA) [23] or solutions using the Extended Kalman Filter
(EKF) [13] have proven successful in a wide variety
of applications, ranging from image-based modeling to
autonomous robot navigation. These methods, though,
cannot be applied to scenes undergoing non-rigid defor-
mations. In these situations, the fact that many different
3D shape configurations can have very similar image
projections produces severe ambiguities that can only
be resolved by introducing smoothing priors about the
camera trajectory and scene deformation.

The earliest Non-Rigid Structure from Motion (NRSfM)
approaches modeled deformations as linear combina-
tions of basis shapes [8], [9], [43], which in conjunc-
tion with the Tomasi and Kanade’s factorization algo-
rithm [42], allowed to simultaneously solve for non-rigid
shape and camera motion. An additional assumption
made by these and subsequent techniques [3], [14], [17],
[19], [45], is that input images are acquired using an
orthographic camera. This has been extended to full-
perspective cameras in [4], [21]. In any event, all these
approaches batch process all frames of the sequence
at once, preventing them from being used on-line and
in real-time applications. An interesting exception are

• Antonio Agudo, Begoña Calvo and J.M.M. Montiel are with the Instituto
de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza,
50018, Spain. Email: {aagudo, bcalvo, josemari}@unizar.es.

• Francesc Moreno-Noguer is with the Institut de Robòtica i
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the recent works [34], [41], which propose sequential
solutions to the NRSfM problem. While these works
offer promising directions, they share a fundamental
limitation with previous methods, in that they rely on
image points that can be observed and tracked over
the sequence. This assumption cannot be guaranteed
in practical situations where shape deformations may
produce severe changes in the appearance of the object.

In this paper we propose a solution to simultane-
ously recover camera pose and 3D non-rigid shape that
overcomes most of the aforementioned limitations: 1) it
handles full-perspective calibrated cameras, 2) it is se-
quential, 3) it automatically establishes correspondences
between consecutive frames, allowing feature points to
appear or disappear along the sequence, and 4) both
rigid and non-rigid points can be uniformly processed
under the same formalism. Our approach draws inspi-
ration on the probabilistic EKF-SLAM methodology used
in mobile robotics for reconstructing rigid environments
and estimating sensor poses. To bring these tools from
a rigid to a deformable domain we consider the Finite
Element Method (FEM), used to solve the mechanics of
deformable solids. More specifically, the surface to be
estimated is modeled as a set of finite elements, whose
displacement is ruled by the Navier’s equations [47], and
jointly embedded with a smooth 3D camera motion into
the EKF. As a result, we are then able to both estimate
the state of the moving camera and the shape of the
deforming surface, while guiding the feature matching
between consecutive frames.

Additionally, and in contrast to traditional approaches
using FEM for non-rigid shape modeling [27], [44],
we propose a FEM formulation in which most of the
physical parameters, such as the Young’s modulus, can
be factorized out from of the deformation model and
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Fig. 1. Simultaneous estimation of 3D non-rigid structure and camera trajectory. Summary of the experiments. Top:
Reconstructed 3D mesh overlaid on a specific frame of the input sequence. Bottom: 3D view of the same mesh and camera
trajectory for the whole sequence. Black crosses indicate the initial and final camera positions. In contrast to standard EKF-SLAM
methods where the scene is considered to be rigid, the mesh continuously deforms and we estimate its shape in each frame of
the sequence. Our approach is suitable for both extensible surfaces (like the Silicone Cloth) and non-extensible materials (like the
Bending Paper). The Synthetic Plate, the Face, and the Laparoscopic data, exhibit intermediate levels of extensibility.

incorporated within a Gaussian noise term, that can be
naturally handled by the EKF. This gives us the addi-
tional benefit that we can deal with different materials
by just roughly adjusting the magnitude of this noise
term, which is much more intuitive than having to adjust
the underlying physical parameters. As shown in Fig. 1,
by doing this, we are able to reconstruct from isometric
to highly extensible surfaces without using any learning
method at all. This is a remarkable step-forward when
compared to competing approaches, mostly constrained
to inextensible surfaces or relying on relatively vast
amounts of training data.

A preliminary version of this work was presented
in [1]. Here, we have pushed the limits of our model
to show that it can cope with large elastic deformations.
New synthetic results demonstrate the advantage of
our approach compared to current state of the art. In
addition, further real results in challenging laparoscopy
images are included in this version.

2 RELATED WORK

Recovering non-rigid 3D shape from a single camera has
been an active research area in the past two decades. It
is an inherently ambiguous problem in which very dif-
ferent shapes can virtually produce the same projection.
In order to limit the possible range of solutions, prior
knowledge of either the nature of the deformations or
the camera motion needs to be introduced.

Early approaches constrained the 3D deforma-
tion using physically-inspired models based on su-
perquadrics [28], Fourier harmonics [33], balloons [11] or
spring models [22]. These approaches, though, were only
effective to capture relatively small and non-realistic de-
formations. More accurate representations were achieved
with the FEM [26], [27], [39], [44], [46]. Yet, their appli-
cability was limited to very specific materials for which

geometric and mechanical parameters were known in
advance. In a recent approach, the Poisson’s ratio is
jointly optimized with the shape using an energy min-
imization scheme [24]. Yet, this work is focused to the
shape-from-template problem, which is out of the scope
of this paper.

Statistical methods that learn deformation modes from
training data, can capture the true shape variability
without the need to resort to sophisticated optimization
procedures to tune physical parameters. Active appear-
ance and shape models [12], [25] and 3D morphable
models [7] are examples of such approaches, in which
deformations are represented as linear combinations of
modes. Retrieving shape entails minimizing an image-
based objective function, that generally requires to be
accurately initialized to converge.

A new family of solutions propose ways to avoid
falling into local minima by either reformulating the
deformable shape estimation as a convex optimization
problem [38] or as a linearized system with closed form
solution [32], [37]. Other approaches use global optimiza-
tion techniques based on semidefinite programming [15]
or evolutionary computing strategies [30] that avoid the
need for an initialization. [5] introduced an analytical
solution which was applicable to several types of defor-
mation, such as developable, isometric and conformal.

However, despite all this tremendous progress, none
of the previous approaches explicitly computes the cam-
era pose, and either assume that it is already known
in advance and the modes are aligned with the camera
coordinate frame, or provide a shape estimation for
which its pose with respect to the camera is unknown.
This is addressed by NRSfM methods, which build upon
the rigid factorization algorithm [42] to simultaneously
recover deformable shape and relative camera motion
from a sequence of images. NRSfM algorithms typically
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represent the varying 3D shape as a linear combination
of basis, being estimated in conjunction with the shape
and motion parameters [9], [43]. Yet, while these meth-
ods do not require learning deformation modes off-line,
they often rely on a set of assumptions which are difficult
to hold in practice. Orthographic cameras, continuous
point tracks along the whole sequence, batch processing
and relative (not absolute) camera pose, are common
requirements which need to be satisfied [3], [17], [19],
[36]. There have been attempts to alleviate these assump-
tions, such as expanding orthographic to perspective
cameras [4], [21], handling outlier correspondences or
discontinuous point tracks [31], and sequentially pro-
cessing input frames [34], [41]. In [14], [24], subsets of
rigid points are initially used to estimate the absolute
camera pose, prior retrieving the shape. In any event,
and to the best of our knowledge, there is no current
method able to simultaneously handle all these issues.

In this paper we will show that expanding the EKF-
SLAM formulation from a rigid to a deformable domain,
will let to cope with most of the fundamental limitations
of previous approaches. In particular we will demon-
strate that our solution is valid for full-perspective cal-
ibrated cameras, does not need continuous tracks of
feature points, performs automatic data association, does
not require training data, and works in sequential mode,
potentially in real-time. Moreover, we estimate absolute
camera pose by combining rigid and non-rigid points,
but in contrast to [14], [24], we manage both kind of
points in a single framework. The core of our approach
relies on the Bayesian formulation of the EKF monocular
SLAM [10], [13]. As in EKF-SLAM we will use the prior
that the camera moves smoothly according to a constant
velocity model. However, and as a main contribution
of our work, we will introduce a non-rigid mechanical
model of the deformable object by means of the FEM. As
mentioned previously, physically-based methods usually
require fine tuning of the material parameters and they
normally have a high computational complexity limiting
their real-time applicability. In our approach, the use of
the EKF framework allows for a very loose tuning of
these parameters.

In addition, although the FEM formulation we pro-
pose is a linear methodology only valid for small defor-
mations [47], its combination with an EKF that digests
every image of the video sequence, results in a solution
able to accurately estimate large and potentially elastic
scene deformations with a low computational overhead.
This circumvents the need of expensive and non-linear
computational methods [44].

Finally, as said above, this paper is an extended
version of [1]. Our recent work [2], also holds on [1],
but only handles sets of non-rigid points, and not a
combination of rigid and non-rigid point as we do here.
[2] results in a more general solution, but at the expense
of lower estimation accuracy and most importantly, the
inability to recover full camera trajectory. Exploring this
direction is part of our future work.

Fig. 2. Thin-plate geometry. Top: Structure at rest. The mid-
surface plane (in red) is used to describe the geometry of the
deformation. Bottom: Cross sectional views of the deformed
structure. Displacements u, v and w of the middle-plane.

3 OVERVIEW OF THE METHOD

Our approach to simultaneously retrieve non-rigid shape
and camera pose cross fertilizes Bayesian estimation
with physically-based modeling. More specifically, we
model the non-rigid displacement solving a 2D version
of Navier’s equations, combining the plane-stress typol-
ogy with Kirchhoff-Love theory for thin-plates. In order
to solve the resulting partial differential equations we
carry out a spatial discretization by means of FEM, yield-
ing a formulation where displacement and forces are
linearly related through a stiffness matrix, re-computed
at each iteration. This mechanical model, in conjunction
with a smooth camera motion prior are fed into a EKF-
SLAM formulation, which jointly estimates the geometry
of the shape and the 3D camera trajectory.

In the following sections, we discuss each one of these
ingredients in more detail.

4 PHYSICAL MODELING OF THE SURFACE
DEFORMATION

The simplest approach to model the physical behavior
of a deformable surface is using a combination between
a plane-stress model (membrane) and one that accounts
for out-of-plane bending. We will represent the former
using the Navier’s equations, and the latter through
the Kirchhoff-Love theory, an extension of the Euler-
Bernoulli beam theory to thin-plates. To keep the paper
self-contained, we next provide a quick overview of
these equations and how FEM applies to resolve them.
For further details, the reader is referred to [47], [48].

4.1 Basics from Continuum Mechanics
Let us consider the thin-plate Ω depicted in Fig. 2, which
bends under the action of an external distributed load fz .
From the cross-sectional view, it can be seen that the out-
of-plane deformation induces a stretching of the bottom
of the plate and a compression of the top. Assuming
that the stresses vary monotonically between the top
and bottom of the plate, we can further define a zero-
stress surface, called the mid-surface plane. This allows
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Fig. 3. Triangular discretization of the scene. W and L repre-
sent the global and the local reference systems, respectively.

to parameterize the 3D deformation as a 2D function,
that assigns a vertical displacement w(x, y, z) = w(x, y)
at any point (x, y) on the mid-surface plane.

In order to describe the deformation, the Kirchhoff-
Love theory makes the additional assumptions that 1)
lines normal to the middle-plane remain straight, normal
and unstretched after deformation, and 2) that the thick-
ness of the plate does not change during a deformation.
The governing equations for the bending (out-of-plane
displacement) of the plate can then be established by
setting equilibrium conditions of the external and inter-
nal forces and moments. This leads to the equilibrium
equation of the Kirchhoff-Love thin-plate:

Eh3

12(1− ν2)
∇4w = −fz (1)

where E is the Young’s modulus, ν the Poisson’s ratio,
h the thickness of the plate and ∇ = [∂/∂x, ∂/∂y]> is the
gradient operator.

We can similarly represent membrane (the in-plane)
displacements u = [u, v]> at any point (x, y) on the mid-
surface plane using the Navier’s equations:

νE

1− ν2
∇(∇>u) +

E

2(1 + ν)
∇2u = −fxy (2)

where fxy = [fx, fy]> are the in-plane volumetric forces.
Both equations need boundary conditions. That is, we
impose a known component, for instance, u = ū on the
boundary δΩu where ū is a known displacement. Similar
constraints can be imposed on the stress components.

4.2 Finite Element Method Solution
The previous partial differential equations (1) and (2) do
not generally have an analytical solution, and one has to
resort to approximate numerical optimization techniques
such as FEM. These methods discretize the continuum
surface Ω into a finite number of parts Ωe defined by its
nodes (see Fig. 3). The derivation of the finite element
equations can then be obtained by the application of
the principle of virtual work, which states that in stable
elastic equilibrium the virtual work done by externally
applied forces equals the virtual strain energy [47]. This
gives rise to the classical FEM formulation for the com-
plete system in global coordinates:

Ka = f (3)

Fig. 4. Normalized triangle in natural coordinates N and real
triangle element in local coordinates L. They are related by the
Jg transformation. Nodes are represented as black dots (•) and
Hammer’s integration points as black diamonds (�).

where a and f are the global vector of nodal displace-
ments and forces, respectively. K is the system stiffness
matrix which can be assembled from the stiffness matri-
ces Ke associated to individual elements.

In Sect. 5 we will introduce Eq. (3) into the EKF for-
mulation to constrain the non-rigid displacement of the
surface. In the remaining of this subsection we will focus
on one single surface element, and describe in detail how
the nodal displacements and forces are represented and
how the elementary stiffness matrix is computed.

We approximate the surface through a set of flat
and thin triangular elements. Let us consider one such
element, defined by three nodes and straight line bound-
aries. As shown in Fig. 4 we consider three coordinate
systems: one global system W common to all triangles,
a local reference L defined on the plane of each triangle,
and one natural reference N in which local coordinates
are normalized within the [0, 1] interval. Given the i-th
node of the triangle, we then denote by gi = [xi, yi, zi]

>

its coordinates in the global system, by ḡi = [x̄i, ȳi, z̄i]
>

the coordinates in the local reference, and by ξi =
[ξi, ηi]

> its natural coordinates.
In addition, in order to approximate the continuous so-

lution in displacements within the triangle, we consider
linear and quadratic shape functions for the membrane
and bending effect respectively, both defined in the
natural coordinate system. For instance, let āi be the
displacement of the i-th node, expressed in local coordi-
nates. The displacement ū at any point (x̄, ȳ) within the
planar triangle can then be linearly interpolated as:

ū(x̄, ȳ) =

3∑
i=1

Ni(ξ, η)āi (4)

where Ni(ξ, η) are the continuous shape functions de-
fined on the nodes of the triangle. See Appendix for the
exact expressions of these shape functions.

From the principle of virtual work, it can be shown
that the elemental stiffness matrix K̄e in local coordinates
is obtained as:

K̄e =

∫
Ωe

hB>DBdΩe (5)
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where Ωe defines the element domain, B is the strain-
displacement matrix derived in Appendix, and D is
a behavior matrix containing the material properties.
In practice, this integration is computed in the natural
coordinate system, and numerically approximated using
Hammer’s point integration [20] as:

K̄e =

∫ 1

0

∫ 1−ξ

0

hB(ξ, η)>DB(ξ, η)|Jg|dηdξ

≈ h

r∑
p=1

αpB(ξp, ηp)
>DB(ξp, ηp)|Jg| (6)

where |Jg| is the Jacobian of the mapping from natural
to local coordinates, i.e., Jg = ∂ḡ/∂ξ. r is the number of
integration points and αp are fixed point weights.

4.3 Combining Bending and Membrane Strains
As mentioned above, we approximate the deformation
of each surface element using a combination of bending
(out-of-plane) and membrane (in-plane) displacements.

Following [48], the bending (b) of a triangular element,
(we use a DKT, Discrete Kirchhoff Triangle), is defined by
the displacement w̄i in the z direction and two rotations
θx̄i, θȳi, for each of its three nodes i = {1, 2, 3}. The finite
element representation of the bending is then written as:

f̄eb = K̄ebāb with ābi =

w̄iθx̄i
θȳi

 f̄ bi =

 fz̄iMx̄i

Mȳi

 (7)

where Mx̄i and Mȳi are the bending moments along the x̄
and ȳ directions, f̄eb = [f̄ b1 , f̄

b
2 , f̄

b
3 ]> and āb = [āb1, ā

b
2, ā

b
3]>.

The elemental stiffness matrix K̄eb is made up from
submatrices K̄b

ij for every pair of nodes in the triangular
element, each of them computed from Eq. (6). In the
Appendix, we provide the particular expressions for the
strain-displacement matrix Bb and deformation matrix
Db that we use to represent the bending.

Similarly, we describe the membrane (m) deformation
in terms of the ū and v̄ displacements of each node i.
The relation between the nodal forces and these displace-
ments is expressed as:

f̄em = K̄emām with āmi =

[
ūi
v̄i

]
f̄mi =

[
fx̄i
fȳi

]
(8)

where f̄em = [f̄m1 , f̄
m
2 , f̄

m
3 ]> and ām = [ām1 , ā

m
2 , ā

m
3 ]>.

Again, the stiffness matrix K̄em is made up from the
submatrices K̄m

ij , which are computed from Eq. (6) and
using the Bm and Dm matrices detailed in the Appendix.

In order to combine membrane and bending strains
we consider an expanded nodal displacement vector and
forces:

āi = [ūi, v̄i, w̄i, θx̄i, θȳi]
> (9)

f̄i = [fx̄i, fȳi, fz̄i,Mx̄i,Mȳi]
> , (10)

and an expanded stiffness matrix:

K̄ij =

[
K̄m
ij 02×3

03×2 K̄b
ij

]
. (11)
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Fig. 5. Problem Formulation. A moving camera m observes
a non-rigid structure y. A set of Gaussian distributed forces ∆s
are acting on the structure, resulting in a non-rigid deformation.
Our goal, is to estimate both the camera trajectory and surface
deformation from only image observations. A set of rigid points
on the surface (black squares n) let us to disambiguate between
rigid relative motions of the camera and the surface.

Note that the displacements, forces and stiffness ma-
trix just derived use the system of local coordinates L.
In order to convert them to the global coordinate system
W (see Fig. 3), we consider the 3 × 3 matrix Λ that
transforms from the local to the global system:

ai = T>āi fi = T>f̄i Kij = T>K̄ijT (12)

where
T =

[
Λ 03×2

02×3 Λ[1, 2; 1, 2]

]
(13)

and Λ[1, 2; 1, 2] are the first two rows and columns of Λ.
Finally, we use the submatrices Kij to assemble the

elemental stiffness matrix Ke for each triangle, which in
turn, are used to build the global stiffness matrix K of
Eq. (3) for the whole surface.

5 NON-RIGID EKF
Our key contribution is to embed the FEM formulation
that models the surface deformation within the Bayesian
framework of an EKF. This combination will provide a
mechanism to simultaneously estimate the shape of the
deforming object and the pose of a moving camera.

5.1 Assumptions and Problem Formulation
We represent the surface as a triangulated mesh with n
vertexes gi concatenated in a 3n vector y = [g1, . . . ,gn]>.
We assume that p << n of these points are rigid, i.e.,
they always remain steady, and are labeled as Bp (Fig. 5).
In our experiments these points are manually chosen.
Note that without this assumption, it would not be
possible to disambiguate between camera motions and
rigid displacements of the surface.

The state of the camera is represented by a 13-
dimensional vector:

m = [r>,q>,v>,ωC
>

]> , (14)

where r and q are the position vector and orientation
quaternion that express the pose of the camera, relative
to the world coordinate system W . v is the velocity
vector, also relative to W , and ωC is the angular velocity
relative to a frame C fixed to the camera.
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Let us denote by yk, mk and Ik the 3D mesh con-
figuration, camera state and input image at time k. Our
problem consists in using this information and the input
image Ik+1 at time k + 1, to estimate yk+1 and mk+1.

We address this problem using a full covariance EKF
formulation, in which the map is mathematically rep-
resented by a state vector x = [m>,y>]> composed of
the camera configuration and mesh vertexes. Upon the
arrival of a new input image, the state vector estimate
x̂ = [m̂>, ŷ>]> and its covariance matrix P are iteratively
updated following the standard approach detailed in
Algorithm 1. We next describe the main elements of this
process, namely the dynamic models that predict the
next state of the camera and surface, and the observation
model that performs the correction.

5.2 Camera and Surface Motion Models

5.2.1 Camera Motion Model

Following [13], the camera motion is represented using
a constant velocity model, which, at each time step ∆t,
introduces an impulse of linear and angular velocities:

∆v = v̇∆t

∆ωC = ω̇C∆t

where v̇ and ω̇C are unknown linear and angular acceler-
ation variables, with zero mean and Gaussian distribu-
tion and covariance matrix Qm. The camera transition
state function mk+1 ≡mk+1(mk,∆v,∆ωC) is:

mk+1 =


rk+1

qk+1

vk+1

ωCk+1

 =


rk + (vk + ∆v)∆t

qk × q((ωCk + ∆ωC)∆t)
vk + ∆v
ωCk + ∆ωC

 (15)

where q((ωCk + ∆ωC)∆t) denotes the quaternion defined
by the rotation vector (ωCk + ∆ωC)∆t.

5.2.2 Surface Motion Model

In order to introduce the non-linear dynamics of the
surface deformation into the EKF, we use the FEM for-
mulation of Eq. (3), and consider a dynamic model which
assumes that unknown force impulses ∆f cause the
following increment of the nodal displacements between
consecutive frames:

∆a = K−1∆f . (16)

We enforce the boundary conditions that constrain the
displacement of the p rigid points to be zero, providing
the necessary additional constraints to solve the linear
system and the camera absolute location. Note that the
vector ∆a is made of both the nodal displacements
and rotation increments. As for representing the surface
we are only interested in the displacement components
of the middle-plane, where the rotation effect is null,
we consider a cropped inverse stiffness matrix (K−1)∗

Algorithm 1 Online Non-Rigid EKF (EKF-FEM).
Input: Input sequence and rigid point labels Bp
Output: 3D non-rigid shape and camera pose trajectory

1: while Ik do

2: I. EKF prediction
3: if Computing Rigid Structure at Rest then
4: Ck = 0; Qy = 0; Initialization (See Sect. 5.4)
5: else
6: [Ck] = FEM

[
x̂k−1|k−1, ν, h,Bp

]
(Eq. 17)

7: Qy; Null for boundary points only
8: end if
9: m̂k|k−1 = mk+1

(
m̂k−1|k−1, 0, 0

)
(Eq. 15)

10: ŷk|k−1 = yk+1

(
ŷk−1|k−1, 0

)
(Eq. 20)

11: x̂k|k−1 =
[
m̂>k|k−1, ŷ

>
k|k−1

]>
12: Pk|k−1 = FkPk−1|k−1F

>
k + GkQkG

>
k (Eqs. 24,25)

13: II. EKF data association
14: ĥk|k−1 = hk(x̂k|k−1) (Eq. 23)
15: Sk|k−1 = Hk|k−1Pk|k−1H

>
k|k−1 + Rk (Eq. 26)

16: III. EKF update
17: Kk|k−1 = Pk|k−1H

>
k|k−1S

−1
k|k−1

18: x̂k|k = x̂k|k−1 +Kk|k−1(zk − ĥk|k−1)
19: Pk|k = (I−Kk|k−1Hk|k−1)Pk|k−1

20: end while

that results from removing the rows and columns cor-
responding the nodal rotations. This is formulated by
considering the compliance matrix:

C = (K−1)∗, (17)

in which we have sorted the columns such that the
last p of them correspond to the rigid nodes. With this
arrangement, we can finally rewrite Eq. (16) in terms of
the nodal displacements:

∆y = C∆f∗ (18)

where ∆f∗ = [∆f1, . . . ,∆fn−p, 01×3p]
>, and each ∆fi is

assumed to be a random variable with zero mean and
Gaussian distribution.

One of the main limitations of using FEM in practical
situations is that they require knowing the material
parameters (ν and E in Eq. (6)) and h in advance. In
this work we will assume nearly incompressible mate-
rials such as soft biological tissues, rubbers or papers,
and hence ν ≈ 0.5 is a reasonable approximation. No
assumption will be made about the Young’s modulus E.
Instead, E can be factorized out of the compliance ma-
trix, and h can be partially factorized out by normalizing
the vector of forces as:

∆s =
∆f∗

Eh
. (19)

With this normalization all unknown magnitudes are
concentrated in the noise component of the surface state
vector, and can be simultaneously processed by the EKF.
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Note however, that as the behavior matrix of the bending
component Db (see Appendix) depends on a h2 factor,
the material width h can not be completely factorized
out of C. In any event, this normalization is a remarkable
contribution of our paper, as it lets us to easily handle
both extensible and isometric materials.

If we now consider the surface configuration yk at a
time step k, and its associated compliance matrix Ck,
the new state estimate is computed via a simple additive
transition state function:

yk+1 ≡ yk+1 (yk,∆s) = yk + Ck∆s . (20)

Note that with this equation we make it possible to bring
the EKF-based formulation from a rigid to a non-rigid
domain. Note also that while the stiffness matrix is quite
sparse, its inverse, the compliance matrix, is dense. This
provides a connection between all surface points and
correlates all their displacements, i.e. the deformation of
the scene in response to an applied force in a node, af-
fects all nodes of the non-rigid scene. Another interesting
point is that the compliance matrix Ck is re-estimated at
each iteration, thus being adapted to the changing ge-
ometry of the shape. This allows correcting accumulation
errors produced by the inherent linearization of the EKF,
that might cause drifting problems.

Again, it will be necessary to associate a covariance
matrix to this dynamic model. Since the normalized
forces are expressed in length units1, we represent the
covariance matrix Qy as a diagonal matrix whose el-
ements encode deformation variances. These variances
will be set to a constant value for all non-rigid nodes
and to zero for the rigid ones. Yet, and as it will be made
clear in the results, it is worth pointing that our dynamic
model naturally codes anisotropic deformations.

5.3 Measurement Model
We next describe how the process of observing the
mesh vertexes is modeled. Given the 3D coordinates of
a vertex expressed in the world coordinate system W ,
gi = [xi, yi, zi]

>, we initially use the pose components
(q and r) of the camera state vector to compute gCi , the
expected position of the feature in the local coordinate
system of the camera C:

gCi = [xCi , y
C
i , z
C
i ]> = Rot

¯
>(gi − r), (21)

where Rot
¯

is the rotation matrix corresponding to the
quaternion q. The measurement function πi (m,gi) re-
turns the 2D projection (we assume a perspective cali-
brated camera) of gCi onto the image, given the pose and
shape values in the current state vector:

πi ≡ πi (m,gi) =

 βx − αx x
C
i

zCi

βy − αy y
C
i

zCi

 , (22)

where (βx, βy) are the coordinates of the principal point
of the camera and (αx, αy) its focal length values. In

1. Units of [∆s] =
[Force]

[Pressure][Length]
= [Length].

addition, in order to handle radial distortion, we further
warp the perspective-projected coordinates according to
a first order radial distortion model [29].

The measurement equations for the q mesh vertexes
are stacked together into a unique non-linear measure-
ment function of the state vector:

hk ≡ hk(x) =
[
π1 . . . πi . . . πq

]>
. (23)

Each measurement is assigned a zero-mean Gaussian
error with diagonal 2× 2 covariance matrix Σπi . The
global measurement noise covariance Rk is built by as-
sembling these covariances into a block diagonal matrix.

5.4 Initialization

We initially assume that no forces are acting on the sur-
face, which therefore behaves as a rigid object. In order
to compute this initial shape, which we call structure
at rest, we use the same non-rigid EKF framework we
propose in this paper, but we set the covariance matrix
Qy = 0. Note from Eq. (20) that setting this covariance
to zero, the normalized forces vanish, and thus there is
no deformation, i.e., yk+1 = yk. Qm is set to a constant
diagonal matrix, as done in rigid SLAM [13].

Since depth cannot be computed from one single im-
age, we proceed by first detecting Fast interest points [35]
on the input image and creating a map of Inverse
Depths [10] with them. We then move the camera around
the object to capture several measurements of every
feature from different viewpoints and turn the inverse
depths to actual depths measurements. The structure
at rest is finally computed by applying a Delaunay’s
tessellation of these points, yielding a triangular, yet
not uniform, 3D mesh. Once the structure at rest is
estimated, we switch back Qy to its original value to
model the non-rigid scene (Lines 3-8 in Algorithm 1).

Note that we could have chosen to define a mesh with
uniformly distributed vertexes parameterized by the
barycentric coordinates of the non-uniformly detected
features, as in [32], [37], among others. While this would
yield smoother results, we found it not to be realistic to
handle practical situations in which non-textured areas
require defining larger triangles than highly textured
ones. Yet, both alternatives are technically equivalent.

5.5 Data Association

To perform data association we proceed as follows. Dur-
ing initialization, we associate a small rectangular image
template to each feature. This template is defined as the
rectangular patch surrounding the detected points in the
first frame of the sequence. Then, at runtime, we predict
the image coordinates π̂i of every keypoint feeding the
current prediction estimate x̂k|k−1 into the measurement
model Eq. (23). In addition, the Jacobians of this function,
Hk Eq. (26), are used to compute the uncertainty of the
prediction, represented by the innovation covariance Si
(Line 15 in Alg. 1). This defines an ellipse on the input
image (centered on π̂i and with size proportional to
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Fig. 6. Data association. Left: Some of the Fast interest points
detected in the first frame of the sequence and their rectangular
patches. Right: Search regions. Cyan ellipses correspond to
the search regions if only a rigid model was considered. Yel-
low ellipses represent the actual predicted search areas, with
an additional degree of uncertainty produced by the non-rigid
component of the model. Note that for the left-most points –rigid
boundary points– yellow and cyan ellipses coincide.

the standard deviation of Si), where to search for the
matching observation. The pixel in the region yielding
the highest template correlation, if over a threshold, is
selected as the match. If none of the pixels scores over
the threshold, the point is considered non-observed. The
matched observations are stacked in the zk vector (Line
18 in Alg. 1). This lets us to handle situations of self-
occlusion or extreme deformation where points either
disappear or can not be detected.

This guided search, is a key element of all EKF-
SLAM methods, as allows for fast data association while
minimizing the risk of mismatches due to image aliasing.
As shown in Fig. 6, the search area is slightly larger
in our formulation than in standard SLAM approaches
for rigid objects, as it also contemplates an additional
uncertainty term due to the surface deformation.

5.6 EKF Formulation
The proposed sequential non-rigid and monocular EKF-
FEM is summarized in Algorithm 1. It is composed of the
three main steps of an EKF: prediction, data association
and updating (Lines 2, 13 and 16 of Alg. 1, respectively).
Since this process is standard, we will skip details, and
we just provide information about how the Jacobian
matrices Fk, Gk and Hk, are assembled.

For the non-rigid case, the prediction stage is different
to that of the rigid case, as besides the dynamic model
of the camera, it includes one for the dynamic structure.
Given an input image Ik, Fk and Gk are the Jacobian
matrices of the dynamic model with respect to the state
vector and state noise respectively, and are defined as:

Fk =

[
∂x
∂m

∂x
∂y

]
=


I 0 I∆t 0 0

0 ∂qk+1

∂qk
0 ∂qk+1

∂ωCk
0

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 , (24)

Gk =

[
∂m
∂n

∂y
∂n

]
=


I∆t 0 0

0 ∂qk+1

∂∆ωC
0

I 0 0
0 I 0
0 0 Ck

 , (25)

where I is the identity matrix, n = [∆v>,∆ωC
>
,∆s>]>

is the state vector noise whose covariance matrix Q, is
block diagonal, composed of Qm and Qy.

Given the set of q measurements of Eq. (23), the
Jacobian matrix Hk is written as:

Hk =
[
∂h
∂x

]
=


∂π1

∂m
∂π1

∂y1
0 · · · 0

· · · · · · · · · · · · · · ·
∂πi

∂m 0 0 ∂πi

∂yi
0

· · · · · · · · · · · · · · ·
∂πq

∂m 0 · · · 0
∂πq

∂yn

 . (26)

5.7 Computational Cost
One of the main virtues of the sequential formulation
we propose is that it has a small computational load.
We next provide details this complexity, and compare it
against rigid versions of EKF and BA.

Let us first consider the cost of processing one single
frame using EKF. In the rigid case the cost isO(n3), when
all features are measured, being n the state vector size.
This is mainly due to the EKF update stage, as the cost of
the prediction is negligible. Yet, for the non-rigid case,
the complexity of the prediction significantly increases
because it requires assembling and inverting the stiffness
matrix, in Eq. (17), which is O(n3) [18]. In any event, the
total cost per frame remains O(n3).

When considering an n-size rigid map observed by
m cameras, the number of unknowns becomes m + n.
Thus, when using EKF, we need to solve m steps O(n3)
resulting in O(mn3) complexity. This can be done in
real time for moderate values of n, preventing though,
from a dense map computation. On the other hand,
rigid BA approaches simultaneously solve for the map
and all camera poses, which, theoretically would yield
an O((n + m)3) problem. However, since for the rigid
case there are no constraints between camera poses or
between map points, sparsity patterns can be exploited
to reduce the complexity to O(nm2 + m3) [16], [40].
In addition, BA does not require processing the whole
sequence, but just a small set mBA << m of keyframes,
reducing even more the cost to O(nm2

BA + m3
BA). This

complexity, allows for much denser and more accurate
estimations of rigid maps than when using EKF [40].

Yet, when dealing with non-rigid maps the advantages
of the BA are lost. The map points change every frame,
thus having to estimate mn map points. Additionally, the
sparsity is lost due to interframe smoothing constraints
–absent in the rigid case–. Hence, BA approaches need
to solve an O((m+nm)3) ≈ O((nm)3) problem. For this
scenario, EKF sequential methods are more adequate, be-
cause they still keep the O(mn3) cost for m images. This
holds on the fact that scene and cameras at previous time
steps are marginalized-out and their effect in the current
time step is coded in the O(n2) covariance matrix.

6 EXPERIMENTAL RESULTS
We now present the results obtained on synthetic and
real image sequences, providing both qualitative and
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Fig. 7. Results on the Synthetic Elastic Plate. Left: 3D reconstruction results for selected frames #50, 650 and 950. Top: The
reconstructed mesh (blue) is projected onto the input mesh (black), which is hardly visible as the projection is almost perfect. Middle:
3D view of the estimated mesh, where the red ellipsoids are the associated nodal uncertainties represented as a 95% confidence
region. The real elasticity of the plate is coded with the white-black pattern, where white indicates larger elasticity, reaching levels
where the patch area is increased by a factor 2×. Bottom: Ground truth 3D shape (black) and our estimate (blue), computed from
the mean of the Gaussian distributions at each nodal position. Right: Estimated camera trajectory, seen from two viewpoints (X-Y
and X-Z). Although our approach provides the whole 6-dof camera pose for each frame, for clarity we just plot the position its center,
and the associated uncertainty at specific frames. Note that this path is consistent with the ground truth camera trajectory.

quantitative evaluation where we compare our EKF-
FEM against other state-of-the-art approaches (Please, see
accompanying videos submitted as supplemental material).

6.1 Parameter Tuning
The datasets we consider include deformable objects
with different levels of extensibility, going from materials
deforming isometrically, such as a sheet of paper, to
very elastic materials such as a silicon cloth. We will
show that our approach can naturally handle all this
kind of deformations without explicitly knowing the
true material properties. We just need a very simple
tuning of the magnitude of the material width h and the
covariance of the normalized forces ∆s, that model the
expected standard deviation of the nodal displacement
between consecutive frames. The values we have used
for each experiment are summarized in Table 1.

In all cases we set the Poisson’s ratio to ν = 0.499
under the general assumption of a quasi incompressible
material. h is roughly approximated to the width of the
scenes (skin, silicone, paper and abdominal tissue). Note
that small values of h allow rendering isometric behavior
because, as we consider incompressibility, the element
volume can only be maintained by keeping constant
the element area. On the other hand, if h is larger, the
volume may be maintained even if the element area is
changed by either increasing or reducing the width of
each element of the model. The amount of elastic de-
formation is further controlled by the magnitude of ∆s.
As the actual acting forces on the surface do not follow
a Gaussian model we set the parameter ∆s to values

h (mm) ν ∆s (m)
Synthetic Elastic 1.5 0.499 1.5 · 10−4

Actress Face 1.5 0.499 4.0 · 10−6

Silicone Cloth 1.5 0.499 2.5 · 10−5

Bending Paper 0.1 0.499 1.0 · 10−9

Laparoscopic 3.5 0.499 4.0 · 10−6

TABLE 1
Parameter selection: h is the surface thickness, ν is the
Poisson’s ratio and ∆s = ∆f∗

Eh
is the normalized force.

larger than those expected theoretically. By doing this,
we will search for the points of interest in larger image
regions than those strictly necessary, slightly increasing
the computation time, but ensuring an accurate data
association for the non-rigidly deforming scene. Recall
that this is one of the main advantages of the approach
we propose: deviations in the values of the physical
parameters (∆s, h, and E), can be naturally bypassed by
the EKF formulation, by just increasing the value of the
covariance Qy of the underlying surface motion model.

Regarding the camera motion, Qm is tuned using the
diagonal covariance matrix values proposed in [13]. We
have verified that this tuning produces accurate data as-
sociation during the initialization stage, and for the rigid
points while observing the deforming non-rigid scene.
Since the actual camera does not follow a simple smooth
motion model, we again set the acceleration magnitudes
to larger values than the expected camera accelerations
in order to ensure a correct data association.

Finally, it is worth to mention that in all our exper-
iments we choose between n = [50 − 100] features per
frame, yielding a similar amount of triangles. Although
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Fig. 8. Comparing EKF-FEM against SBA [34], EM-LDS [43], CSF [19], DCT [3] and BBN1-BBN2 [31]. Left: 3D reconstruction
error for every method at each frame of the sequence. Middle: Cumulative histogram of the reconstruction error. Right: Significance
of the reconstruction error values. Black: ground truth; Blue: reconstructed mesh. Observe that the EKF-FEM error is around 5 mm,
and thus it provides very accurate reconstructions. Similar results are obtained with the BBN2, but at the expense requiring good
training data, representative of all deformations undergone by the plate.
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Fig. 9. Comparing EKF-FEM against SBA [34], EM-LDS [43], CSF [19], DCT [3] and BBN1-BBN2 [31]. Left: 3D reconstruction
error for every method at each frame of the sequence. Middle: Cumulative histogram of the reconstruction error. Right: Significance
of the reconstruction error values. Black: ground truth; Blue: reconstructed mesh. Observe that the EKF-FEM error is around 5 mm,
and thus it provides very accurate reconstructions. Similar results are obtained with the BBN2, but at the expense requiring good
training data, representative of all deformations undergone by the plate.

of deformation and elasticity. For some of the frames,
the extent of the plate was increased by an order of 2×.

The sequence was observed by a monocular moving
camera, following the trajectory shown in Fig. 1-left. The
nodal points of the plate were projected on a 320 × 240
image, considering a perspective camera model with
radial distortion and adding 1 pixel std 2D noise.

We then processed this sequence using our non-rigid
SLAM methodology without knowing any of the ground
truth material properties or nodal forces. For this and the
rest of experiments of this section, we used the values
shown in Table 1, where, as mentioned in Sect. 5.2.2 we
set the Poisson’s ratio to ν = 0.499 under the general
assumption of material incompressibility. h was roughly
approximated to the width of the material. Yet, it is
worth to point out that h does not need to be accurately
specified, as its effect is compensated by the third term
we introduce, the factor Δf∗/Eh, expressed in length
units, that plays the role of the standard deviation of
the nodal displacement between consecutive frames we

expect. That is, the effect of overestimating the width h
would mean that our model assumes a larger rigidity
than the actual one, and thus, smaller nodal displace-
ments. This can be compensated by setting the parameter
Δf∗/Eh to a value safely larger than it is expected. In
practice, this would mean we are increasing the size of
the search area for each point of interest, which, on the
other hand is not harmful when h is set smaller than its
actual value. In that case, we would be just searching for
the points of interest in larger image regions than those
really necessary.

Fig. 7 shows the estimated shape for three different
frames, and the complete camera path recovered by our
approach. Note that in both cases, an uncertainty ellip-
soid is associated to the estimated values, and proves the
consistency of the results we obtain, as both the ground
truth 3D shape and camera path, are within those ellip-
soids. In fact, if we compute the expected nodal positions
(blue meshes in Fig. 7-bottom) and camera pose (blue

Fig. 8. Synthetic Elastic Plate: Comparing EKF-FEM against SBA [34], EM-LDS [43], CSF [19], DCT [3] and BBN1-
BBN2 [31]. Left: 3D reconstruction error for every method at each frame of the sequence. Middle: Cumulative histogram of
the reconstruction error. Right: Significance of the reconstruction error values. Black: ground truth; Blue: reconstructed mesh.
Observe that the EKF-FEM error is around 5 mm, and thus it provides very accurate reconstructions. Similar results are obtained
with the BBN2, but at the expense requiring good training data, representative of all deformations undergone by the plate.
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Fig. 9. Synthetic Elastic Plate: Robustness against image noise, missing data and elastic parameter tuning. Mean 3D
reconstruction error of all 1000 frames as a function of the image noise, percentage of missing data, Poisson’s ratio ν, thickness
surface h and normalized forces ∆s. In the right-most graph we simultaneously plot h and the inverse of the normalized forces ∆s.
In all cases, the white-filled square shows the parameters used in our original EKF-FEM formulation. Additionally, as a baseline
reference, we show the mean error of the DCT [3] and BBN1-BBN2 [31] from Fig. 8. Note that the results we obtain remain within
reasonable bounds for a wide range the tuned parameters, demonstrating that a fine tuning of parameters is not required.

stronger deformations might be better modeled by a
larger number of triangles, we decided not doing so, in
order to keep the computation time within reasonable
bounds. Recall that at each frame we need to invert the
5n× 5n stiffness matrix K. Overall, we obtain computa-
tion times between 3 fps (Laparoscopic Sequence) and 8
fps (Synthetic Elastic Plate), using unoptimized Matlab
code.

6.2 Synthetic Elastic Plate
In the first experiment we applied our approach to a
1000 frames sequence of a deforming elastic plate, gen-
erated with the general-purpose simulation tool Abaqus.
During the first 50 frames, the plate remained rigid, in
a flat 500 × 500 mm2 configuration. Then it started to
deform elastically, combining both membrane and bend-
ing effects, being the membrane component dominant
between frames 51 − 650, and the bending component
dominant between frames 651−1000. In order to generate
the sequence we fed the simulator with all elastic param-
eters, the nodal forces, and as a boundary conditions we
fixed the nodal position along two edges of the mesh.
Figure 7 shows a few sample frames under different
levels of deformation and elasticity. For some of the
elements, the extent was increased by an order of 2×.

The sequence was observed by a monocular moving
camera, following the trajectory shown in Fig. 1-left. The
nodal points of the plate were projected on a 320 × 240
image, considering a perspective camera model with
radial distortion and adding 1 pixel std 2D noise.

Figure 7 also shows the estimated shape for three
different frames, and the complete camera path recov-
ered by our approach. Note that in both cases, an un-
certainty ellipsoid is associated to the estimated values,
and proves the consistency of the results we obtain,
as both the ground truth 3D shape and camera path,
are within those ellipsoids. Indeed, if we compute the
expected nodal positions (blue meshes in Fig. 7-bottom)
and camera pose (blue paths in Fig. 7-right), we can
observe that the results we obtain are very accurate and
close from the ground truth.

In this experiment we also compare the performance
of our approach (denoted EKF-FEM) against state-of-the-
art methods, both sequential and batch algorithms. As a
representative of the sequential methods, we evaluate
the Sequential Bundle Adjustment optimization SBA
proposed in [34], which, as our approach also requires
having a static plate at the beginning of the sequence.
Among the batch methods we consider: EM-LDS [43],
that models object deformations using a Linear Dynamic
System, learned using EM; DCT [3], that uses the Dis-
crete Cosine Transform to express the 3D structure in
an object independent basis; the Column Space Fitting
(CSF) [19], which is similar in spirit to DCT, but uses
higher-frequency components; and BBN [31], which for-
mulates the problem using a Bayesian Belief Network,
and uses the assumption that the shape is represented
as a weighted sum of known PCA-learned modes. Note
that this is indeed a strong assumption that heavily
constrains the solution space and simplifies the problem.
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In order to make a fair comparison, we considered two
configurations of this approach, the BBN1, in which
the PCA basis is trained with 20 sample plates taken
between the frames 200−350; and the BBN2 in which the
20 training sample plates are evenly distributed along
the whole test sequence.

Figure 8-left plots the 3D reconstruction error of all
methods. Note that our approach consistently outper-
forms all other techniques, except the BBN2. This was
in fact expected, as this approach used an accurate
deformation model learned from the ground truth data
of the whole sequence. Yet, when this approach is just
trained with the initial part of the sequence (BBN1), it
fails in the final part of the sequence, where the plate
undergoes more elastic deformations. Our approach,
naturally handles all this kind of deformations, without
explicitly using training data, which may be difficult to
obtain in real applications. In addition, even when BBN2
performs better, our EKF-FEM yields reconstruction er-
rors of about 5 mm, which are very small as seen from
Fig. 8-right.

6.2.1 Robustness to Image Noise and Missing Data
We have also used the synthetic data to assess the
robustness of our approach against increasing levels of
noise and missing data in the image observations. The
results are summarized in the two left most plots of
Fig. 9. In regard to image noise, it can be observed a
graceful degradation of the reconstruction error with
increasing levels of noise. Yet, even with a noise of 2
pixels std, the results remain within reasonable bounds.
The system also shows a nice performance with respect
to random missing data, without significantly degrading
until a breaking point in 70%. This is a consequence of
the Bayesian formulation and the ability of the EKF to
code the correlation among each pair of feature points
in the covariance matrix. That is, when a feature point
is observed in a new image, it is updated not only the
corresponding state of that point but also the state of all
other points. Thus, only a few observations are enough
to produce most of the map update, allowing to cope
with significant amounts of missing data.

6.2.2 Influence of the Elastic Parameter Tuning
We have evaluated the stability of the results against
different settings of the elastic parameters discussed in
Sec. 6.1. The two right-most plots in Fig. 9, depict the
effect of changing the Poisson ratio ν, and the material
thickness h from their true values. The variations are
significant, ν varies within the range [0, 0.5], and h is
swept within [0.5, 5] mm, (a factor 0.3× to 3× w.r.t the
ground truth of 1.5 mm). Nevertheless, the effect in the
mean error over the 1000 frames is very limited, lower
than a 20% change, still being consistently more accurate
than the closer competitors BBN1 [31] and DCT [3].
Indeed, for values different from ground truth, it can be
observed a slight reduction of the overall reconstruction
error. Yet, this is not surprising in a Bayesian formulation

Fig. 10. Results on the Actress sequence. Top: Selected
frames #24, 44, 64 and 84 with the 2D tracked features. Middle
and Bottom rows: Two different views of the 3D reconstruction.
Note, specially on the bottom row, that each of the 3D features
has the associated uncertainty ellipsoid. In this case, though,
the ellipsoids are very small as the inter-frame deformation is
relatively small compared to the camera motion.

as ours, where uncertainties (of the camera, shape and
motion) are modeled as Gaussian distributions, that are
just rough approximations of reality. These uncertainties
may better model situations where physical parameters
do not exactly match the true ones.

6.3 Real Images
We evaluated our approach on four experiments in-
volving surfaces with very distinct behaviors: a human
face, an elastic silicone cloth, a bending paper under
isometric deformation, and a laparoscopy sequence of a
rabbit abdominal cavity. We will see that our EKF-FEM
can tackle all these situations, by just intuitively setting
the parameters of Table 1, such that we assign higher
values of the normalized force ∆s to materials which are
expected to undergo larger deformations. Due to a lack
of 3D ground truth or long point tracks, other methods
were not applicable in these experiments, except for the
case of the Actress Sequence, where we could perform a
qualitative comparison of the methods.

6.3.1 Actress Sequence
We tested our approach on a 102 frames sequence of an
actress talking and moving her head. As 2D measured
features, we used the sequence tracks provided by [4],
and shown in Fig. 10-top. As a boundary points, we
chose the points of the jaw. Since for this experiment the
ground truth is not available, we only report qualitative
results, by plotting the 3D reconstruction from a frontal
and side view (two bottom rows of Fig. 10). Observe,
from the side view, that the uncertainty associated with
the EKF-FEM estimation is in this case very small. This
is because the deformation of the face is relatively small,
compared to the motion of the camera between consec-
utive frames. In Fig. 1 (second column) we depict the
camera trajectory we have estimated.
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Fig. 11. Estimated camera trajectory for the Silicone Cloth
experiment. (X-Y) and (X-Z) views of the estimated trajectory.
Close-ups for three selected camera locations: Black crosses
indicate the ground truth camera position, and blue crosses
correspond to the center of the Gaussian that defines the
estimated pose. The 95% confidence level of these estimations
is represented by red ellipses. Note that the ground truth position
lies in all cases inside these uncertainty regions. The associated
reconstructed shape for these three frames is shown in Fig. 12.

Since this scene is quasi-orthogonal (the object depth
is small compared to the distance from the camera), the
results are comparatively very similar to those obtained
by [34], which makes the assumption of orthographic
camera model. We provide a comparison with EM-
LDS [43] and DCT [3] methods in appendix. BBN [31]
was not applicable, as there was no 3D training data to
build the deformation modes this method requires.

6.3.2 Silicone Cloth Sequence
To quantitatively evaluate the performance of the EKF-
FEM with real extensible data, we used a hand-held
waving stereo-rig to capture a sequence of a deform-
ing elastic silicone cloth fixed to a circular stretcher to
enforce the boundary conditions (Fig. 1-third column).
Artificial circular markers were painted onto the surface
to facilitate the feature detection both when computing
the stereo ground truth (just for a few frames) and when
applying the proposed method.

The 320 × 240 sequence of one of the stereo cameras
was then used to test our approach, with the parameter
setting given in Table 1. The data association was re-
solved using normalized cross correlation, as detailed in
Sect. 5.5. Note that all map points have a similar texture
patch. In this situation, the guided search constrained to
the elliptical regions is essential to avoid mismatches.

Figure 11 shows the camera trajectory estimated by
our approach. For three of the frames we plot the
95% confidence level ellipsoids, and validate that our
approach is consistent in all cases, i.e., these confidence
regions include the true camera positions, represented
with black crosses. In Fig. 12 we show, for the same
three frames, the reconstruction results. We depict two
cross sectional views and the corresponding 95% con-
fidence uncertainty ellipsoids. Note, as expected, that
the maximum extend of these ellipsoids is along the

Fig. 12. Reconstruction results for three frames of the
Silicone Cloth experiment. Top: Input images and estimated
location of the points of interest, with their associated un-
certainty (red ellipse). The color lines represent the cross-
sectional views shown below. Middle: General view of the 3D
reconstructed shape. The degree of extensibility of the mesh,
compared to the structure at rest, is color-coded. Bluish regions
are isometrically deformed, while reddish areas have undergone
larger elastic deformations. Bottom: Two cross sections of the
reconstructed surface, in which we represent, for each feature
point, both the ground truth position computed using stereo
(black crosses), and the estimated position (blue circles) with
their 95% confidence regions (red ellipses). Note that all ground
truth points fall inside these regions.

viewing direction (the Z-axis). But in any event, these
ellipsoids are rather small, and include the ground truth,
confirming again the consistency of the estimated values.

If we compare the mean of these uncertainty distri-
butions with the ground truth values, we obtain mean
reconstruction errors below 2.5 mm, which is indeed
fairly small considering that the silicone cloth has an
approximate diameter of 200 mm, and the camera is
located at more than 700 mm.

6.3.3 Bending Paper Sequence
We also tested our approach on a textured paper being
smoothly bent (Fig 1-fourth column). The interest of this
experiment is twofold: First, we analyze the behavior of
our approach on a quasi-isometrically deforming mate-
rial. And second, we demonstrate that we can handle
frames where not all the features can be observed.

At initialization, well spread Fast interest points [35]
are detected in the first frame of the sequence, and used
to build a triangular mesh structure. Since the points of
interest are not uniformly distributed, the mesh will not
be regular. The leftmost points of the surface, are fixed
and chosen as rigid points. Then, at runtime, we search
for all these features in every input frame. When the
correlation coefficient of the match is below a certain
threshold, we consider the feature not to be correctly
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Fig. 13. Bending Paper sequence. Top: Reconstructed mesh
overlaid on the image. Observed feature points are shown
with their uncertainty ellipse in red. Unobserved keypoints, are
highlighted with the ellipse in blue. Bottom: Side view of the
mesh. The degree of deformation is represented in color, going
from low (blue) to large deformation (red) levels.

matched and do not consider its measurement. This may
happen due to appearance changes produced when the
surface deforms or due to lack of visibility. In Fig. 13-top
we highlight these features with blue ellipses. Yet, when
the visibility improves the system is able to re-observe
them again. The plots at the bottom of the figure show
the reconstruction error, for increasing levels of bending.

6.3.4 Laparoscopic Sequence

As a final experiment, we present an in-vivo 3D re-
construction of a rabbit abdominal cavity from a 400
frames laparoscopic monocular sequence. This is a very
challenging scenario as the laparoscope produces occlu-
sions, the images are low resolution (288 × 384), and
sudden camera motions often wash out the features
making their observations unreliable. The rest shape
was computed by moving the camera inside the cavity
during an initial and passive exploration stage. As rigid
points, we chose points located far apart from the region
that was going to be deformed, and were assumed to be
fixed. Once this was done, the surgeon performed an
external tactile exam of the abdomen that produced the
internal deformations. Figure 1 represents the estimated
camera trajectory and Fig. 14 shows the reconstructed
shapes for two frames.

7 CONCLUSION AND FUTURE WORK

In this paper, Navier’s equations, solved by means of
FEM, have been embedded into a visual EKF-SLAM
framework to provide a Bayesian estimation for non-
rigid scenes. The proposed method can deal with a
mixture of rigid and non-rigid scene points, to simulta-
neously estimate full 3D camera pose and 3D deformable
structure, from the sole input of the image sequence.

Furthermore, we have shown that the proposed EKF-
FEM can handle both isometric and elastic deformations
without the need to accurately know material parame-
ters. Yet, if these mechanical properties were available,
the method could take advantage of it. This could be
the case in medical images, as they are acquired under

Fig. 14. Laparoscopic sequence. Top: Two selected frames,
in which we overlay the estimated mesh that models the ab-
dominal cavity. Some of the features are not detected (shown in
blue). Bottom: 3D reconstructed shapes. Note the deformation
in the upper-right side of the mesh, produced by the external
tactile exam performed by the surgeon.

controlled conditions where accurate deformation mod-
els are readily available (we did not exploit this in the
Laparoscopy experiment). Similarly, the high efficiency
of our approach, makes it appropriate for tasks involving
manipulation of deformable objects in real time (for
instance, for automatic laundry handling), which we
seek to explore in the future. In addition, we also intend
to integrate additional sources of information into our
observation model that could be useful for textureless
materials. The use of silhouettes and shading cues will
be explored for this purpose.
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APPENDIX

For the completeness of the paper, we next describe
the shape functions and their derivatives necessary to
compute the strain-displacement matrix B, and the be-
havior matrix D, both for the membrane and bending
components of the deformation. These matrices are used
in Section 4.3.

A.1 Linear Shape Functions
Displacements due to membrane effect ūm(x̄, ȳ) within
a triangular element, are interpolated by the nodal dis-
placements āmi = [ūi, v̄i]

> as Eq. (4):

ūm(x̄, ȳ) =

3∑
i=1

N l
i (ξ, η)āmi

where N l
i denote linear (l) element shape functions [47]

(see Fig. 15):

N l
1 = 1− ξ − η N l

2 = ξ N l
2 = η (27)

Let us define the arrays M1 = [N l
1, 0, N

l
2, 0, N

l
3, 0]>

and M2 = [0, N l
1, 0, N

l
2, 0, N

l
3]>. We can then write the

interpolation in matrix form as:

ūm(x̄, ȳ) =

[
M>

1

M>
2

]ām1
ām2
ām3

 .
For computing the strain-displacement matrix Bm, we

will need the following derivatives of M1 and M2 with
respect to the natural coordinates (ξ, η):

∂M1

∂ξ
= M1,ξ =

[
−1 0 1 0 0 0

]>
∂M1

∂η
= M1,η =

[
−1 0 0 0 1 0

]>
∂M2

∂ξ
= M2,ξ =

[
0 −1 0 1 0 0

]>
∂M2

∂η
= M2,η =

[
0 −1 0 0 0 1

]>
The same linear shape functions are also used to

interpolate the geometry (i.e., the 3D position) of any
point within the normalized triangle:

ḡ(x̄, ȳ) =

3∑
i=1

N l
i (ξ, η)ḡi

A.2 Quadratic Shape Functions
Displacements due to bending effect ūb(x̄, ȳ) within
the normalized triangle are interpolated by the bend-
ing components of the nodal displacements ābi =
[w̄i, θx̄i, θȳi]

>. The displacement w̄ is estimated using the
linear shape of Eq. (27):

w̄ =

3∑
i=1

N l
i (ξ, η)w̄i
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Fig. 15. Linear shape functions N l (blue surfaces) used
to interpolate data within the normalized triangle (gray) when
describing geometry and membrane deformations.

The rotation components, on the other hand, are in-
terpolated using quadratic shape functions:

[
θx̄
θȳ

]
=

[
N>1
N>2

]āb1
āb2
āb3


where N1 = [Nx1, . . . , Nx9]>, N2 = [Ny1, . . . , Ny9]>, and
the shape functions are defined as [6]:

d = {1, 4, 7}
{
Nxd = 1

4 (paN
q
a − pbNq

b )

Nyd = 1
4 (taN

q
a − tbNq

b )

d = {2, 5, 8}
{
Nxd = 1

4 (qaN
q
a + qbN

q
b )

Nyd = −Nq
m + eaN

q
a + ebN

q
b

(28)

d = {3, 6, 9}
{
Nxd = Nq

m − caNq
a − cbNq

b

Nyd = − 1
4 (qaN

q
a + qbN

q
b )

where for d = {1, 2, 3} we use the triplet {m, a, b} =
{1, 6, 5}; for d = {4, 5, 6} we set {m, a, b} = {2, 4, 6}; and
for d = {7, 8, 9} we set {m, a, b} = {3, 5, 4}. The Nq

i are
quadratic shape functions, defined in natural coordinates
(ξ, η) as:

Nq
1 = (1− ξ − η)(1− 2(ξ + η)) Nq

2 = ξ(2ξ − 1)
Nq

3 = η(2η − 1) Nq
4 = 4ξη

Nq
5 = 4η(1− ξ − η) Nq

6 = 4ξ(1− ξ − η)

The shape of these six quadratic functions over the
normalized triangle is shown in Fig. 16.

The coefficients {pk, qk, tk, ck, ek} in Eq. (28) are com-
puted by:

xij = x̄i − x̄j yij = ȳi − ȳj l2ij = x2
ij + y2

ij

pk =
−6xij

l2ij
qk =

3xijyij
l2ij

tk =
−6yij
l2ij

ck =
1
4x

2
ij− 1

2y
2
ij

l2ij
ek =

1
4y

2
ij− 1

2x
2
ij

l2ij

for the triplets {k, i, j} = {4, 2, 3}, {5, 3, 1}, {6, 1, 2}.
To compute the strain-displacement matrix Bb, we

will need the following derivatives of N1 and N2 with
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respect to the natural coordinates (ξ, η):

N1,ξ =



p6(1− 2ξ) + (p5 − p6)η
q6(1− 2ξ)− (q5 + q6)η

−3 + 4(ξ + η)− 4c6(1− 2ξ) + (c5 + c6)4η
−p6(1− 2ξ) + (p4 + p6)η
q6(1− 2ξ) + (q4 − q6)η

−1 + 4ξ − 4c6(1− 2ξ)− (c4 − c6)4η
−(p4 + p5)η
(q4 − q5)η
−(c4 − c5)4η



N1,η =



−p5(1− 2η) + (p5 − p6)ξ
q5(1− 2η)− (q5 + q6)ξ

−3 + 4(ξ + η)− 4c5(1− 2η) + (c5 + c6)4ξ
(p4 + p6)ξ
(q4 − q6)ξ
−(c4 − c6)4ξ

p5(1− 2η)− (p4 + p5)ξ
q5(1− 2η) + (q4 − q5)ξ

−1 + 4η − 4c5(1− 2η)− (c4 − c5)4ξ



N2,ξ =



t6(1− 2ξ) + (t5 − t6)η
3− 4(ξ + η) + 4e6(1− 2ξ)− (e5 + e6)4η

−q6(1− 2ξ) + (q5 + q6)η
−t6(1− 2ξ) + (t4 + t6)η

1− 4ξ + 4e6(1− 2ξ) + (e4 − e6)4η
−q6(1− 2ξ)− (q4 − q6)η

−(t4 + t5)η
(e4 − e5)4η
−(q4 − q5)η



N2,η =



−t5(1− 2η) + (t5 − t6)ξ
3− 4(ξ + η) + 4e5(1− 2η)− (e5 + e6)4ξ

−q5(1− 2η) + (q5 + q6)ξ
(t4 + t6)ξ

(e4 − e6)4ξ
−(q4 − q6)ξ

t5(1− 2η)− (t4 + t5)ξ
1− 4η + 4e5(1− 2η) + (e4 − e5)4ξ

−q5(1− 2η)− (q4 − q5)ξ


A.3 Strain-Displacement Matrices B

Using all previous elements, we can finally write the
strain-displacement B matrix for membrane and bend-
ing effect as follows:

Bm =
1

|Jg|


J22M

>
1,ξ − J12M

>
1,η

J11M
>
2,η − J21M

>
2,ξ

J11M
>
1,η − J21M

>
1,ξ + J22M

>
2,ξ − J12M

>
2,η

 ,

Bb =
1

|Jg|


J22N

>
1,ξ − J12N

>
1,η

J11N
>
2,η − J21N

>
2,ξ

J11N
>
1,η − J21N

>
1,ξ + J22N

>
2,ξ − J12N

>
2,η

 ,
where Jij are the entries of Jg = ∂ḡ/∂ξ, the Jacobian
matrix of the transformation from natural to local coor-
dinates.
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Fig. 16. Quadratic shape functions Nq (blue surfaces) used
to interpolate data within the normalized triangle (in gray) when
describing bending deformations.

A.4 Behavior Matrices D

Finally, the behavior matrix D for membrane and bend-
ing effect are:

Dm =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 , (29)

Db =
Eh2

12(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2

 .

A.5 Additional Results

We next report two additional results that complete the
experimental section. The first demonstrates the advan-
tage of combining rigid and non-rigid points in a pose
estimation task. The second experiment complements the
results of in Sec. 6.3.1 and Fig. 10.

Trajectory Estimation using Rigid and Non-Rigid Points

The EKF formulation we propose naturally handles both
rigid and non-rigid points. Once the rigid points are
identified, they are assigned null values in the dynamic
covariance matrix Qy, and treated identically as non-
rigid points, whose entries in Qy are non-zero. This joint
processing is advantageous. In order to proof this empir-
ically we have performed a very simple experiment with
the synthetic data of Sec. 6.2, and have computed camera
pose using either the rigid points or these in combination
with the non-rigid ones. In both cases we use exactly the
same EKF formulation. As shown in Fig. 17 using all
points (rigid and non-rigid) brings important accuracy
improvements, reducing the relative error or the camera
location from 10.12% to 4.58%.
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Fig. 17. Trajectories comparison. We display two viewpoints
(X-Y and X-Z) for the ground truth trajectory in black, the
estimated trajectory using both rigid and non-rigid points in blue,
and finally the estimated trajectory using only rigid points in red.
The mean relative Euclidean error is reduced from 10.12% to
4.58% when we use all rigid and non-rigid points.

Actress Sequence: Additional Results
For the actress sequence, ground truth shapes are not
given. We run several other approaches using the pro-
vided point tracks and the visual differences of the
reconstructed shapes between all methods are subtle but
informative. See some frames in Fig. 18. Note that EM-
LDS [43] (first row) yields a quasi-rigid solution, with
almost no deformation adaption. On the other hand,
DCT [3] does produce non-rigid changes of the face,
but as seen from the side-views, the resulting 3D face
seems to contain large errors, e.g. the two jaws do not
have a symmetric depth. Furthermore, we found these
approaches to be very sensitive to the number of modes
in the basis, and in particular we did not manage to
make CSF [19] work with this sequence.

Fig. 18. Actress sequence comparison. Top: Selected
frames #24, 44, 64 and 84 with the 2D tracked features. Two
views of the 3D reconstruction corresponding to frames. Top:
Using EM-LDS [43]. Bottom: Using DCT [3].


