Chapter 1
Dense Segmentation-aware Descriptors

Eduard Trulls, Iasonas Kokkinos, Alberto Sanfeliu, Francesc Moreno-Noguer

Abstract Dense descriptors are becoming increasingly popular in a host of tasks,
such as dense image correspondence, bag-of-words image classification, and la-
bel transfer. However the extraction of descriptors on generic image points, rather
than select geometric features, e.g. blobs, requires rethinking how to achieve invari-
ance to nuisance parameters. In this work we pursue invariance to occlusions and
background changes by introducing segmentation information within dense feature
construction. The core idea is to use the segmentation cues to downplay the fea-
tures coming from image areas that are unlikely to belong to the same region as the
feature point. We show how to integrate this idea with dense SIFT, as well as with
the dense Scale- and Rotation-Invariant Descriptor (SID). We thereby deliver dense
descriptors that are invariant to background changes, rotation and/or scaling. We
explore the merit of our technique in conjunction with large displacement motion
estimation and wide-baseline stereo, and demonstrate that exploiting segmentation
information yields clear improvements.

1.1 Introduction

Dense descriptors can be understood as replacing the convolution operations used
in traditional image filterbanks [4, 23] with local descriptors, such as SIFT [20],
that are better-suited to tasks such as image correspondence, classification, or la-
belling. Starting from [25], who demonstrated the merit of replacing sparse with
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Fig. 1.1: Matching with background interference. We show images for two monarch butterflies,
strikingly similar in appearance and pose (accounting for rotation), one over a white background
and another in the wild. We plot the SIFT descriptors for two corresponding points found by hand,
in red (left image) and blue (right image), close to object boundaries. On the bottom left we plot
the descriptor values, ordered: orientation bin first, x-bin second, y-bin third. On the bottom right
we plot the similarity between descriptors, averaged over the orientation bins (white is better, red is
worse). Notice that the orientation histograms match well for the cells which lie on the foreground,
but not for the background cells. This hurts correspondences around object boundaries.

regularly sampled SIFT descriptors for the task of image classification, a line of
subsequent works [40, 18, 11] quickly established dense descriptors as a versatile,
efficient, and high-performing front-end for vision tasks. In particular for dense cor-
respondence, the seminal work of SIFT-flow [18] demonstrated that replacing the
common ‘brightness constancy’ constraint of optical flow with a SIFT-based notion
of similarity facilitates novel applications, such as scene correspondence or label
transfer.

Using dense descriptors however requires rethinking how to achieve invariance.
Sparse descriptor techniques [30, 20, 2, 24, 46, 34, 35] first use an interest point
detector that finds stable scale- and rotation-invariant points, and then pool over co-
ordinate systems adapted around these points to extract scale- and rotation-invariant
descriptors. This strategy however is impossible in the dense setting, as image scale
and orientation cannot be reliably estimated in most image areas: for instance defin-
ing scale is problematic around 1D edges, while defining orientation is problematic
on flat image areas.

Several recent works have addressed the scale- and/or rotation-invariance issue
in the dense setting, either by adapting global image registration techniques to local
image descriptors [13, 15, 31, 19] or by searching for invariant subspaces, as in
the Scale-Less SIFT (SLS) descriptor of [12]. We will elaborate on such techniques
in Sec. 1.2, where we present in more detail the Scale-Invariant-Descriptor (SID)
[13, 15] which our work builds on.



1 Dense Segmentation-aware Descriptors 3

(@ (b)

Fig. 1.2: Matching with occlusions. (a) Two images from wide-baseline stereo, with large occluded
areas. (b) On the top row, we show the ground truth depth map, from the view farthest to the right.
Occlusions, determined from ground truth visibility maps, are marked in red. On the bottom row,
we dilate the occlusion map by 25 pixels and plot the result in yellow. We can think of these as
the coordinates of the pixels that will be affected if we compute descriptors over circular areas of
radius 25 pixels, as occluded areas creep into their domain—pixels closer to occlusion boundaries
will suffer more. As the baseline increases, more and more pixels are beset by this problem: over
30% of visible pixels in this case.

In this Chapter we push this line of works a step further, achieving invariance to
‘background changes’. In particular, some of the measurements used to construct a
descriptor around a point may often come from distinct, independent objects, and
will therefore differ in a new instantiation of the same point. One such case is illus-
trated in Fig. 1.1, where the object is roughly planar, but its background changes and
therefore descriptors computed near its boundaries differ. Another case is shown in
Fig. 1.2, where the scene stays the same, but due to its complicated geometry we
have self-occlusions yielding again different descriptors across the two scenes. We
will henceforth be using the term ‘background variability’ as a common term for
these two, and other cases (e.g. occlusion by objects lying closer to the camera),
where observations that do not stem from the same planar region as the feature
point may affect the point’s descriptor.

While this is an unavoidable problem when constructing local descriptors, we
are aware of only a few works addressing it. In an early work in this direction',
[36] introduced a local membership function to eliminate background information
from (sparse) SIFT descriptors; the image gradients that are pooled for the per-

! We were unaware of this work when first publishing [43].
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bin histograms were pre-multiplied by this function, resulting in a shunning of the
background image gradients. In [40] the authors reported substantial performance
improvements in multi-view stereo by treating occlusion as a latent variable in an
iterative stereo matching algorithm: at every iteration, each pixel chooses a (dis-
cretized) orientation variable and discards the feature measurements coming from
the half-disk lying opposite to it. When interleaved with successive rounds of stereo
matching this yields increasingly refined depth estimates.

Interestingly in image processing the idea of blocking the interference between
different regions is a long-established idea that can be traced back to the structure-
preserving filtering used in nonlinear diffusion [26, 29], the bilateral filter [41], and
the segmentation-sensitive normalized convolution of [28], while also bearing some
resemblance to the self-similarity descriptor of [32]. In this light our work can be un-
derstood as bringing to the problem of descriptor construction the insight of block-
ing the flow of information across distinct regions by using the image to construct a
local region membership function.

In particular, our aim is to eliminate, or at least reduce, the effects of background
changes when extracting descriptors. For this we use a ‘mid-level’ segmentation
module to reason about which pixels go together: as illustrated in Fig. 1.3, we in-
corporate segmentation information through a soft ‘gating” mask that modulates
local measurements, effectively shunning those parts of the image which apparently
do not belong to the same object/surface as the center of the descriptor. In particu-
lar, we use segmentation cues (Fig. 1.3-b) to compute the affinity of a point with its
neighbors (Fig. 1.3-c), and downplay image measurements most likely to belong to
a different regions or objects (Fig. 1.3-d).

We argue that our approach has the following favorable aspects: firstly, it is
fairly general. We apply it to two different descriptors (SIFT and SID), with three
different segmentation techniques (Spectral Clustering [21], Generalized Bound-
aries [17], Structured Edge Forests [9]), for two different applications (motion and
stereo). In all cases we demonstrate that the introduction of segmentation results in
systematically better results over the respective baselines. Secondly, it is simple. It
requires no training, and simply modifies the values of an existing feature descriptor.
As such it can be used in any application that relies on descriptors. Thirdly, it incurs
minimal overhead. The affinity masks can be computed and applied efficiently, in
the order of a few seconds [17] or even a fraction of a second [9], for dense descrip-
tors. Fourthly, our method has a single parameter, which can be used to adjust the
‘hardness’ of the masks. We fix it once and use it throughout our experiments—even
across different applications.

In Sec. 1.2 we describe the SID descriptor, which achieves scale- and rotation-
invariance in dense descriptor construction and serves as the starting point of our
work. In Sec. 1.3, we present how we extract segmentation information from im-
ages in a manner that makes it straightforward to extract dense soft segmentation
masks and, in turn, dense segmentation-aware descriptors. Lastly, we benchmark
our descriptors on two different applications: large displacement motion estimation,
and wide-baseline stereo. We demonstrate that the introduction of segmentation cues
yields systematic improvements.
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(d) ‘Gating’ mask (e) SIFT () ‘Gated’ SSIFT
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Fig. 1.3: We exploit segmentation information to construct feature descriptors that are robust to
background variability. (a) Input image: we want to compute a descriptor for the pixel indicated
by the red dot. (b) Segmentation embeddings, visualized in terms of their first three coordinates in
RGB space; pixels with similar segmentation embeddings are likely to belong to the same region.
(c) Affinity between the pixel represented by the red dot and its neighbors, measured in terms of
the euclidean distance in embedding space. (d) A ‘gating’ mask that encodes the reliability, i.e.
region similarity, of the locations used to compute the SIFT descriptor (e). We can thus construct
a Segmentation-aware SIFT (SSIFT) descriptor (f) by ‘gating’ the descriptor features with the
mask. Figures (g-h) show the distance between the descriptors shown in (e-f) and respective dense
SIFT/SSIFT descriptors over the whole image domain; we note that the SSIFT similarity function
peaks more sharply around the pixel, indicating its higher distinctiveness.

1.2 SID: a Dense Scale- and Rotation-Invariant Descriptor

In several applications it can be desirable to construct a scale-invariant descriptor
densely, for instance when establishing dense image correspondences in the pres-
ence of scale changes. In such cases scale selection is not appropriate, as it is only
reliably applicable around a few singular points (e.g. blobs or corners).
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Fig. 1.4: Turning scaling into translations for 1D and 2D Signals: The left column demonstrates for
a 1D signal how the logarithmic transformation x’ = log(x) turns scaling into translation: the red-
solid (f(x) = cos(x)) and blue-dashed (g(x) = cos(2x)) functions differ by a scale factor of two;
the transformation f’(x) = f(log(x)) delivers f’(x) = cos(log(x)), g’ (x) = cos(log(x) —log(2)),
which differ by a translation. The next columns illustrate the same effect for 2D signals. The
second column shows the descriptors computed on a point before and after scaling and rotating an
image; the needle length indicates directional derivative magnitude. The next two columns show
the respective magnitudes across and along the ray direction, demonstrating that image scaling and
rotation are turned into translations. The point is arbitrary (i.e. not a corner/junction/blob center),
and therefore scale selection around it would not be reliable, or even feasible.

We argue that one can instead adapt the Fourier Transform Modulus-based im-
age registration technique [6, 27, 47] to the construction of descriptors and thereby
guarantee scale- and rotation-invariance at any image point, withour requiring scale
selection. Starting with an illustration of the technique for a one-dimensional signal,
we will then briefly present how it applies to image descriptors; a more extensive
presentation and evaluation is contained in [15], while we had originally presented
this technique for sparse descriptors in [13].

We first consider describing a one-dimensional signal f(x), x > 0 in a manner
that will not change when the signal is scaled as f(x/a), a > 0. Using the domain
transformation x’ = log(x) we can define a new function f” such that

f(X)=f(x), wherex =logx, (1.1)

which is what we will be referring to as the ‘logarithmically transformed’ version
of f; this is illustrated also in the left column of Fig. 1.4. For this particular trans-
formation, dilating f by a will amount to translating f” by a constant, log(a):

f'(x' —log(a)) = f(x/a), (1.2)
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meaning that we turn dilations of f to translations of f’.

We can thus extract a scale-invariant quantity based on the fact that if g(x) and
G(w) are a Fourier transform pair, g(x — ¢) and G(®)e/® will be a transform pair
as well (by the shifting-in-time property). Defining f,(x') = f'(x' —log(a)), and
denoting by F,(®) the Fourier Transform of f,(x) we then have:

Fu(0) = Fi(0)e /8@ o (1.3)
Za(0)| = [F1(0)]. (1.4)

From Eq. 1.4 we conclude that changing a will not affect the Fourier Transform
Modulus |-%,(®)| of f,, which can thus be used as a scale-invariant descriptor of f.

As shown in the next columns of Fig. 1.4, a 2D scaling and rotation can simi-
larly be converted into a translation with a log-polar transformation of the signal—
and then eliminated with the FTM technique. The principle behind this approach is
commonly used in tasks involving global transformations such as image registration
[6, 47] and texture classification [27].

Adapting the FTM technique to the construction of local descriptors requires
firstly a discrete formulation. We construct a descriptor around a point x = (xy,x3)
by sampling its neighborhood along K rays leaving x at equal angle increments
0p =2mk/K, k=0,...,K — 1. Along each ray we use N points whose distances
from x form a geometric progression r, = coa”. The signal measurements on those
points provide us with a K x N matrix:

hlk,n] = fx1 + rncos(6;),x2 + rysin(6;)], (1.5)

By design, image scalings and rotations of the image amount to translations over
the radial and angular dimensions, respectively, of this descriptor. From the time-
shifting property of the Discrete-Time Fourier Transform (DTFT) we know that if

hlk,n] 5 H(joy, jo,) are a DTFT pair, we will then have:

hlk—c,n—d] & H(joy, jo,)e(@ctond) (1.6)

therefore taking the absolute of the DTFT yields a scale- and rotation-invariant
quantity.

We can apply the Fourier Transform only over scales to obtain a scale-invariant
but rotation-dependent quantity (and vice-versa, for a rotation-invariant and scale-
sensitive quantity). This can be useful in scenes with scaling changes but no rota-
tions, where we would be discarding useful information. In our evaluations we will
refer to the scale- and rotation-invariant descriptor as SID and to the scale-invariant
but rotation-sensitive descriptor as SID-Rot.

Apart from a discrete formulation, we also need to preprocess the image so as to
(a) discount illumination changes, (b) allow for efficient dense computation, and (c)
account for sampling effects. Regarding (a), for invariance to additive illumination
changes we use the directional derivatives of the signal along a set of orientations
offset by the current ray’s orientation (see e.g. Fig. 1.4 for the components along,
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SID, d € {4,5,6}

Image 2 SID, d € {1,2,3} SID, d € {4,5,6}

Fig. 1.5: Visualization of dense SID: the location of the image 1 within image 2 is indicated by the
red box; the scaling transformation amounts to an area change in the order of four. We align the de-
scriptors for the bottom row (red box) with the top row image after computing them, and visualize
three of their dimensions in RGB space—demonstrating that they are effectively invariant.

and perpendicular to the ray). We extract features at H’ orientations, preserving
polarity, so that the effective number of orientation histogram bins is H = 2 - H'.
To discount multiplicative illuminaton changes we normalize the features to unit L,
norm. For (b), memory- and time-efficient dense computation: we combine Daisy
[40] with steerable filtering [10] and recursive Gaussian convolutions [7]. Finally
for (c), dealing with sampling effects, as proposed in [13, 40] we use a ‘foveal’
smoothing pattern, with a smoothing scale that is linear in the distance from the
descriptor’s center.

In Fig. 1.5 we show the values of the lowest-frequency coefficients of densely
computed descriptors on two images related by scaling and rotation. We see that the
descriptor values are effectively invariant, despite a scaling factor in the order of 2.

Before proceeding we note that apart from SID, the Scale-Less SIFT (SLS) de-
scriptor was introduced in [12], also with the goal of achieving scale-invariance for
dense descriptors. The SLS approach is to compute a set of dense SIFT descriptors
at different scales for each point, and project them into an invariant low-dimensional
subspace that ellicits the scale-invariant aspects of these descriptors. SLS gives
clearly better results than dense SIFT in the presence of scaling transformations,
but SID can also be rotation-invariant and is substantially faster to compute. We
include this state-of-the-art descriptor in our benchmarks in Sec. 1.4, and refer to
Chapter XXX for further details on SLS construction.
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1.3 Dense Segmentation-aware descriptors

In this Section we turn to discarding background variability by exploiting segmen-
tation. Our goal is to construct feature descriptors that are contained within a single
surface/object (‘region’ from now on). In this way changes in the background, e.g.
due to layered motion, will not affect the description of a point in the interior of a
region. Similarly, when a region is occluded by another region in front of it, even
though we cannot recover its missing information, we can at least ignore irrelevant
occluders.

Achieving this goal can benefit SIFT as well as any other descriptor, but its merit
is most pertinent to SID. In particular, image scaling does not necessarily result in
a cyclic permutation of the SID elements: the finest- and coarsest-level entries can
change. As such the (circular) shifting relationship required to obtain the DTFT pair
in Eq. 1.6 does not strictly hold. To remedy this issue SID typically uses large image
patches and many rings, so that the percentage of points where this change happens
eventually becomes negligible; this however limits SID’s applicability, since back-
ground structures and occlusions can easily creep into its construction.

If we were able to use information only from the region containing a point, we
could make a descriptor invariant to background changes: as shown in the first col-
umn of Fig. 1.6, given the support of the region containing a pixel we can identify
the descriptor elements that come from different regions and set them to zero. How-
ever, since segmentation is far from solved we turn to algorithms that do not strongly
commit to a single segmentation, but rather determine the affinity of a pixel to its
neighbors in a soft manner. This soft affinity information is then incorporated into
descriptor construction, in the form of a ‘gating’ signal.

Namely, when constructing a descriptor around a point x we measure an affinity
wlk,n] € [0,1] between x and every other grid coordinate x[k, n], and multiply with
it the respective measurements d extracted around [k, n]:

d'[k,n] = w[k,n]d[k,n]. (1.7)

In Eq. 1.7 d[k, n] represents for SID the concatenation of the H polarized-smoothed
derivatives at [k,n] and for SIFT the respective 8-dimensional orientation histogram.
Multiplying by wlk, n] effectively shuns measurements which come from the back-
ground; as such, the descriptor extracted around a point is affected only by points
belonging to its region and remains robust to background variability. As our results
indicate, replacing d by d’ yields noticeable performance improvements.

Having provided the general outline of our method, we now describe three alter-
native methods to obtain the affinity function w[k,n] used in Eq. 1.7.
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(1.b) Annotation (2.b) ‘Eigen’ affinity (3.b) ‘SoftMask” affinity (4.b) ‘Edge’ affinity*

1Y .
(1.c) ‘Ideal’ mask (2.c) ‘Eigen’ mask (3.c) ‘SoftMask’ mask

(4.c) ‘Edge’ mask

Fig. 1.6: Segmentation-aware descriptor construction. Column 1: Given image (1.a) and a ‘perfect’
figure-ground segmentation (1.b), separating foreground and background measurements would be
trivial: (1.c); grid points are marked in red if enabled and blue if disabled. This is unattainable—we
propose alternative solutions based on different segmentation cues. Columns 2-4: Given segmen-
tation cues ({2-4}.a), we can measure the ‘affinity’ between pairs of pixels: in ({2-4}.b) we show
the affinity between the point represented by the green dot and the rest of the image. We use
this per-pixel affinity to design ‘gating’ masks ({2-4}.c). We present procedures to leverage the
Normalized-cut eigenvectors of [21] (‘Eigen’, column 2), the Generalized Pb soft segmentations
of [17] (‘SoftMask’, column 3) and the Structured Forests boundaries of [9] (‘Edge’, column 4).
Notice that (2.b) and (3.b) are for illustration: in practice we do this only for grid coordinates x|k, 1]
(pictured in the bottom row), smoothing the embeddings with filters of size increasing with n, prior
to sampling. For the ‘Edge’masks we use an affinity measure computed over the radial coordinates
n, which does not lend itself to an image-based representation—for illustration purposes in (4.b)
we show a distance transform instead [3]. Please refer to Sec. 1.3.3 for details.

1.3.1 ‘Eigen’ soft segmentations (gPb detector)

First, we use the image segmentation approach of [21]: we treat the image as a
weighted graph, with nodes corresponding to pixels and weights corresponding to
the low-level affinity between pixels. The latter is obtained in terms of the interven-
ing contour cue [33], which measures the presence of strong boundaries between
two pixels. One can phrase the segmentation problem as a global optimization of
the normalized cut [33] objective defined on the (discrete) labelling of this graph,
which is NP-hard. However relaxing this problem yields a generalized eigenvector
problem of the form:

(D—W)v=ADv, (1.8)
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(a) Source image

(b) Top three ‘Eigen’ embeddings in RGB space

a | | |

(c) Top three ‘SoftMask’ embeddings in RGB space
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— ) w N |

(d) Structured Forest ‘Edge’ boundaries

Fig. 1.7: Segmentation cues used in this work.

where v € R is the relaxed solution for the P image pixels, W is an P x P affinity
matrix encoding the low-level affinity between pixels, and D is a diagonal degree
matrix with D;; =Y, i Wij.

Even though this eigenvector problem can be solved exactly (albeit slowly),
turning the computed eigenvectors into a segmentation is not obvious. Several
post-processing techniques have been proposed (e.g. eigenvector-level clustering,
by [33], or eigenvector-based features in [22]), but do not necessarily stem from
optimizing the original problem. Instead, we propose to use the eigenvectors di-
rectly, as continuous pixel embeddings; namely every point X is mapped to a higher-
dimensional space y where euclidean distances indicate the probability of two pixels
falling in different regions. This is closer in spirit to ‘Laplacian eigenmaps’ [1].

In particular we construct y(x) by weighting the first M = 10 eigenvectors by a
quantity dependent on their corresponding eigenvalues:

(1.9)

so that lower-energy eigenvectors (global structures) have a stronger weight. Indica-

tive examples of the first three dimensions of y(x) can be seen in Fig. 1.7-(b).
Based on the assumption that euclidean distance in y indicates how likely two

points are to belong to the same region, we measure the descriptor-level affinity, w,
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between two points X, X’ as:

w=exp (—A[y(x) —y(x)|3). (1.10)

Here A is a single scalar design parameter determining the sharpness of the affin-
ity masks, which we set experimentally in Sec. 1.4. We show some pixel affinities
(euclidean distances over the embedded space) and segmentation masks in Fig. 1.6.
For simplicity, we use ‘Eigen’ to refer to the embeddings and masks we derive from
this approach.

1.3.2 ‘SoftMask’ soft segmentations (Gb detector)

As an alternative to the ‘Eigen’ embeddings, we also explore the soft segmentations
employed in the generalized boundary detector Gb of [17]. Their method uses lo-
cal color models, built around each pixel, to construct a large set of figure-ground
segmentations. These segmentations are then projected onto a lower dimensional
subspace through PCA. As before, we can take the top M = 8 components, which
provides us again with low-dimensional pixel embeddings.

The main advantage of these features is that they are obtained at a substantially
smaller computational cost, whereas building and solving for the eigenvectors in
Eq. 1.8 is expensive for any but the smallest images. We refer to these embeddings,
and their associated masks, as ‘SoftMask’.

Fig. 1.7-(c) shows the Gb soft segmentations for several images. We notice that
the ‘SoftMask’ embeddings have higher granularity than the ‘Eigen’ embeddings:
on the one hand this makes them more noisy, but on the other hand this also allows
them to better capture small features.

1.3.3 ‘Edge’ boundaries (Structured Forest detector)

The third method we explore uses the state-of-the-art Structured Forest boundary
detector of [9], which has excellent detection performance while operating at mul-
tiple frames per second. Unlike the previous two methods, this method does not
provide an embedding, but rather measures the probability that two adjacent pix-
els may belong to different regions. In order to efficiently extend this measurement
beyond adjacent pixels we adapt the ‘intervening contour’ technique of [33] to the
descriptor coordinate system.

We start by sampling the boundary responses on the log-polar grid of SID; we
use smoothing prior to sampling, so as to achieve scale-invariant processing. This
sampling provides us with a boundary strength signal B[k, n] that complements the
descriptor features in Eq. 1.5. We then obtain the affinity function wk,n] in Eq. 1.7
in terms of the running sum of w(k, n] along the radial coordinate k:



1 Dense Segmentation-aware Descriptors 13

k—d
wlk,n] = exp(—A" Y Blk,n]). (1.11)
k=0

We have introduced an additional quantity, d, in Eq. 1.11, which acts like a ‘mask
dilation’ parameter. Namely, this allows us to postpone (by d) the decay of the affin-
ity function w around region boundaries, thereby letting the descriptor profit from
the shape information contained around boundaries. We have empirically observed
that setting d = 2 or d = 1 yields a moderate improvement over d = 0. We refer
to the segmentation masks computed in this manner as ‘Edge’, for convenience.
Fig. 1.7-(d) shows some boundaries obtained with the Structured Forest detector.

1.4 Experimental evaluation

We consider two scenarios: video sequences with multi-layered motion, and wide
baseline stereo. We explore the use of the different segmentation cues described in
Sec. 1.3, and several dense descriptors (SID, Segmentation-aware SID, Dense SIFT,
Segmentation-aware Dense SIFT, SLS, and Daisy). We use the ‘S’ prefix to indicate
‘Segmentation-aware’, so that for instance ‘SSID’ stands for our variant of SID.

1.4.1 Large displacement, multi-layered motion

In this experiment we estimate the motion of objects across time over the image
plane—i.e. optical flow. This problem is usually formulated as an optimization over
a function that combines a data term, that assumes constancy of some image prop-
erty (e.g. intensity), with a spatial term that models the expected variation of the
flow fields across the image (e.g. piecewise-smoothness).

Traditional optical flow methods rely on pixel data to solve the correspondence
problem. We use SIFT-flow [18], which follows a formulation similar to that of opti-
cal flow but exploits densely sampled SIFT descriptors rather than raw pixel values.
SIFT-flow is designed for image alignment, and unlike optical flow it is amenable
not only to different views of the same scene, but also to different instances of
scenes belonging to the same category—hence the use of dense SIFT, which has
proven successful in image registration. Moreover, this approach can be applied to
any feature descriptor that can be computed densely, and was previously paired with
SLS in [12]. We use this framework to estimate the motion between pairs of frames,
using different descriptors as features.

We test our approach on the Berkeley Motion Dataset (MOSEG) [5], which it-
self is an extension of the Hopkins 155 dataset [42]. The MOSEG dataset contains
10 sequences of outdoor traffic taken with a handheld camera, 3 sequences of peo-
ple in movement, and 13 sequences from the TV series Miss Marple. All of them
exhibit multi-layered motion. For these experiments we consider only the traffic se-
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quences, as in many of the others the ‘objects’ in the scene (e.g. people) disappear
or occlude themselves (e.g. turn around)—the dataset is geared towards long-term
tracking. Ground truth object annotations (segmentation masks) are given for a sub-
set of frames in every sequence—roughly one annotation every ten frames.

For each sequence, we pair the first frame with all successive frames for which
we have ground truth annotations, yielding 31 frame pairs. The images are resized to
33%, in particular to permit comparison with SLS, which has high memory require-
ments. We design an evaluation procedure based on the segmentation annotations,
proceeding as follows:

1. We compute flow fields for each descriptor type.

2. We use the flow estimates to warp the annotations for every frame /;, j > 0 over
the first frame (1y).

3. We compute the overlap between the annotations for frame /y and the warped
annotations for every frame /;, j > 0 using the Dice coefficient [8] as a metric.

We consider Dense SIFT (DSIFT) [45], SLS, SID, and SSID with ‘Eigen’, ‘Soft-
Mask’ and ‘Edge’ embeddings. We use SLS both in its original form [12] and a
PCA variant developed afterwards: we refer to them as SLS-‘paper’ and SLS-PCA.
A SLS descriptor is size 8256, whereas its PCA variant is size 528. The code for
both was made publicly available by the authors.

For SID construction we use the dense implementation of [14]. We take K = 28
rays, N = 32 points per ray and H' = 4 oriented derivatives, preserving the polarity
as in [40], so that the effective number of orientations is H = 8. We exploit the
symmetry of the Fourier Transform Modulus to discard two quadrants, as well as
the DC component, which is affected by additive lighting changes. The size of the
descriptor is 3328 for SID and 3360 for SID-Rot. We refer to the publicly available
code for further details®.

For the SID-based descriptors we consider only their rotation-sensitive ver-
sion, SID-Rot, as the objects in the MOSEG sequences do not contain significant
rotations—discarding them in such a case entails a loss of information and a de-
crease in performance. We use the same parameters for both SID and SSID unless
stated otherwise. We use this experiment to determine the values for the A param-
eter of SSID of Eq. 1.10: A = 0.7 for ‘Eigen’ and A = 37.5 for ‘SoftMask’; and
Eq. 1.11: A = 27.5 for ‘Edge’.

Fig. 1.8 plots the results for every descriptor. Each bin shows the average over-
lap for all frame pairs under consideration. The results are accumulated, so that
the first bin includes all frame pairs (j > 10), the second bin includes frame pairs
with a displacement of 20 or more frames (j > 20), and so on. We do so to priori-
tize large displacements; the sequences have varying lengths, so that the samples are
skewed towards smaller displacements. As expected, SSID outperforms SID, in par-
ticular for large displacements, which are generally correlated with large j. The best
overall results are obtained by SSID-Rot with ‘SoftMask’ embeddings, followed by
SSID-Rot with ‘Eigen’ embeddings—the ‘SoftMask’ variant does better, despite its

2 https://github.com/etrulls/softseg-descriptors-release
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Fig. 1.8: Overlap results over the MOSEG dataset, for all the dense descriptors considered. Each
bin shows the average overlap for all frame pairs under consideration. The results are accumulated,
so that the first bin (‘10+4") includes all frame pairs, and subsequent bins (‘j+) include frame pairs
with a difference of j or more frames. For DSIFT we show only the results corresponding to the
best scale.

reduced computational cost. The ‘Edge’ boundaries also provide a boost over the
segmentation-agnostic SID—while they do not perform as well as the ‘SoftMask’
embeddings, they reduce the cost of extracting the segmentation cues even more
drastically.

Additionally, we use the flow fields to warp each image /;, over Iy. Some large
displacement warps are pictured in Fig. 1.9—again, SSID outperforms the other
descriptors.

1.4.2 Segmentation-aware SIFT

The application of soft segmentation masks over SID is particularly interesting be-
cause it alleviates its main shortcoming: fine sampling over large image areas to
achieve invariance. But its success suggests that this approach can be applied to
other standard grid-based descriptors—namely SIFT. We extend the formulation
to SIFT’s 4 x 4 grid, using the ‘SoftMask’ embeddings which give us consistently
better results with SSID. Fig. 1.10 shows the increase in performance over four dif-
ferent scales. The gains are systematic, but as expected the optimal A is strongly
correlated with the spatial size of the descriptor grid. Fig. 1.11 displays the per-
formance gains; note that the variability could be potentially accounted by the low
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Fig. 1.9: Large displacement motion with SIFT-flow, for some of the descriptors considered in this
work. We warp image ‘2’ to ‘1°, using the estimated flow fields. The ground truth segmentation
masks are overlaid in red—a good registration should bring the object in alignment with the seg-
mentation mask. We observe that segmentation-aware variant SSID does best—particularly over
its baseline, SID. Similar improvements were observed for SDSIFT over DSIFT.

number of samples (31 image pairs). This merits further study, in particular with re-
gards to its application to the multiple scales considered in the construction of SLS
descriptors.



1 Dense Segmentation-aware Descriptors 17

Overlap (accumulated), Segmentation-aware DSIFT
1 : :

=—4— SDSIFT, bin size 8,1=40

0.9r ~—#— SDSIFT, bin size 4,1.=40 |
—@— SDSIFT, bin size 2,1=40

08 - 4 - DSIFT, bin size 8 i
= 4% = DSIFT, bin size 4

0.71 - @ - DSIFT, bin size 2 i

0.6

Overlap (Dice coefficient)
o
(9]
T

L L L L L L
10+ 20+ 30+ 40+ 50+ 60+
Frame difference

Fig. 1.10: Overlap results over the MOSEG dataset for segmentation-aware DSIFT and its baseline,
at different scales.

1.4.3 Wide-baseline stereo

For a second experiment, we consider stereo reconstruction—i.e. the problem of
computing a 3D representation of a scene given images extracted from different
viewpoints. Stereo is one of the classical computer vision problems, and has been
studied for several decades. While narrow-baseline stereo (usually defined as two
cameras separated by a short distance, pointing in the same direction) is well-
undertood, the same cannot be said for its wide-baseline counterpart.

Narrow-baseline stereo is often addressed with simple similarity measures such
as pixel differencing, or block-wise operations such as the sum of square differences
(SSD) or normalized cross-correlation (NCC). As the viewpoint increases, perspec-
tive distortion and occlusions become a problem and we cannot rely on these simple
metrics—feature descriptors are more robust. Wide-baseline stereo has often been
addressed as a multi-step process, using sparse matches as anchors or seeds [37, 48],
which can result in gross reconstruction errors if the first matching stage is inaccu-
rate. Dense correspondences are a preferable method.

Modern dense stereo algorithms use local features to estimate the similarity be-
tween points, and then impose global shape constraints to enforce spatial consis-
tency. This problem is naturally formulated in terms of discrete energy minimiza-
tion. For our experiments we use a set-up similar to [40]:

1. We discretize 3D space into L = 50 depth bins, from the reference frame of the
camera furthest to the right.
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Fig. 1.11: Increase in average overlap for the segmentation-aware SIFT over its baseline, for sev-
eral SIFT scales, difference in frames j (accumulated), and A values. White signals no difference
in overlap, with shades of red marking an increase (the largest increase in overlap is 0.14). For
clarification, note the correspondence between the bottom left figure (A = 40) and Fig. 1.10. As
expected, high A values produce more aggressive segmentation masks and more discriminating
descriptors, but the optimal A varies with the SIFT scale.

2. Given a calibrated stereo system, we compute the distance between every pixel

in one image and all the possible matching candidates over the other image,

subject to epipolar constraints, within the scene range.

We store the distance for the best match at every depth bin.

4. We feed the costs (distances) N,, X Nj, x L, where N,, and N}, are the width and
height of the image, to a global regularization algorithm, to enforce piecewise
smoothness. Each pixel is assigned a label (depth bin) in . € {1,...,L}.

w

For the last step we use Tree-Reweighted Message Passing [16] with Potts pairwise
costs; i.e. a constant penalty if adjacent pixels are assigned different depth labels,
and no penalty otherwise. We add an additional label with a constant cost, to model
occlusions.

We use the wide baseline dataset of [38], which contains two multi-view sets of
high-resolution images with ground truth depth maps. We consider the ‘fountain’
set, as it contains much wider baselines in terms of angular variation than the ‘herz-
jesu’ set, which exhibits mostly fronto-parallel displacements. As in [40], we use a
much smaller resolution, in our case 460 x 308.

First, we evaluate the accuracy of each descriptor. We compute depth maps using
the algorithm we just described, and evaluate the error on every visible pixel, using
the ground truth visibility maps from [38], without accounting for occlusions. We
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Fig. 1.12: Accuracy at different baselines, for visible pixels only, for two error thresholds (ex-
pressed as a fraction of the scene range). Occlusions are not taken into account.

consider DSIFT, SLS and Daisy, as well as SID and SSID. For DSIFT, SLS and
Daisy we align the descriptors with the epipolar lines, to enforce rotation invari-
ance, as in [40]. For SID and SSID we consider only the fully invariant descrip-
tors, and omit this step. We use SLS-PCA rather than SLS-‘paper’, which has much
lower dimensionality: matching descriptors is the costliest step in dense stereo and
is correlated to descriptor size. We show the results on Fig. 1.12. Our SID-based
segmentation-aware descriptors outperform the others, except for SLS—but our ap-
proach does not require rotating the patch.

Most of the performance gains on wide-baseline stereo reported in [40] stem not
from the Daisy descriptor, but from their handling of occlusions. For this Tola et
al. introduce a novel approach to latent occlusion estimation for iterative stereo re-
construction. Their technique exploits a set of binary masks, half-disks at different
orientations, that disable image measurements from occluded areas. These are sim-
ilar to our segmentation masks w[k,n], but binary (i.e. W € {0,1}) rather than soft
(w € [0, 1]) and with a predetermined spatial structure. The most appropriate mask is
determined on a per-pixel basis, using the current depth estimates around the pixel
to prioritize masks that disable regions with heterogenous label distributions. Sub-
sequent iterations apply the highest-scoring masks to the descriptors as in Eq. 1.7,
dropping the measurements likely affected by occlusions from the similarity mea-
sure. A downside of this approach is that errors in the first iteration, which does not
account for occlusions, can be hard to recover from.

The previous experiment did not take occlusions into account. In a second ex-
periment, we pitch this state-of-the-art iterative technique against our segmentation-
aware, single-shot approach. We let the Daisy stereo algorithm run for 5 iterations,
and show the results in Fig. 1.13. The performance of SSID with ‘Eigen’ embed-
dings is comparable of superior to that of Daisy for most baselines—we achieve this
in a single step, and without relying on calibration data to enforce rotation invari-
ance. Additionally, note that we set the A parameter of Eq. Eq. 1.10 on the motion
experiments, and do not adjust them for a different problem: stereo. Fig. 1.14 shows
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Fig. 1.13: Accuracy of the iterative approach to occlusion estimation of [40] and our segmentation-
based, single-shot approach, at different baselines, for two error thresholds (expressed as a fraction
of the scene range).

Left image Ground truth depth Daisy, 1 iter. Daisy, 5 iter. SSID, ‘Eigen’

Fig. 1.14: First column: We compute depths maps for image pairs {5,3} (top) and {7,3} (bottom)
of [38], over the ‘right’ viewpoint. Occluded pixels are marked in red. We show images 5 and 7—3
is pictured in Fig. 1.7). Second column: Ground truth depth maps. Third and fourth columns:
iterations #1 and #5 for Daisy with latent occlusion estimation. Fifth column: Single-shot recon-
struction for SSID with ‘Eigen’ embeddings.

the depth estimates at two different baselines (image pairs {5,3} and {7,3}, recon-
structed over 3)—the reference frame (3) is shown in Fig. 1.7.

1.4.4 Computational requirements

The cost of computing dense SIFT descriptors [45] for an image of size 320 x 240
is under 1 second (MATLAB/C code). SLS (MATLAB) requires ~21 minutes. SID
(a non-optimized MATLAB/C hybrid) requires ~71 seconds. SSID requires ~81
seconds, in addition to the extraction of the masks. Note that for all the experi-
ments in this chapter we compute the ‘Eigen’/‘SoftMask’ embeddings at the origi-
nal resolution (e.g. 640 x 480) before downscaling the images. The ‘SoftMask’ em-
beddings (MATLAB) require ~7 seconds per image, and the ‘Eigen’ embeddings
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(MATLAB/C hybrid) ~280 seconds. Structured forest boundaries can be computed
at multiple frames per second. The computational cost of matching two images with
the SIFT-flow framework depends on the size of the descriptors, varying from ~14
seconds for SIFT (the smallest) to ~80 seconds for SID/SSID, and ~10 minutes for
SLS-‘paper’ (the largest).

1.5 Summary and future work

In this work we propose a method to address background variability at the descrip-
tor level, incorporating segmentation data into their construction. Our method is
general, simple, and carries a low overhead. We use it to obtain segmentation-aware
descriptors with increased invariance properties, which are of the same form as their
original counterparts, and can thus be plugged into any descriptor-based application
with minimal adjustments. We apply our method to SIFT and to SID descriptors,
obtaining with the latter dense descriptors that are simultaneously invariant to scale,
rotation and background variability.

We demonstrate that our approach can deal with background changes in large-
displacement motion, and with occlusions in wide-baseline stereo. For stereo, we
obtain results with SID comparable to the mask-based, state-of-the-art latent oc-
clusion estimation of Daisy [40]—we do so without relying on calibration data to
enforce rotation invariance; and in a single step, rather than with iterative refine-
ments. While similar in spirit (both ‘gate’ the features to achieve invariance against
background variability), our method is also applicable to the case where a single
image is available.

Regarding future work, we can identify at least two directions for extending our
work. Firstly, the segmentation-aware SID suffers from high dimensionality, but is
likely very redundant. This shortcoming could be addressed with spectral compres-
sion and also with metric learning [39]. The latter proved able to both drastically
reduce dimensionality problems, and also to increase the discriminative power of
descriptors at the same time. Secondly, both of the applications where we assess
our segmentation-aware descriptors involve shots of the same scene which differ in
time, or viewpoint, but contain identical object instances. Our more recent work in
[44] extends the segmentation-aware feature extraction technique to Histogram-of-
Gradient (HOG) features and Deformable Part Models by relying on superpixels,
but we believe this is only a starting point for leveraging segmentation in feature ex-
traction for recognition—the introduction of segmentation in convolutional network
classifiers is one of our current research directions.
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