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Abstract

This paper presents a control scheme which uses a combination of linear Model

Predictive Control (MPC) and a Constraint Satisfaction Problem (CSP) to solve

the non-linear operational optimal control of Drinking Water Networks (DWNs).

The methodology has been divided into two functional layers: First, a CSP al-

gorithm is used to transfer non-linear DWNs pressure equations into linear con-

straints on flows and tank volumes, which can enclose the feasible solution set of

the hydraulic non-linear problem during the optimization process. Then, a linear

MPC with tightened constraints produced in the CSP layer is solved to generate

control strategies which optimize the control objectives. The proposed approach

is simulated using Epanet to represent the real DWNs. Non-linear MPC is used for

validation. To illustrate the performance of the proposed approach, a case study

based on the Richmond water network is used and a realistic example, D-Town

benchmark network, is added as a supplementary case study.
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1. Introduction

Water is always a critical resource for supporting human activities and ecosys-

tem conservation. Recently, the population and users’ requirements are increasing

while water resources are limited. This situation indicates the need for an optimal

operation of water distribution networks, especially during shortage events as dis-

cussed in Miao et al. (2014) and Soltanjalili et al. (2013). Management of Drink-

ing Water Networks (DWNs) involves objectives such as minimizing operational

cost of pumps, which represents a significant fraction of the total expenditure of

a water utility, as discussed in López-lbañez et al. (2008)), or minimizing risks of

service failure (as explained in Kurek & A. Ostfeld (2014)).

The optimization problems associated to the operational control of DWNs are

complex because of their large-scale, multiple-input, multiple-output nature, as

well as the various sources of additive and, possibly, parametric uncertainty in

DWNs. Additionally, DWNs models include both deterministic and stochastic

components and involve linear (flow model) as well as non-linear (pressure model)

equations. The use of non-linear models in DWNs is essential for the operational

control which involves manipulating not only flows but also pressures.

Non-linear optimization refers to optimization problems where the objective

or constraint functions are nonlinear, and possibly non-convex. No universally-

applicable methods exist for solving a non-linear optimization problem when it

is non-convex. Even simple-looking problems with a small number of variables

can be extremely challenging, while problems with important number of variables

can be intractable. Non-linear optimization may be addressed with several differ-

ent approaches; each of which involving some compromise. Local optimization

methods can be fast and can also handle large-scale problems although they do
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not guarantee finding the global optimum. Alternatively, global optimization is

limited to be used in small problems (networks), where computational time is not

critical, because usually the global solution search is time consuming, as discussed

in Boyd & Vandenberghe (2004).

Early optimization approaches for DWNs typically rely on a substantially sim-

plified network hydraulic model (by dropping all nonlinearities, for instance) as

described in Coulbeck et al. (1988); Diba et al. (1995); Sun et al. (1995) and Pa-

pageorgiou (1983), which is often unacceptable in practice. Other authors employ

discrete dynamic programming as presented in Can & Houck (1984); Carpen-

tier & Cohen (1993); Cembrowicz (1990); Murray & Yakowitz (1979); Orr et al.

(1990) and Zessler & Shamir (1989), which is mathematically sound but only ap-

plicable to small networks unless specific properties can be exploited to increase

efficiency.

Model Predictive Control (MPC) is a well-established class of advanced con-

trol methods for complex large scale systems, as explained in Rawlings & Mayne

(2009) and Mayne et al. (2000). In Ocampo-Martı́nez et al. (2013) and Fiorelli

et al. (2014), MPC has been successfully applied to control and optimize lin-

ear flow model of DWNs. When the pressure model is considered, the non-

linear functions involved will increase the computational burden of MPC espe-

cially when the size of the network increases. Besides, convergence to the global

minimum cannot be easily guaranteed using non-linear MPC if non-linear pro-

gramming algorithms are used. As described in Boyd & Vandenberghe (2004),

for a non-convex problem, an approximate, but convex formulation is needed. By

solving the approximate problem, which can be done easily and without an initial

guess, the exact solution to the approximate convex problem is obtained. Many
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methods for global optimization require a cheaply computable lower bound on

the optimal value of the non-convex problem. In the relaxed problem, each non-

convex constraint is replaced with a looser, but convex constraint. In Mayne et al.

(2011), a similar approach based on tube-based MPC is proposed. In this case, the

way of circumventing the complexity problem is based on replacing the non-linear

MPC by an approximation about a nominal trajectory. Trajectories are bounded

by a level set of a value function that varies in a complex way with (x, t).

This paper mainly provides a methodology for solving large scale complex

non-linear DWNs problem using a convex approximation of the problem. The

solution is compared to that of a nonlinear MPC implementation, obtained with

a tool named PLIO (Cembrano et al. (2011)). Simulation results are compared

using the Richmond case study introduced in van Zyl et al. (2004). Finally, the

D-Town benchmark network, which is much more realistic as presented in Price

& Ostfeld (2014) and P.L.Iglesias-Rey et al. (2014), is used as a supplementary

case study for validation.

The aim of the proposed approach is to avoid the non-linear optimization prob-

lem of DWNs by the combined use of linear MPC and CSP while maintaining op-

timality and also feasibility with the tightened linear constraints provided by the

CSP in Streif et al. (2014). To assess the proposed approach, the real hydraulic

behavior of the DWNs is simulated by means of Epanet (Rossman (2000)), which

simulates DWNs using the input optimal solution provided by MPC. As shown in

Figure 1, the whole controlling methodology works in a two-layer structure as ini-

tially proposed in Sun et al. (2014a): CSP is the first step of this methodology and

it constitutes the upper layer used for converting the non-linear hydraulic pressure

constraints into the linear MPC constraints. MPC is the lower layer producing op-
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timal set-points for controlling actuators (pumps and valves), according to the de-

fined objective functions including minimizing operational costs of pumps, risks

and safety goals.

Figure 1: The multi-layer control scheme

The remainder of the paper is organized as follows: The control-oriented mod-

elling methodology considering both flow and pressure dynamics is presented in

Section 2. Then, in Section 3, the operational control problem is introduced in the

context of non-linear MPC. In Section 4, the definition of CSP and also the pro-

posed CSP-MPC control scheme are explained in detail. Section 5 summarizes the

results and validations using the Richmond case study. Section 6 provides a sup-

plementary application based on a more complex example, a benchmark network

called D-Town. Finally, Section 7 contains the conclusions and future research

plans.

2. Control-Oriented Modelling Methodology

Drinking Water Networks (DWNs) generally contain tanks, which store the

drinking water at appropriate head level (elevation and pressure) to supply de-
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mand, a network of pipes and a number of demands. Valves and/or pumping

stations are the elements that allow to manipulate the water flow according to a

specific policy and to supply water requested by the network users at appropriate

service pressures.

The DWNs can be considered as composed of a set of constitutive elements,

which are presented below including first the flow model and then the pressure

model.

2.1. Flow Model

2.1.1. Reservoirs and Tanks.

Water reservoirs and tanks play an important role in DWNs since they enable

demand management, ensure water supply (e.g., in case of unexpected demand

changes or in case of emergencies) and allow for the modulation of pump flow

rate as discussed in Batchabani & Fuamba (2014) and Lee et al. (2013). More-

over, they provide the entire network with the water storage capacity. The mass

balance expression of these storage elements relates with the stored volume V ,

the manipulated inflows q j
in and outflows qh

out (including the demand flows as out-

flows). The ith storage element can be described by the discrete-time difference

equation

Vi(k + 1) = Vi(k) + ∆t

∑
j

q j
in(k) −

∑
h

qh
out(k)

 , (1)

where ∆t is the sampling time and k denotes the discrete-time instant. The physical

constraint related to the admissible range of water levels in the ith storage element

is expressed as

V i ≤ Vi(k) ≤ V i, for all k, (2)
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where V i and V i denote the minimum and the maximum admissible storage ca-

pacity, respectively. Although V i might correspond to an empty storage element,

in practice this value is normally set as nonzero in order to maintain an emergency

stored volume for extreme circumstances.

For simplicity purposes, the dynamic behavior of these elements is described

as function of volume. However, in most cases, the measured variable is the

storage water level (by using level sensors), which implies the computation of

the water volume taking into account the tank geometry.

2.1.2. Actuators.

Two types of control actuators are considered: valves and pumps (more pre-

cisely, complex pumping stations). In the flow model, valves and pumps are sim-

plified and considered as similar control elements, and their flows are taken as

the manipulated variables in the MPC problem, denoted as qu. Both pumps and

valves have lower and upper physical limits, which are taken into account as sys-

tem constraints. As in (2), they are expressed as

qui
≤ qui(k) ≤ qui, for all k, (3)

where qui
and qui denote the minimum and the maximum flow capacity, respec-

tively.

2.1.3. Nodes.

These elements correspond to the points in the water network where water

flows are merged or split. Thus, the nodes represent mass balance relations,

modelled as equality constraints related to inflows (from tanks through valves

or pumps) and outflows, which may be manipulated flows or demand flows. The
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expression of the mass conservation in these nodes can be written as∑
j

q j
in(k) =

∑
h

qh
out(k). (4)

where node inflows and outflows are denoted by q j
in and qh

out, respectively. Some

manipulated flows could also be denoted by qu, as required.

2.1.4. Demand Sectors.

Demand sectors represent the water consumed by the network users in a cer-

tain physical area. Water demands are considered as a measured disturbance of

the system at a given time instant. The demand in urban areas can be anticipated

by a forecasting algorithm which can predict the future demand using historical

data, integrated within the MPC framework. The demand forecasting algorithm

typically uses a two-level scheme composed of (i) a time-series model represent-

ing the daily aggregate flow values, and (ii) a set of different daily flow demand

patterns according to the day type to cater for different consumption habits dur-

ing the weekend and holiday periods (for more details see Quevedo et al. (2010)).

Every pattern consists of 24 hourly values for each daily pattern. The daily time

series of hourly-flow predictions are computed as a product of the daily aggregate

flow value and the appropriate hourly demand pattern.

2.2. Pressure Model

The pressure model contains the flow model presented in the previous section

and it is extended using the non-linear relationship between flow and head loss,

which exists at pipes, valves, pumps and tanks as described in Brdys & Ulanicki

(1994).
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2.2.1. Pipes.

Pipes are links which convey water from one point in the network to another.

During the transport, water pressure decreases because of friction.

The Chezy-Manning model as presented in Rossman (2000) is one of the var-

ious widely used models to describe head loss between two nodes hi and h j linked

by a pipe:

gc(q) = hi − h j = Ri jq2
i j (5)

where

Ri j = (10.29 × Li j)/(Ci j
2 × Di j

5.33) (6)

and Li j, Di j, Ci j, qi j denote the pipe length, diameter, roughness and flow.

2.2.2. Pumps.

Pumps introduce an increase of head between the suction node s and the de-

livery node d. The estimate function that relates the pump flow with the head

change depends on the technical characteristics of the pump (e.g., if the pump can

be controlled for example with fixed or variable speed). In the more general case

that corresponds to variable speed pumps, the relation between the flow and the

head increase is given by:

g f (q, n, s) = hd − hs =


Wq2 + Mq + Ns2, if n , 0 and s , 0

0, otherwise
(7)

where s is the pump speed and n corresponds to the number of pumps that are

turned on, W, M and N are pump specific coefficients.
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2.2.3. Valves.

There are many types of valves which perform different functions, e.g. pres-

sure reduction or flow regulation. In this paper for illustrative purposes, the valves

are modelled as a pipe with controlled conductivity, that is

gv(q,G) = hi − h j = Gi jRi jq2
i j (8)

where Ri j is the pipe conductivity and Gi j is the control variable that manipulates

the valve from 0 (closed) to 1 (open).

2.2.4. Tanks.

The head established by the ith tank is given by the following equation:

hri(t) =
Vi(t)
S eci

+ Ei (9)

where S eci is the cross-sectional area of the tank and Ei is the tank elevation.

3. Operational Control Problem Statement

The type of control used in DWNs can be mainly separated into two categories:

flow control, mainly useful for transport networks and flow/pressure control, in

case of distribution networks (see Brdys & Ulanicki (1994)).

3.1. MPC for Flow Control

In the case of the flow control problem, the MPC problem is based on the linear

discrete-time prediction model that is obtained using the flow modelling approach

introduced in Section 2. Linear MPC, as described in Maciejowski (2002) is based
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on representing the system to be controlled in discrete-time state space form:

x(k + 1) = Ax(k) + Bu(k), (10a)

y(k) = Cx(k), (10b)

where x(k) ∈ Rnx is state vector and u(k) ∈ Rnu is vector of command variables

at time step k, and y(k) ∈ Rny is the vector of the measured outputs. In the case

of DWNs, states x(k) are the volume of tanks/reservoirs while u(k) are flow set-

points for actuators (pumps and valves). Matrices A and B are obtained taking

into account the DWNs topology and the control oriented modelling approach

presented in Section 2.

An incidence matrix Λc is defined for junction nodes in order to write equa-

tion (4) in matrix form, where the element in the ith column and jth row of junction

nodes incidence matrix Λc is defined as:

ai j =


1 if flow of branch i enters node j

0 if branch i and node j are not connected

−1 if flow of branch i leaves node j

(11)

Notice that the incidence matrix rows correspond to the non-storage nodes, while

its columns are related to the network branches. Assuming one network has

nc non-storage nodes and b branches, this incidence matrix are nc rows and b

columns.

Thus, the matrix form of equation (4) is as follows:

Λcq(k) = d(k) (12)

where q = (q1, . . . , qb)T is a vector of branch flows, d denotes an augmented

demand vector by zero components corresponding to non-loaded nodes.
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Following Maciejowski (2002) for the basic formulation of a predictive con-

trol, the cost function is assumed to be quadratic and the constraints are in the form

of linear inequalities. Thus, the following basic optimization problem (BOP) has

to be solved:

Problem 1

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (13a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = x(k), (13b)

Λcu(i|k) = d(k), i = 0, · · · ,Hp − 1, (13c)

xmin ≤ x(i|k) ≤ xmax, i = 1, · · · ,Hp, (13d)

umin ≤ u(i|k) ≤ umax, i = 0, · · · ,Hp−1, (13e)

Here, J is a performance index, representing the operational goals of the

DWNs, Hp is the prediction horizon, x(0|k) is the initial condition of the state

vector obtained from the measurement (or estimation) of the DWNs state (tank

volumes) at time k, xmin, xmax, umin and umax are known vectors defining the oper-

ational limits of state and input variables. The BOP can be recast as a Quadratic

Programming (QP) problem, whose solution:

U∗(k) , [u∗(0|k), · · · , u∗(Hp − 1|k)]T ∈ RHpm×1 (14)

is a sequence of optimal control inputs that generates an admissible state sequence.

At each sampling time k, BOP is solved for the given measured (or estimated)

current state x(k). Only the first optimal move u∗(0|k) of the optimal sequence

U∗(k) is applied to the system:

uMPC(k) = u∗(0|k) (15)

12



while the remaining optimal moves are discarded and the optimization is repeated

at time k + 1 using the state x(k + 1) as initial condition.

3.2. Operational Goals for Flow Control

The main operational goals to be achieved in DWNs are:

• Cost reduction (Jcost): To minimize water cost during water supplying pro-

cess by selecting the less costly source and optimizing pump schedule ac-

cording to electric tariff that varies with time of the day.

• Operational safety (Jsa f ety): To maintain appropriate water storage levels in

tanks of the network for emergency-handling and to consider unexpected

demand changes.

• Control actions smoothness (Jsmoothness): To produce smooth flow set-point

variations in order to avoid pipe over-pressures, and also the sustainable

operation of actuators.

The above-mentioned goals lead to the following function:

J = Jsa f ety + Jsmothness + Jcost (16)

= εx̃(k)>Wx̃εx̃(k) + ∆ũ(k)>Wũ∆ũ(k)

+ Wa(a1 + a2(k))̃u(k)

where

εx̃(k) = x̃(k) − x̃r

ũ = Θ∆ũ + Πũ(k − 1)

∆ũ(k) = ũ(k) − ũ(k − 1)
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and Wx̃, Wũ, Wa are the weights which decide the priorities (established by the wa-

ter network managers) for all the terms appearing in the objective function. Some

multi-criteria decision-making methods recommend converting multiple objec-

tives into a single criterion using a weighting approach as in Woodward et al.

(2014). The weight tuning method proposed in Toro et al. (2011), based on com-

puting the Pareto front of the multi-objective optimization problem presented in

(16), is used in this paper. The initial step of this tuning approach relies on finding

what are known as the anchor points that correspond to the best possible value for

each objective obtained by optimizing a single criterion at a time. Then, a normal-

ization procedure is applied, a Management Point (MP) is defined by establishing

objective priorities, and the optimal weights are determined by computing those

that minimize the distance from the solutions of the Pareto front and the MP.

The vectors a1 and a2 contain the cost of water treatment and pumping, re-

spectively, and a2 is time varying taking into account the variation of electricity

price during the day.

The objective equation (16) of the MPC problem can be formulated in the

following way:

J = zT Φz + φT z + c (17)

where

z = [∆ũ εx̃ ε]T (18)

and c is a constant value.
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This allows to determine the optimal control actions at each instant k by solv-

ing a Quadratic Programming (QP) algorithm in the form:

min
z

z>Φz + φ>z

A1z ≤ b1

A2z = b2

3.3. Nodal Model for Pressure Management

As described in the previous section, in the flow model of DWNs, pipes, valves

and pumps constitute a static part of the DWNs. The system dynamics are associ-

ated with tanks. In equation (1), the mass balance in the ith tank is provided, while

equation (9) describes the relation between the tank volume and its head.

After combining equation (9) with equation (1), tank dynamics both consider-

ing flow and pressure will be presented as:


hri(t) =

Vi(t)
S eci

+ Ei

Vi(k + 1) = Vi(k) + ∆t
(∑

j
q j

in(k) −
∑
h

qh
out(k)

) (19)

For every junction node j, as equation (4) shows, the sum of inflows and out-

flows is equal to zero for every non-storage node.

Considering a network with n nodes and b branches, the node-branch matrix

Λ will have n rows and b columns. Consider element bi j in the ith row in the jth

column as equation (11) holds. Therefore, the ith row contains branch to node

information, as opposed to the incidence matrix, where the ith row contains node

to branch information. For the sake of convenience, we will place the rows cor-

responding to the tank/reservoir nodes on the first nr position. The other rows
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correspond to the junction nodes. With the help of matrix Λ, we can write the

flow-head equations as the following vector equation:

ΛT

hr

h

 + G(q) = 0 (20)

where

• hr = (hr1, · · · , hr,nr )
T heads of reservoir/tank storage nodes

• h = (h1, · · · , hnc)
T heads of junction non-storage nodes

• q = (q1, · · · , qb)T branch flows

• G(q) = (gc
1(q1), · · · ,−g f

i(qi, ni, si), · · · , gv
1(q1,G1), · · · , )T functions defin-

ing flow-head relationships

Combining this equation with equation (4) yields the nodal model:
Λcq = d

ΛT


hr

h

 + G(q) = 0
(21)

3.4. MPC for Pressure Management

The MPC for flow and pressure management may be defined in a similar way

as MPC for flow control but including non-linear constraints. Thus, the MPC for

DWN pressure control is defined as
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Problem 2

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (22a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = xk, (22b)

Λcu(i|k) = d(k), i = 0, · · · ,Hp − 1, (22c)

hr(i|k) =
x(i|k)
S eci

+ Ei, i = 1, · · · ,Hp, (22d)

ΛT

hr(i|k)

h(i|k)

 + G(u(i|k)) = 0, (22e)

xmin ≤ x(i|k) ≤ xmax, i = 1, · · · ,Hp, (22f)

umin ≤ u(i|k) ≤ umax, i = 0, · · · ,Hp−1, (22g)

As described above, MPC for flow and pressure management is non-linear

because of added pressure constrains in equation (22e), which adds complexity to

the optimization problem for the large scale DWNs, as already discussed.

There have been several attempts in recent years to develop optimal control

algorithms to optimize the operation of DWNs including pressure control. As

already presented in the introduction, many algorithms were oriented towards de-

termining the optimum pump policies to achieve the minimum operating cost, and

were based on the use of non-linear programming, dynamic programming, enu-

meration techniques, and general heuristics as described in Savic et al. (1997),

Gupta et al. (1999) and Li et al. (2009). However, the success of these algorithms

and methods have been very limited when actually being used in practice because

of the complexity associated with solving the non-linear optimization problem for

large scale DWNs in real-time as required when using MPC.
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4. Proposed Approach

4.1. Overview of Scheme CSP-MPC

The scheme integrating CSP and MPC for DWNs is presented in Figure 2,

which shows that the main principle of this proposed control scheme is translating

the equations of the non-linear pressure model into linear constraints, which may

be tackled by MPC using only the flow model with constraints updated by CSP.

The linear constraints produced by CSP will be combined together with the initial

constraints of the linear MPC for flow control.

Figure 2: Working principle of CSP-MPC

With this scheme, the non-linear (represented by N in the scheme) MPC de-

scribed in Problem 1, will be translated into a linear (represented by L in the

scheme) MPC problem with updated constraints
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Problem 3

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (23a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = xk, (23b)

Λcu(i|k) = d(k) (23c)

x′min ≤ x(i|k) ≤ x′max, i = 1, · · · ,Hp, (23d)

u′min ≤ u(i|k) ≤ u′max, i = 0, · · · ,Hp−1, (23e)

where equation (23d) and equation (23e) are the updated constraints resulting

from solving the CSP associated to the pressure equations.

4.2. Definition of CSP

4.2.1. Introduction

As introduced in Jaulin et al. (2001), a CSP on sets can be formulated as a

3-tupleH = (V,D,C), where

• V = {v1, · · · , vn} is a finite set of variables.

• D = {D1, · · · ,Dn} is the set of their domains.

• C = {c1, · · · , cn} is a finite set of constraints relating variables ofV.

Solving a CSP consists of finding all variable value assignments such that

all constraints are satisfied. The variable value assignment (ẑ1, · · · , ẑn) ∈ D is a

solution of H if all constraints in C are satisfied. The set of all solution points

of H is called the global solution set and denoted by S(H). The variable vi ∈ V
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is consistent in H if and only if ∀ẑi ∈ Di, ∃(ẑ1 ∈ D1, · · · , ẑn ∈ Dn), such as

(ẑi, · · · , ẑn) ∈ S(H) as presented in Tornil-Sin et al. (2014).

The solution of a CSP is said to be globally consistent if and only if every

variable is consistent. A variable is locally consistent if and only if it is consistent

with respect to all directly connected constraints. Thus, the solution of the CSP

is said to be locally consistent if all variables are locally consistent. An algorithm

for finding an approximation of the solution set of a CSP can be found in Jaulin

et al. (2001).

4.2.2. Implementation using Intervals

It is well known that the solution of CSPs involving sets has a high com-

plexity as explained in Jaulin et al. (2001). However, a first relaxation consists of

approximating the variable domains by means of intervals and finding the solution

through solving an interval CSP. The determination of the intervals that approxi-

mate in a more fitted form the sets that define the variable domains requires global

consistency, what demands a high computational cost as in Hyvonen (1992). A

second relaxation consists solving the interval CSP by means of local consistency

techniques, and deriving of conservative intervals. Interval constraint satisfaction

algorithms have a polynomial-time worst case complexity since they implement

local reasonings on constraints to remove inconsistent values from variable do-

mains. In this paper, the interval CSP is solved using a tool based on interval

constraints propagation, known as Interval Peeler. This tool has been designed

and developed in Baguenard (2005). The goal of this software is to determine the

solution of interval CSP in the case that domains are represented by closed real

intervals. The solution provides refined interval domains consistent with the set

of interval CSP constraints as provided in Puig et al. (2009).
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4.3. CSP-MPC Algorithm

The CSP-MPC approach is described in Algorithm 1 where the non-linear con-

straints of the MPC considering the pressure model in Problem 3 are formulated

as a CSP:

Algorithm 1 CSP-MPC Algorithm
1: for k := 1 to Hp do

2: U(k − 1)⇐ [umin(k), umax(k)]

3: X(k)⇐ [xmin(k), xmax(k)]

4: D(k)⇐ [dmin(k), dmax(k)]

5: end for

6: V ⇐

X︷                  ︸︸                  ︷
x(1), x(2), ..., x(Hp),

U︷                      ︸︸                      ︷
u(0), u(1), ...u(Hp − 1),

D︷                       ︸︸                       ︷
d(0), d(1), ...d(Hp − 1)

7: D ⇐ X(1),X(2)...X(Hp),U(0),U(1)...U(Hp − 1),D(0),D(1)...D(Hp − 1)

8: C ⇐ ΛT

hr

h

 + G(u) = 0

9: H ⇐ V,D,C

10: S = solve(H)

11: Update limits for the linear MPC problem using the CSP solution

4.4. Modelling Uncertainty

Some of the functional elements in DWNs involve uncertainties. This is the

case of demand forecasts during the MPC problem horizon. Combining MPC

and Gaussian Process to solve the uncertainty problem, was first proposed by

Maciejowski & Xiaoke (2013). It was suggested that Gaussian process could be

an approach to model and forecast system disturbances and to implement MPC

for a real system. In order to solve the difficulty of multiple-step-ahead fore-

casts, Wang et al. (2014) and Wang et al. (2015) propose a new algorithm scheme
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called Double-Seasonal Holt-Winters Gaussian Process (DSHW-GP) for multi-

step ahead forecasting and robust MPC to take into account the influence of dis-

turbances on state trajectories.

In this work, the demand uncertainty could also be included in the variable

set V with the domains defined in equation (24) in order to incorporate it into

CSP-MPC approach:

d0(k) − ∆e ≤ d(k) ≤ d0(k) + ∆e, k = 1, · · · ,Hp, (24)

where d is the real demand, d0 is the nominal demand forecast, and ∆e represents

the demand uncertainty that can be obtained, e.g, using the method proposed by

Wang et al. (2014) and Wang et al. (2015).

At each time interval, this CSP algorithm will produce updated constraints (23d)

and (23e) to Problem 1 by means of propagating the effect of non-linear con-

straints equation (22e) into the operational constraints equation (22f) and equa-

tion (22g), which will be used for linear MPC to generate optimized control strate-

gies.

4.5. Simulation of the proposed approach

Hydraulic network models are widely used as tools to simulate water distribu-

tion systems, not only in academic research, but also by water companies in their

daily operation, see Jun & Guoping (2013). There are many simulation software

packages, such as Epanet, which is designed to be a research tool for improv-

ing and understanding the behavior of DWNs dynamics. This simulator has been

used for many different applications in water distribution systems analysis: sam-

pling program design, hydraulic model calibration, residual chlorine analysis and
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consumer exposure assessment are some examples, see Rossman (2000). In this

paper, Epanet is used for simulating hydraulic behavior with the optimal actuator

set-points obtained from the CSP-MPC optimizer.

The way of simulating CSP-MPC using Epanet is exchanging flow set-points

and tanks/reservoirs dynamic behaviors at each time step, following the work flow

shown in Figure 3. The continuous flow set-points are translated to ON-OFF

pump operation using the Pump Scheduling Algorithm (PSA), which optimizes

the difference between optimal pump flow Vĉ and the simulated pump flow Vt as

proposed in Sun et al. (2014b).

Figure 3: Simulating CSP-MPC using Epanet

5. Illustrative Example: Richmond Water Network

5.1. Description of Richmond Water Network

To validate the proposed CSP-MPC approach, the Richmond water distribu-

tion system which is available from the Centre of Water Systems of Exeter Uni-
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versity, and also the object of study in van Zyl et al. (2004) is used. The Rich-

mond case study includes one reservoir, four tanks, seven pumps and some one-

directional pipes and valves, as Figure 4 shows, using Epanet.

Figure 4: The Richmond water distribution system in Epanet

5.2. CSP for different configurations

In the Richmond distribution water network, there are mainly three different

configurations, which lead to non-linear constraints in the MPC problem:

Case 1 Valve Demand: demand connected to one tank by means of a valve.

Case 2 Pump Demand: demand connected to one tank by means of a pump.

Case 3 Complex Node Demand: demand connected to a node, which has direct

or indirect connection with more than one tank.
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5.2.1. Case 1: CSP for a valve connected to a demand.

As shown in Figure 5, a tank is connected to a demand by means of a valve.

In this case, the valve flow is always equal to the demand. Just as an example,

assuming cross-section area of the tank S ec is 1m3, elevation difference between

tank and demand ∆E is 1.65m, L, D and C are length, diameter and friction coef-

ficients of the connecting pipe, which are constant, demand flow d is 6.3375, R is

the valve friction, gc
p is the head loss for the pipe, gv

v is the head loss for the valve,

G is the valve control variable, which is between 0 and 1. The CSP in Algorithm

1 can be formulated considering that:

Figure 5: Valve Demand configuration

• D: Variable domains coming from the physical limits

x ∈ [0, 50], u ∈ [0, 6.3375]

• C: Mass conservation constraints

x/S ec = gc
p + gv

v + ∆E.

gc
p = (10.29 × L)/(C2 × D5.33)d2

gv
v = GRd2

After solving the CSP using Interval Peeler, it is found that:

25



• H : The solution of the CSP provides the updated variable bounds to be used

in the linear MPC as follows

x ∈ [10.66, 50], u ∈ [0, 6.3375]

5.2.2. Case 2: CSP for a pump connected to a demand.

As shown in Figure 6, assume that A, B, C are constants for pump head loss

equation, s is the speed, g f
b is the head gain provided by the pump. The CSP in

Algorithm 1 can be formulated considering that:

Figure 6: Pump Demand configuration

• D: Variable domains coming from the the physical limits

x ∈ [0, 35], u ∈ [0, 1.65]

• C: Mass conservation constraints

x/S ec = gc
p − g f

b + ∆E

g f
b = A(d)2 + B(d)s + Cs2

gc
p = (10.29 × L)/(C2 × D5.33)d2

After solving the CSP using the Interval Peeler:
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• H : The solution of the CSP provides the updated variable bounds to be used

in the linear MPC as follows

x ∈ [3.5, 35], u ∈ [0, 1.65]

5.2.3. Case 3: Node connected to a complex demand.

One example for the configuration of a complex demand node, where demand

may be supplied in more than one way, is shown in Figure 7. Node 249 is in-

directly connected with more than one tank through a valve and a pump. In this

Figure 7: Node connected to a complex demand

case, the CSP problem in Algorithm 1 will be formulated by taking into account:

• D: Variable domains coming from the the physical limits

u1 ∈ [0, 10], u2 ∈ [0, 50]

u3 ∈ [0, 30], xi/S eci ∈ [0, Xmaxi]
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• C: Mass conservation constraints

xE1/S ecE = g f
b2

+ ∆E1.

xE2/S ecE = g f
b2
− gc

p1
+ ∆E2.

xE3/S ecE = g f
b2
− gc

p1
+ gv

v1
+ ∆E3.

xE/S ecE = max(xE1 , xE2 , xE3)

xA1/S ecA = g f
b1

+ ∆E4.

xA2/S ecA = g f
b1

+ g f
b3

+ ∆E5.

xA3/S ecA = g f
b1

+ g f
b3

+ gv
v1

+ ∆E6.

xA4/S ecA = g f
b1
− gc

p2
+ ∆E7.

xA/S ecA = max([xA1 , xA2 , xA3 , xA4])

After solving the CSP in Algorithm 1, the updated variable bounds to be

used in the linear MPC are:

u1 ∈ [3.4, 10], u2 ∈ [2.3, 50]

u3 ∈ [1.5, 30], xA ∈ [10, 43]

xE ∈ [4.5, 30]

5.3. Results

5.3.1. Results of CSP-MPC.

According to the Cost reduction operational goal of MPC, the cost associated

with water elevation should be minimized. The cases of pump 1A and pump 6D
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(a) Pump 1A (b) Pump 6D

Figure 8: Comparison between pump flow and its electricity price

are used as illustrative examples in order to show results of optimal electrical cost.

Figure 8 provides evolutions of pump flow and electricity tariff in the same plot,

in order to show that pumps send more water at the lower-price period but less or

no water when the electricity is expensive, which confirms the completion of the

economical objective.

As presented above, CSP is used to convert the nonlinear equations of flow-

and-pressure MPC into additional linear constraints for a flow-only MPC in order

to optimize the nonlinear model of a complex water network in an efficient way.

By means of Algorithm 1, non-linear Problem 1 has been transformed into linear

Problem 2 with tightened constraints for both tanks and actuators produced by

CSP. Tank B and Tank D are used as illustrative examples in Figure 9, where the

evolution of tank volumes are always above the new penalty level constraints,

which guarantees the required pressure for appropriate service and confirms the

effectiveness of CSP.
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(a) Tank D (b) Tank B

Figure 9: Comparison between tank penalty by CSP-MPC and its volume evolution

5.3.2. Results of Modelling Uncertainty

In the Richmond case study, leakages are not considered and the consumer

demand is modelled by means of a deterministic pattern. In order to illustrate

management of the demand uncertainty, 5% of the nominal demand value has

been used as uncertainty as it has been described in Section 4.4. As shown in

Figure 10 (a), the evolution of demand-5 has been changed from demand pattern

into demand domains according to equation (24). Consequently, this affects the

minimal safety volume produced by CSP-MPC as constraints of state variables to

meet hydraulic requirement, as shown in Figure 10 (b).

5.4. Comparison with Nonlinear MPC

In order to validate the proposed CSP-MPC approach, results obtained from

CSP-MPC will be compared to nonlinear MPC which is implemented with PLIO

tool. As described in Cembrano et al. (2011), PLIO is a graphical real-time de-

cision support tool based on non-linear MPC which allows the flow and pressure

control management for the real-time operative control of DWNs.
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(a) Domains of demand-5 (b) Calibration of water penalty of tank D

Figure 10: Results of Modelling Uncertainty

PLIO was developed using standard GUI (graphical user interface) techniques

and objective oriented programming using Visual Basic.NET. In PLIO, models are

built using the GAMS optimization modelling language. The resulting non-linear

optimization problem is solved using CONOPT, which is a solver for large-scale

nonlinear optimization problem (NLP) and is developed and maintained by ARKI

Consulting and Development in Denmark. CONOPT is a feasible path solver

based on the proven GRG method as in Flores-Villarreal & Rios-Mercado (2003)

with many newer extensions. All components of CONOPT have been designed

for large and sparse models with over 10, 000 constraints. Figure 11 is the PLIO

model of Richmond water distribution network.

In the CSP-MPC control scheme, both linear and non-linear constraints of

DWNs should be satisfied. Besides that, optimal solution produced by CSP-MPC

should be in consistency with that from non-linear MPC in tanks dynamic evolu-

tion, pump flows and also demand node pressure.

Results shown in Figure 12, 13 and 14 provide the evolution comparisons of
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Figure 11: The PLIO model of Richmond water distribution network

tank volumes, pump flows and demand node pressure between CSP-MPC and

PLIO. The similarity of these comparisons validates the functionality of the pro-

posed CSP-MPC control approach, which optimize the non-linear MPC problem

using a linear MPC with tightened constraints.

Besides consistency validation between non-linear MPC and CSP-MPC, Ta-

ble 1 shows in further detail the operational cost and computational load compar-

isons between non-linear MPC and CSP-MPC using a 288 hours iteration and a

70% pump efficiency. The indices representing costs are given in British pounds.

The row of Comput. time compares the computational time for every iteration be-

tween non-linear MPC and CSP-MPC with the time unit of second (s). Since the

sampling time used by the controller is 1 hour, consequently real-time operation

can be clearly guaranteed. The column of Improvement provides the variation in

percentage of the results from non-linear MPC to the CSP-MPC control.

The results presented in this table confirm that the operational costs obtained

32



(a) Tank B (b) Tank D

Figure 12: Comparison of water evolution in tank between CSP-MPC and non-linear MPC

(a) Pump 6D (b) Pump 1A

Figure 13: Comparison of pump flow between CSP-MPC and Non-linear MPC
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(a) Demand 1302 (b) Demand 10

Figure 14: Comparison of demand node pressure between CSP-MPC and Non-linear MPC

Table 1: Compar. betw. Non-linear MPC and CSP-MPC

Define

Name

Non-linear MPC CSP-MPC Improvement

Jcost(£) 1079.1 1110.3 2.89%

Comput.time(S ) 83 29.2 -185.71%

from nonlinear MPC and CSP-MPC are similar, which confirm the consistency

between nonlinear MPC and CSP-MPC. Besides, the computational time of non-

linear MPC is shown nearly more than twice longer than the one needed by CSP-

MPC, which confirms the advantage of CSP-MPC in the computing efficiency.

The relative improvement of this execution time is expected to increase in a larger

network and therefore, this reduced execution time would imply a potential ad-

vantage in large scale systems is foreseen using CSP-MPC.
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5.5. Comparison with other approaches.

Operation of the Richmond water distribution system was optimized previ-

ously using Hybrid GA in van Zyl et al. (2004) and ACO (Ant Colony Optimiza-

tion) in López-lbañez et al. (2008), whose optimal annual operational costs are

£35, 296 and £33, 683, respectively. A comparison of results of CSP-MPC with

these methods is included below, to the extent possible with the information pro-

vided in the referenced papers.

The calculation for estimating annual operational cost of Richmond system is

Cann. =

g
7∑

j=1

365∑
i=1

ρũ(i, j)∆H(i, j)a2(i, j)

η
(25)

where g is the gravity, η is efficiency for the pumps, ρ is density of water, ∆H is

the head gain provided by the pump, ũ is the pump flow and a2 contains the cost

of pumping.

In practice, considering that efficiency e ranges from 65% to 75%, the opera-

tional annual cost by CSP-MPC is ranging from £31, 520 to £36, 369, which is in

order of the results obtained using Hybrid GA (£35, 296) in van Zyl et al. (2004)

and ACO (£33, 683) in López-lbañez et al. (2008).

5.6. Application Limitations of CSP-MPC

Considering the definition and interval implementation characteristics of CSP

explained in above sections, the building of the constraints C in DWNs can only

be directly implemented in networks that do not present bidirectional flows, as

initially proposed in Sun et al. (2014a). In DWNs, some pipes are bidirectional,

which adds difficulty to build the pressure constraints set for CSP. In order to ap-

ply successfully CSP-MPC to the bidirectional DWNs, a Network Aggregation
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Method (NAM) may be used to simplify a complex water network into an equiv-

alent simplified conceptual one. Then, the non-linear pressure constraints may

be transformed into safety volumes for the tanks. This is illustrated in the next

section.

6. Application Example: D-Town Water Network

In order to test the applicability of CSP-MPC to a complex water network with

many bidirectional elements, the D-Town network is used as a supplementary case

study. D-Town network shown in Figure 15 is a complex benchmark DWN with

388 nodes, 405 actuators and 7 tanks and multiple bidirectional links, which has

already been used in Price & Ostfeld (2014) and P.L.Iglesias-Rey et al. (2014).

Figure 15: Original D-Town network
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6.1. Results of NAM for D-Town

The conceptual one-directional network model of D-Town was obtained using

a Network Aggregation Method (NAM) described in Sun et al. (2015). This model

is shown in Figure 16, where all the demand nodes have been aggregated inside

one demand node and related directly with the tanks. This model can be optimized

using CSP-MPC approach proposed in this paper.

Figure 16: Conceptual D-Town network

6.2. Results of CSP-MPC for D-Town

As discussed in Section 3, the objective function of MPC includes the econom-

ical water transportation cost associated to the pumps that should be minimized.

Figure 17 shows in the same plot the pump flows after applying MPC and electric-

ity tariffs for pump stations S 1 and S 4. From this figure, it is clear that, in order to
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(a) Pump S1 (b) Pump S4

Figure 17: Comparison between pump flow and its electricity price

reduce the operational cost of the whole network, the MPC strategy pumps more

water when the electricity prices are low while less or no water when the prices

are high.

By means of CSP, non-linear pressure equations of D-Town could be trans-

ferred into linear constraints which imposes new limitations for both tanks and

actuators in order to fit the non-linear pressure dynamics. Figure 18 shows the

evolutions of real tank volumes compared with their updated minimal safety vol-

ume, which has been produced by CSP in order to satisfy the required pressure

of demand nodes. From this figure, it can be noticed that the added constraints

for tanks determine their water volume evolutions, which guarantee the required

pressure for the demand node.

The above results using the D-town case study confirm that the applicability

of CSP-MPC is not restricted to simple case studies, but it may be applied to

complex networks with multiple bi-directional connections.
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(a) Tank 1 (b) Tank 2

Figure 18: Comparison of tank volume and the safety volume by CSP-MPC

6.3. Comparison with other Approaches

Operations of the D-Town network were optimized previously by a Pseudo-

Genetic Algorithm (PGA) proposed by P.L.Iglesias-Rey et al. (2014) and a suc-

cessive linear programming proposed by Price & Ostfeld (2014), whose optimal

annual pump costs are 168, 118 and 117, 740 Euros respectively, according to the

information in the referenced papers. Using equation (25), considering pump ef-

ficiency e as 70% here, the operational annual cost for D-Town with CSP-MPC is

137, 880 Euros, which is in order of the results obtained by Price & Ostfeld (2014)

and P.L.Iglesias-Rey et al. (2014).

6.4. Advantages of CSP-MPC Application in DWNs

The main advantages of the CSP-MPC compared with the existing approaches

reported in the literature are the following: Regarding methods based on evolu-

tionary/genetic algorithms, the computation time is considerable reduced allowing

the online optimization required in the real-time operational control. This is es-

pecially important in large scale networks where the computation time could be
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prohibitive when the real-time implementation is based on evolutionary/genetic

algorithms.

Concerning non-linear MPC, since the associated optimization problem is

non-convex, current existing non-linear programming algorithms although they

scale better than evolutionary/genetic algorithms, they can only guarantee local

optima. Moreover, most of the theoretical properties (as stability, robustness, fea-

sibility) of linear MPC (that are preserved in the CSP-MPC approach) can be more

easily guaranteed than in the case of the non-linear MPC. For all these reasons,

in spite of a small amount of decrease of performance, the proposed CSP-MPC

approach over-performs the current existing approaches.

7. Conclusions

This paper presents a control scheme integrating CSP and linear MPC for the

optimal management of DWNs, considering both flow and pressure dynamics, as

an alternative to solve a non-linear MPC problem. The CSP-MPC control scheme

successfully solves the non-linear optimization problem of DWNs by creating an

efficient linear approximation of the nonlinear problem and solving it. The pro-

posed CSP-MPC approach provides a significant reduction of the computational

load compared to that of nonlinear MPC, which is an important feature for effi-

ciency and scalability for large-scale networks.

The Richmond water distribution network has been used as an illustrative ex-

ample and the D-Town benchmark network as a more realistic and challenging

application. Non-linear MPC implemented with PLIO tool has been used to ver-

ify the proposed control scheme, while Epanet has been used as the water network

simulator to reproduce the water network behavior in a highly realistic manner.
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The result comparison between non-linear MPC and CSP-MPC confirms that the

CSP-MPC control scheme produces optimization results that are comparable to

those obtained from nonlinear MPC.

The CSP-MPC method achieves a significant improvement in computation

time. The results of the proposed approach has also been compared to those of

ACO and Hybrid GA producing similar results regarding the operational cost. Op-

erational cost comparisons among CSP-MPC, ACO and Hybrid GA also confirm

that, the CSP-MPC scheme is also economically feasible and reasonable.

Finally, the supplementary application of D-Town network has proved that,

the CSP-MPC control scheme provides good results even for the complex and

realistic case study presenting bidirectional flows, if combined with a network

aggregation approach. As future work, the effect of the uncertainty in the demands

or network parameters on the performance will be studied. Moreover, distributed

implementations of the proposed CSP-MPC approach will be investigated.
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