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In this paper, diagnosis for hybrid systems using a parity space approach that considers model uncertainty is
proposed. The hybrid diagnoser is composed of modules which carry out the mode recognition and diagnosis
tasks interacting each other, since the diagnosis module adapts accordingly to the current hybrid system mode.
Moreover, the methodology takes into account the unknown but bounded uncertainty in parameters and additive
errors using a passive robust strategy based on the set-membership approach. An adaptive threshold that bounds
the effect of model uncertainty in residuals is generated for residual evaluation using zonotopes, and the parity
space approach is used to design a set of residuals for each mode. The proposed fault diagnosis approach for
hybrid systems is illustrated on a piece of the Barcelona sewer network.
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1. Introduction

Most real systems are on-line controlled and supervised by means of automatic computer-based con-
trol systems. But, they are subject to faults that can appear in the plant components, sensors and ac-
tuators. Many of these systems present a behavior that changes with the operating mode, where every
mode corresponds to a discrete-state of the system that could have a different behaviour (i.e., continu-
ous dynamic model). These systems are better described using hybrid models that integrate continuous
and discrete dynamics. There are several hybrid modelling approaches as, e.g. hybrid automaton mod-
els (Hofbaur and Williams 200¢or hybrid bond graph model$l@rasimhan and Biswas 200Daigle
2008). Hybrid models can be used for the system monitoring, faalymbosis and control tasks. Model-
based online diagnosis requires quick and robust reconfiguration processes when a mode change oc-
curs, as well as the ability to keep the nominal behavior of the system on track during transient states
(Bregon et al. 2010 On-line fault diagnosis allows reconfiguring the systetarahe fault appearance,
by activating some fault tolerance mechanisms, increasing the system resilience (i.e., the capability to
recover the system functions after a partial system damage has ocdBlae#} et al. 2006

Recently, in the literature, model based techniques have been proposed to diagnose hybrid systems
(Travé-Massuyes et al. 2008ocquempot et al. 2004aigle 200§. The continuous behavior in each
mode is described using differential equations. These techniques extend, in some way, existing model-
based approaches for non-hybrid systems being able to handle the continuous and discrete-event system
behaviors. In a hybrid system, the diagnoser should be parameterized as a function of the current mode.
Thus, the proposed diagnoser should be able to evaluate the behavior of the hybrid system online, and to
detect and isolate the mode and the faultsTiavé-Massuyes et 82008, the discrete-event behavior
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is modeled as a set of discrete modes, that can include nborirfaulty modes, and transitions be-
tween them are governed by events. Following the methogigdogposed bysampath et a(1995 and
Vento et al(2011), a diagnoser combining the discrete and the continuouardias is built by means of
a behavior automaton. lBocquempot et a(2004), a global vision on how to detect and isolate faults in
hybrid systems by generating the set of residuals is pravidewever, a formal methodology to build a
hybrid diagnoser is not proposed, and measurement untgriainot accounted for.

The contribution of this paper is to present a fault diageosethod for hybrid systems where the
current operation mode is recognized by generating a setsiduals designed by means of the parity
space approach and that taking into account model uncsrtaithe residual evaluation. The robustness
is enhanced using a passive strategy based on generatinigtiva threshold that considers the effect
of parameter and additive error uncertainty (includingseaand discretization errors) in the residual
evaluation using zonotopes, extending the results predémBlesa et al(2012); Vento et al.(2012 to
hybrid systems.

The structure of this paper is the following. In Section 2 ltybrid model is defined, which accounts
for parameter uncertainty. In Section 3, the fault detectachnique for hybrid systems is introduced.
Fault isolation and mode recognition are described in 8eetiand Section 5, respectively. In Section 6,
an application case study based on the sewer network of tieeBaa city is used to assess the validity
of the proposed approach. Finally, Section 7 summarizes\tie paper conclusions.

2. Problem Statement

2.1 Hybrid model

Let us consider that the model of the hybrid system to be disgt can be described by the following
hybrid automatorH A =< Q, X, U, Y, F,G, H, X, T >, where:

e Qs a set of modes. Each € Q represents a nominal operation or a faulty mode of the system
l.e.Q = O U Qr with |Q| = n,.

e gy € Qs the initial mode.

e X C R™ defines the discrete-time continuous state spa@e. € X is the discrete-time state
vector at samplé andx, the initial state vector.

o U € R™ defines the discrete-time continuous input spack) < U/ is the discrete-time continu-
ous input vector.

e )V € R™ defines the discrete-time continuous output spg@e. € ) is the discrete-time contin-
uous output vector.

e F is a set of faults. Every faulty modg € @ corresponds to a faulf; € F as well as a fault
evento; € Y.

e G defines a set of discrete-time state affine functions withmetric uncertainty for each nominal
mode':

X(k +1) = Ai(0)X(k) + Bi(O)u(k) + Fr;(0)f(k) + Ei(0) 1)

whereA;(0) € R"*1= B () € R andE,;(0) € R"**! are the state matrices in mode
andf(k) € R/ represents the system faults, with;(9) € R"**"/ being the fault distribution
matrix in modei. The model parametet®) are considered unknown but bounded by an interval
set, i.e., they belong to the $Bt= {6 € R"9|9 < 6 < 6}. This set represents the uncertainty on

the exact knowledge of the real system paramé®rs
e 7 defines a set of discrete-time output affine functions wittapeetric uncertainty for each nom-

1The effect of the fault is assumed unknown and modeled byehtoxf.
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inal mode!:

y(k) = Ci(0)x(k) + Di(0)u(k) + Fy,(0)f(k) + Ey,(6) + Nin(k) )
whereC;(0) € R™*"*, D,(0) € R andE, () € R"*! are the output matrices in mode
andFyi(é) € <1/ s the fault distribution matrix in mode n(k) € V is a vector of dimension
ng x 1 corresponding to the additive error that includes the &ffetnoise in measurements and
discretisation errors. The additive error is unknown big @ssumed to be bounded by a Bet

e ¥ =3,UX.UZXyis asetof events. Spontaneous mode switching evenjsiiput eventsX.)
and fault eventl; are considered. Each spontaneous event X, defines when the state vector
intersects a jump surface,, = {x(k) € X : s, (x(k)) = 0}, with s, being a linear switching
condition.>} can be partitioned intd, U X, whereX:, represents the set of observable events
andX,,, represents the set of unobservable events. It is assumed ta ¥, X C X, and,
can be contained in both patrtitions.

e 7 : 0 x ¥ — Qdefines a partial discrete state transition function.

Alternatively, the model given bylj-(2) can be expressed in input-output form using the ghift
operator (or delay operator) assuming zero initial coadgias follows

y(k) = M;(p~, 0)u(k) + X;(p~", 0)f(k) + Emi(p~",0) + Qi(p~")A(K) 3)

where:

-1 7 o P
Emyi(p 170) yz(g)ﬁ
Eai(p7",0) = C:(6) (1 — Ai(6)) " Ei(6)
Emi(p_1> 5) = Emy,(p_1> (5)) + Emrz(p_lv 5)
Qz(p_l) =N;

Tablel summarizes when the transition functiond is possibly defined. The symbdl-” indicates
that the transition between the corresponding two modestipassible. Notice that transitions between
nominal modes are possible in any sense and transitionsfaolty modes to nominal modes are not
possible.

Destination modes
)% OrF

QN Es U 2c Z.7:

Qr - -

Source moded

Table 1. Transition function defined for tH€ A

Another aspect to consider is that the composition of corapbautomata is done for operation modes
that belong ta2 s, whose dynamical behavior is described by equati@j§). Faulty modes are added
a posteriori to the resulting hybrid automaton. Thus, thenlber of faulty modes associated with each
mode inQ s equals td.F|. This model results from an adaptatiorigfjeros et al(2003; Bayoudh et al.
(2009 andVento et al(2010.
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2.2 Overview of the proposed fault diagnosis approach

Model-based FDI relies on comparing the estimated behadidhe system obtained from a non-
faulty model with the real measured behavior availableuglosensor measurementtquempot et al.
2009). The FDI algorithm for hybrid systems takes into accouniclhis the current operation mode
of the hybrid system to adapt the model used to generate tdicped output. Thus, a set of residu-
als adapted to the mode dynamic behavior can be generateslaludted as in the case of non-hybrid
systems. The set of residuals for each mode including thertainty in parameters and noise is given
by:

ri(k,0) =y(k) — (¥i(k, 0) + Nin(k)) (4)

wherey(k) is the real behavior any,(k, 8) is estimated behavior considering parameter uncertainty
0c [Q, 5] in mode:. Additive noisen(k) bounded by the sét (i.e.n(k) € V) represents the uncertainty
about the exact knowledge of the real nais& he predicted output can be obtained using observers or
parity equationsChow. and Willsky 1984Blanke et al. 2006Meseguer et al. 201Da

The architecture to detect and isolate faults in hybridepstis provided in Figl. Two separate
stages are considered for hybrid system diagnosis: offligecaline processes. In the offline process,
the hybrid automaton model is built through the componerdlf composition and the generation of
a set of equations which depend on the operation mode. Rasiftw each mode are generated and an
exploration of feasible hybrid automaton traces is caraatito study mode discernibility. Therefore,
the discernibility study and observable events of the sysabow to build a behavior automato)
(Vento et al. 201)L This information is used to predict which mode changedeaghetected and isolated.
Hence, a diagnoser is built frold applying the methodology developed Byampath et al(1999 for
discrete-event systems diagnosis.
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Figure 1. Conceptual block diagram for the hybrid systengmiisis methodology

On the other hand, in the online process, the tasks are damieby the three blocks highlighted in
blue in Fig.1. Mode recognitiorandfault diagnosisblocks deal with possible changes in the system
operation mode based on consistency indicators and olidemeent occurrences. Both blocks cooper-
ate together. Thdiagnoser decisioblock gives a final diagnostic according to information pded by
mode recognitiorandfault diagnosisblocks that takes into account the effect of model pararaeted
noise uncertainties, in residuals bounding their effectdayotopes.
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The current diagnoser statep) contains information on all modes the system is possiblyatjey
in. If more than one mode is contained 4, those modes are non discernible. A mode change in
H A implies a nominal or a faulty mode change. In the online disig) a set of events are identified
describing a feasible trajectory of the physical system.

The discernibility property allows to predict wether a mateange can be detected and identified
when the operation mode is described by a dynamic m&isiqudh et al. 2008eseguer et al. 2010b
Cocquempot et al. 2004In the case of faults, discernibility properties are tedato detectabilityand
isolability based on the fault signature matriMéseguer et al. 2010tor based in the non-binarized
sensitivity matrix Blesa et al. 2012

In online diagnosis, the following assumptions are made:

Assumption 1. Two modes changes do not occur at the same time.

Assumptionl considers the fact that two events cannot be detected adhe me, since there would
be uncertainty in the dynamic model to be used in the resichvaputation.

Assumption 2. The residual dynamics have time to stabilize between twsemrive mode switchings.

Assumption2 implies that transitions between modes should be slowaer tie residual dynamics
generator. This concerns the dwell time requirement, tne ®lapsed to reach the steady state in a
stable way needed by the continuous dynamics of the operataes before other transitions occur.
Otherwise, the transition might not be correctly detected.

Assumption 3. After a mode change occurrence, all the residuals sengititieis change are activated
at some time and persist during the whole mode change isalgtiocess.

Assumptior3 concerns the fact that the logic to detect and isolate modegds is based on the steady
state response of the set of residuals, assuming that tideiaés sensitive to the mode change remain
activated.

Assumption 4. No mode change will occur after a fault has occurred.

According to Assumptiod, once a fault has been detected, the online diagnosis [gret@ss since
it is assumed that the system does not further evolve. Wigergefault occurs the set of residuals and
models must be adapted to appropriately perform diagndsis.considered faults affect the system
parameters without changing the system configuration.Kihof faults leads to a loss of information,
hence to compensate this the system model must be recaltulat

3. Fault detection

Consider the linear system represented by the state spated maliscrete-timeX)-(2), the predicted
output, using the parity space approaBhagike et al. 200§ in matrix form is represented by:

Y (k) = 0s(0)x(k — p) + Tu;(0)U(k) + T 1, (0)F(k) + Tiy(0) + TviN(k) (%)
whereY (k) = [y(k—p)y(k—p+1) - y(k:)]T andU(k) = [u(k—p)u(k—p+1)-- u(k:)]T
andF(k) = [f(k = p) f(k — p+1) --- f(k)]", N(k) = [n(k —p) n(k —p+1)---n(k)]" andpis
the parity space order. The parity space matrices are given b
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D;(6) -0 0 N;---0 0
T (0) CZ(O)-Bi(O) -0 0 Tas = O -. 0 O
| Ci(6)(Ai(6))"~'Bi(6) D;(6) | 0 N;
COEL ) 1 E, 0 oA 0)
TEi(0) = 0;(6) =
| Ci(0)(Ai(6))"'Exi(6) + - - + Ey(0) | Ci(0)(Ai(0))"
[ Fy;(0) 0
T (6) = cz<0>EFm-<o> 0 0
Ci(0)(Ai(6))"~'Fu.i(0) Fy;(0)
If there exists value of such that
rank [0;(0) T£,(0)] < (p+ 1)n, (6)

the left nullspace of O;(0) T;,(6) ] is not empty. The dimension of this subspaag, is given as
n, = (p+1)n,—rank [0;(0) T¢,(6)]. Condition @) should be satisfied for &l € ©. In Kotodziejczak
(1999, a procedure to check the satisfaction of this conditiogiven based on testing a finite number
of # values.

Let W;(#) be an, x (p + 1)n, matrix such thawV,;(0#)O;(#) = 0. Multiplying the left and right
terms of §) by W;(#) in such a way that eliminates the dependence(j, the analytical redundancy
relations are expressed by the following equalities:

ri(k,0) =W;(0)Y (k) —W,;(0)T,;(0)U(k) —W,;(0)Tg;(0) — W;(0)Tn;N(k) = Wi(G)TfZ-(O)F((k))
7

Because of the inclusion of uncertain parameters in theirmomis dynamics of the hybrid sys-
tem model, the determination &/;(0) is not a trivial task. One possible approach is proposed in
Ploix and Adrot(2009. Here, a different approach, based on the equivalencefibeg exists between
the parity space approach and input-output modeisd et al. 2009, is used. Assume that the system
model input-output form at a given operating point wherejtfieoutput respect to th&” input in mode
i is described the following transfer function:

bpi(0)pP +by—1,i(0)pP~t + -+ bo,i(0)

¥ (p,0) = D+ O T a0 (0) u'(p) (8)

A way to construct the parity space residuals is based onidefihe transformation vector as follows

WZ(G) = [a07i(9) tee ap_l,i(O) 1] (9)

This definition can be justified according to the Cayley-H&mitheorem. Following this theorem, it
can be proved that/;(0)0;(0) = 0 is satisfied by considering each output of Equati@niidepen-
dently:
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Ai(0) 4+ ap-1:(0)A4;(0) "+ +ap(0)A;(8) =0

ci(0)
Ci(0)A(0)
= [aoi(0) -+~ ap-1i(0) 1] : =0
ci(0)Ai(9)"
whereA;(0), c;(8) denotes the state space matrices of the transfer functren by Equationg). More-
over,
W;(0)Ti(0) = [00.i(6) - by—1,i(0) b, (6) |
WZ(O)TNZ = [a07i(0)Ni s ap—l,i(e)Ni Ni]
and

Wi(0)TE;(0) = [e0i(0) -+ ep-1,i(0) €,4(0)]

Under this approach, the number of residuals is equal to tineber of system outputs for a given
mode.

Alternatively, the residuals can be expressed using th&tiaptput form according ttleseguer et al.
(20103 as follows:

ri(k,0) = (I =Hi(p~1,0))(y(k) = Nin(k)) — G;(p™ ", 0)u(k) — Emi(p™ ", ) (10)

whereG;(p~!,0),H;(p~!,0) andE,,;(p~ ", @) can be obtained from the input-output model in predictor
form. Moreover, with the previous selection \of;(€), an equivalence between input/ouput and parity
space predictors can be established through the follovélagions:

Ip=*
Hi(p™",0)(y(k) = Nin(k)) =W,(8) | i | (y(k) — Nin(k))
I

Gi(p™", 0)u(k) = W;(0)T.;(0)u(k)
Eni(p™",8) = Wi(0)Tr:(6)

3.1 Parity spacein regressor form

From (7), a model in regressor form for every output can be obtained

(k) =] (k)& +el(k)j=1n, (11)
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where

e ¢! (k) is the regressor vector of dimensiorx n ; which can contain any function of inpuisk)
and outputg)’ (k).

o ¢ € 5, is the parameter vector of dimensiop; x 1

e =, is the set that bounds the paramefevalues. .

e ¢! (k) is the additive error bounded by a constasitk)| < e.

Remark3.1 The dependence of parameter veciaaind additive erroe{(k) in Eq. (L1) with respectto
the parameter vectdr and additive erron’ (k) in Eq. (2) can be analytically obtained from Eq)(

Remark3.2 In the same way, s&; and bounds’ can be related to se@® and).

Then, individual models {1) in modei can be expressed in a compact form aduatiple Input and
Multiple Output(MIMO) model

y(k) = ®;(k)& + ei(k) (12)

where

o W,(k) is the regressor matrix of dimensiap x n¢ ; that contains the regressor vectors.
¢ ¢;(k) is a vector of dimension,, x 1 that contains the additive errors (including noise).

3.2 Residual evaluation

Considering that the parameter vegpis bounded by an interval sete

si={aenegd < <8j=1,me) (13)

that can be parametrized as a particular case of a zonddtgxea(et al. 201)1as follows

=8 oK B = {¢ +Kiz: 2 € B} (14)

with centre¢? and matrix uncertainty shapé equal to ang ; x n¢; diagonal matrix:

g+ g+ ge+ge
g?:<_z2 7_Z2 7"'7_2 2 ) (15)
(fr8 gve  goge
Ki:dzag< 2 s 2 y T 2 ) (16)

and & denotes the Minkowski sumiB"s: € %R"<*! is a unitary box composed by, ; unitary
(B = [-1,1]) interval vectors.
Considering modell2) residual ) can be computed as

ri(k) =y(k) — ®i(k)& — e(k) (17)
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and taking into account uncertainty in parameters and iitigeerror, the residual can be bounded by a
zonotope Blesa et al. 201pdefined by
Li(k) = (y(k) — ¥;(k)&)) & (¥, (k)K; II;) Breitm (18)

with

I, = diag (E}, e ,E@y) (19)

)

Then, an output measurement vectOt) will be consistent with the model p) if

0 ¢ Iy(k) (20)

where0 is a vector ofn,, zeros. Test0) can be rewritten as

(O(k) € Ti(k) (21)

with r?(k) the nominal residual

ri (k) = y(k) — Li(k)¢! (22)

andT; (k) the zonope with the same shapdaék) but centered in zero

Li(k) =0® (¥;(k)K; IL) B et (23)

Test @1) involves checking whether or not the nominal resicd{ék) (point) belongs to the zonotope
T;(k) (set) and can be implemented using Algoritht) that consists in determining the feasibility
of a linear constraint satisfaction problem that can be effigently solved using linear programming
(seeBlesa et al.(2012).

Algorithm 1 IsConsistent( (k), T';(k))
Require: ¥;(k),K;,II;
1 if 3z(k) € B and3el (k) € [—€l,&l],¥j = 1,..,n, such thatr)? = W/ (k)K,z(k) +
el(k),Vj :=1,...,n, then
return true
. else
return false
- endif

a kR wn

4. Faultisolation

The isolation module is responsible of identifying whiclitie fault that is present in the system. Faults
are isolated by checking the observed fault signature wghfault signatures stored in the theoretical
fault signature matrix.
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For faults, the residual fault sensitivity can be determdinging its internal form. In the case of the
parity space approach, this form is given [y s follows:

ri(k) = W;(0)T s,(8)F(k) (24)

According toMeseguer et a(20103, the residual fault sensitivity is given by

(1) —
Thus, the residual fault sensitivity under the parity spameroach is given by:

Ly, 0"
Ai(p~',0) =W,(6)T;,(0) : (26)

(P

Remark4.1 A set of ns faults would be isolable by means of the sensitivity matkixp—,0) if
this matrix satisfies thatolumn rank(A;(p~1,0)) = ny for all & € ©. As previously indicated, in
Kotodziejczak(1999, a procedure to check the satisfaction of this conditiarafbd is given based on
testing a finite number df values.

DefiningAY as
A} = Ai(p™, 6% 27

where@" is the nominal parameter and considering single faultsfah isolation procedure can be
implemented by solving the following algorithm fér> k; as proposed iBlesa et al(2012

Algorithm 2 f,=Fault_lIsolation(®(k), A?)
1: forall j:=1,...,n;do
2 (0. 27 (K) ) 2= min T (£ B)

irj
2
subjectto/; ;(f, k) := ri (h,0°) — )‘?ij
h:=max{ksquit,k—Cl+1} 7
where>\2j := 9r;/0f; is thej™" column of AY and/ is the maximum time horizon

3: end for

4: f, = i JP (K
oz i 0]

5. return f,

Remarkd4.2 Algorithm 2 involves solvingr ; multi-output least square error optimization problems in
time horizonh for everyn s possible single faults. The most probable fafilis determined as the fault
that gives the minimum function cosi ;( f, k) after solving the set of least square error problems for
the set of considered single faults.

5. Mode recognition

The mode recognition task is implemented through the modeg#detection and recognition modules
(see Fig.l).

10
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5.0.1 Mode change detection

The aim of this module is to detect when a mode transition gcguthe hybrid system. The mode
change detection from modeo modej is inferred when an inconsistency in the set of residualb®f t
modei is detected while at the same time the set of residuals gmmnebng to modeg are proved to be
consistent.

Definition5.1 Two modesy; andg; are said to be weakly non-discernible if and only if residug(k)
(generated considering the modenodel) andr?(k:) (generated considering the moglenodel) both
belonging to their zonotopic sets (i.{(k) € Ti(k), r}(k) € T;(k) holds) when they are computed
using signalgy(k), u(k)) corresponding to modg or modey;.

The notion of non-discernability was first introduced ®gcquempot et a(2004), where necessary
and sufficient conditions were provided for the parity spaggroach in the state space representation.

In the case that residuals are generated using the paritg spgoroach, the discernibility function is
equivalent to evaluate the following condition (deducelmygquempot et a(2004) without parametric
uncertainty:

rank[O;] # rank[O;] # rank [O; O; Aj;] (28)

whereA;; = Ty; — Ty;.

This condition can be extended considering parametric nteiogy and matricest,; and E,,
appearing in the continuous dynamics of the hybrid modelh $liat proceeding with a similar analysis
the condition of non discernibility can be rewritten asdols

rank[0;(0)] = rank[O;(0)] = rank [Oi(G) 0,(0) A;;(0) AE”(G)] (29)
whereA;;(0) = T,;(8) — T,;(0) andAg,,(0) = Tg;(0) — Tr;(6).

Condition @9) should be satisfied for afl € ©. As previously indicated regarding Conditio®),(in
Kotodziejczak(1999, a procedure to check the satisfaction of this conditiarafbd is given based on
testing a finite number df values.

Thus, the following property can be defined:

Definition 5.2 A mode change from modg to modeg; is detectable at time instatif and only
if the nominal residual of mode fulfills r?(k) ¢ T;(k) and the nominal residual of modefulfills
ri(k) € T;(k)

This definition implies that a mode change from maéde modej is detectable if modéand modej
are discernable.

5.0.2 Mode change isolation

Once a mode transition has been detected, the new mode $imidlentified. To identify it, the nominal
residual of each possible successor mode are checked tpwhith of them belong to their zonotopic
set using Algorithml.

Definition5.3. Two mode changes$,— j andi — [ are isolable if the following conditions are satisfied
at any time instant:
(1) Both mode changes are detectable B -
(2) In the case of a mode change- j the residuals satisfy)(k) ¢ T(k), r?(k:) e I';(k) and
rp(k) & Ty(k)

11
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(3) In the case of a mode change- I the residuals satisfy) (k) ¢ Ti(k), r}(k) ¢ T;(k) and
r) (k) € Ty(k).

6. Hybrid diagnoser

The diagnoser automaton is a finite state macliine< Qp,>p,Tp,qp, >, where:

e gp, = {qo,0} is the initial state of the diagnoser, which is assumed toespond to a nominal
system mode.

e Qp is the set of the diagnoser states. An elemgnt € Qp is a set of the formgp =
{(q1,01),(q2,12), "+ (gn,1n)}, Whereq; € Q andl; € A whereA defines the power set of fault
labels withAz = {f1,- -, f,}, v is the total number of faults in the system and Z*. In A,

() represents the nominal behavior,
e ¥p =3, isthe set of all observable events.
e Tp: Qp x %, — Qp is a partial transition function of the diagnoser.

The hybrid diagnoser is offline built following the methodgy explained invento et al.(2011). The
diagnoser performs diagnostics using online observatibtise system behavior; it is also used to state
and verify offline the necessary and sufficient conditiomsifagnosability Gampath et al. 1995Faults
are handled by discrete-event systems as unobservabl&s éuethe system model that are detected
through the identified observable events. The diagnosepiesented by a finite state machine whose
current stateyp_, . . .,... contains the set of feasible modes the system is possiblatpg in. The
initial state is assumed to be known.

On the other hand, Algorithr briefly describes the residual-based reasoning carriethytlie di-
agnoser to identify an event occurrence. The algorithmlchéar the current diagnoser state whether
ro (k) € Teurrent_state(k) holds or not. In case of a diagnoser state change, by means of

current_state
signature events, the set of residuals of some successgmadier state will fuffillr,.. ... (k) €
f‘succ_smte(k:). In the case of a fault, the set of residuals in the currengriiaer state are compared
with the sensitivity function as explained in Sectibmo isolate the fault. State successors are denoted
by Succs(qD..rren_ctate) = {4Duucectare € @D 230 € XD TD(ADcwrrent stater T) = ADsuee svare - WhEN
observable events occur they are identified instantang¢ses line 8 in AlgorithnB).

7. Results

7.1 Case Study Description

The application case study is based on a part of the Barcalewar network. In general, sewers are
pipelines that collect and transport wastewater from aifydings and rain drains to treatment facilities
before being released to the sea. Sewers are generallyygogérated, though pumps may be used if
necessary@campo and Puig 2009

The city of Barcelona has a combined sewer system (wastea@mgater go into the same sewer) of
approximately 1500 Km. Additionally, the yearly rainfadlmot very high (600 mm/year), but it includes
storms typical of the Mediterranean climate that cause afliboding problems and combined sewer
overflows to the sea that cause pollution. Such a complexsyis conducted through a control cen-
ter in CLABSA (Barcelona Sewer Company) using a remote obsirstem (in operation since 1994)
that includes sensors, regulators, remote stations andhoaioations. Nowadays, the urban drainage
system contains 21 pumping stations, 36 gates, 10 valved@netention tanks which are regulated in
order to prevent flooding and combined sewer overflow to tvr@mment. The remote control system
is equipped with 56 remote stations including 22 rain-gawgel 136 water-level sensors which provide
real-time information about rainfall and water level intk@tsewer system. All this information is cen-
tralized at the CLABSA Control Center through a supervisooptrol and data acquisition (SCADA)
system.

12
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Algorithm 3 Hybrid_Diagnoser
1. current_state :=0
2: loop
3 NGDewrrent tare) =10 € XD : TD(AD 1y rens rare» ) IS defined}

a: while IsConsistentC,,..c..: state(k); Ceurrent state(k)) @and o, € T(gp

) does not occur

current_state

do
5: Evaluater®,,....; state(k) according to )
6: end while -
7. next_state := current_state
8: If o, occurecthen
9: next_stateis suchthatyp, ., ..... == TD(ADourrcrs crares To)
10: print Transition from di agnoser state ¢p,. .., ... 1O GD,.., ..
11: current_state := next_state ) )
12: else
13; forall gp.,.. .,... € Sucecs(qp,,...., .1u..) O
14: if IsConsistentQ,,.. sare(k); Tsuce_state(k)) then
15: print Transition from di agnoser state gp....... .ue 1O GDovee crore
16: current_state := succ_state ) )
17: break
18: end if
19: end for
20: if next_state = current_state then
2L fL = FauIt_lSOIationl(gurrent_state(k)7 Agurrent_state);
22: print Fault f, has occurred
23: return
24: end if
25:  end if
26: end loop

There are two wastewater treatment plants (labeled With’ 7P1 and WWTP2 in Fig. 2). A
wastewater treatment plant consists in plants where, gtrphysicochemical and biological processes,
organic matter, bacteria, viruses and solids are remowsa Wastewaters before they are discharged in
rivers, lakes and seas. Nowadays the inclusion of such elsmeéthin the sewer networks is of great
significance in order to preserve the ecosystem and maithtaienvironmental balance inside the water
cycle.

Fig. 2 shows the model of the considered part of the Barcelona mkinging the virtual tank modeling
approach@campo and Puig 2009n order to illustrate the methodology, let us considdy eéanksT,

T, andT3, placed inside the red square in Fiy.

The elements that appear in the considered part inZge: two virtual tanks®,, and7}), one real
tank (I3), three limnimeters to measure the sewer levBlg (L4, andLyz;), two rain gauges to measure
the input rain intensity in the virtual tank®{y; and Py¢), and two redirection gates placed downstream
T, andTy, which allow to change the flow direction. In this particutase study, fixed position gates
have been assumed.

The dynamic model of the virtual tank is given by the follogyidiscrete-time equation representing
the water volume:

T; : vi(k + 1) = v;(k) + At(0" (k) — 07" (k) — 0f°* (k)

with ¢ € {0,1}. The overflow is given by:

13
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RAINFALL
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Llobregat
treatment plant™~—_

MEDITERRANEAN SEA

Figure 2. Barcelona test catchment

despy _ § 0" (k) — o (k) if vi(k) >7;
o (k) = {0 otherwise (30)

The input flow associated with a virtual tank is given by:

H L
Qi:n — Qg}luv(k) + Zglguth (k) + Zgilesz(k) (31)
h=1 =1

where """ (k) = S;¢;u;(k) is associated with the rain intensity,o?"*" (k) corresponds to all the

(2
output flows of the other tanks pouring into tank 7; and gfesl(k) corresponds to all overflows
pouring into the tank T; and h,l € Z7.

The output flow for every tank is given by:
out 1y _ [ Bivi(k) if of" (k) < 07" (k)
9i (k) - {5151 if Ul(k‘) > U; (32)

The relation between level and volume and the measurementsqvided by the sensors are de-
scribed by the equations below:

Li(k) = £rvi(k) (33)
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The parameters of the sewer network are described in Pable

Parameter description units (MKS)
Bi Volume to flow conversion factor of external taiik é
M; Conversion factor in the output valveT -
S, Area of virtual tankZ; m?
i Absorption factor of tankl; -
7 Maximum volume in tankl; m>

Table 2. Virtual tank parameters

Hybrid phenomena like overflows in sewers and tanks (blub liiass illustrate this overflow situation
in Fig. 2, in virtual tanks) can appear and change their behavior. Brilymodel is used in order to
describe such behavior and to design a hybrid diagnosertextdend isolate faults. The Diagnoser
reasons according to Algorithi®, and it is built based on the methodology presenteifdnto et al.
(2011).

7.2 Hybrid modeling

The hybrid automatd/ A describing the sewer network is illustrated in Fig.There are 24 operation
modes which 4 of them are nominal operation modes (i&y;| = 4) corresponding to the overflow or
no overflow conditions of the virtual tanks. In the figure sgonditions are represented ByandWOQO,
respectively. For example, mode 1 means that no tank is irflowesituation, mode 2 means that only
Ty is in overflow, mode 3 means onl is in overflow and mode 4 both in overflow. The initial mode
corresponds tg, = ¢;. Transitions are bound to spontaneous mode switching &\erdg., no input
events are considered) which are represented in the figuine@salities. Such events are unobservable
since state variables (e.g., tank volumes) are not meastlihedother 20 modes correspond to faulty
modes (i.e.]Qr| = |Qxr| - | F| = 20) representing additive faults in sensors.

Figure 3. Hybrid automaton for the sewer network

For each mode, a different dynamical model according toiyhodel ()-(2) is defined.
The continuous dynamical model for each mage Oy U Qr. is provided in Tables.
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i A, B, =
1— At 0 0 AtSl(plg 0 0
1 Tl, TQ WO Atﬂl 1-— Atﬁg 0 0 At52g016 0
0 AtBy 1 — AtfSs 0 0 0
0 0 0 0 0 U1
2T, : 0,75 : WO 01— Atpy 0 0 AtSsp16 Atpi1v7
0 AtBy 1—Alps 0 0 0
1-— Atﬂl 0 0 AtSlgolg 0
37, : WO, Ty : O 0 0 0 0 0 Vg
0 01— AtgSs 0 0 AtSBoTg
00 O 00 U1
AT, Ty: O 00 0 00 7
00 AtSs 00 At [oTs

Table 3. State space matrices for each modg; € Qar where the tank volumes are the state variables

The output function is given by equation(34)

y1(k) Ag_ig 0 0 z1(k)
va(k) | =1 0 £= 0 | |a2(k) (34)
ys(k) 0 0 ] Ls(k)

with the same matrix C; for all modes and D, = 0.

These continuous dynamical models have been used for resmugeneration For instance, the
predictor used for residual generation correspondingltmadies are detailed in Tabfe

qi H;(0) G;(0) | Eni(0) parameter uncertainty
8, 0 0 06 0 0 0, € [0.7240,0.8500] 05 € [0.8648,1.0152]
1| 6,05 0 0 6 0 05 € [0.1522,0.1787] O € [1.0388 - 10*,1.2195 - 10*
0 6, 0 00 0 03 € [0.7599,0.8921] 6, € [0.8648 - 10*,4.8724 - 10*
04 € [0.0234,0.0381]
000 00 05 61 € [0.7599,0.8921] 64 € [4.1506 - 10%,4.1506 - 10*]
2 06; 0 004 06 02 € [0.0324,0.0381] 05 € [1.3848,1.6257]
0 6 03 00 0 03 € [0.8648,1.0152)] 06 € [0.7390,0.8676]
6,00 030 0 61 € [0.7240,0.8500] 04 € [3.4697,4.0731]
3 000 00 0, 02 € [0.8648,1.0152] 05 € [0.1222,0.1435]
006 00 05 05 € [1.0388 - 10%,1.2195 - 10*]
4 88 8 8 8 zz 0, € [0.8648,1.0152] 05 € [3.4697,4.0731]
02 € [1.3848,1.6257] 0, € [0.1222,0.1435]
006, 00 0,

Table 4. Residuals generation fare O U Q r

The uncertain parameters have been estimated using thétagproposed byloix and Adroi(2009
leading to the intervals shown in the last column. Since f@idift model corresponds to in each mode,
the number of parameters also changes for each mode.

The residual expression for the sewer network can be exgutessing the relation between parity space
and predictor as follows:

-
=
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5
N—
—
=<
=
|
£
2
-
=
|
o
=
S,
(@]

(k) — Em;(0)
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where the value d#V;(0) is given by:

The additive error is bounded ly = 0.1. The fault setF includes faults in the output sensoys £,
fra1 andfr47) as well as faults in the input sensois{y and fp1s). Applying (26), the theoretical fault
signature matrix is obtained selectifig, = [0 | | andF,; = [ —B;(8) 0] to represent output and input
sensor faults respectively. The residual fault sensitiviaitrices for each mode is given in Table

A)=Ai(pt.6")
| fPiy SPio SLag SLay SLar |

~ 1.13-10% 0 1.0 — 0.787 0 0

p
_4.51-10* _0.165 _ 0.826
8 Op OP 12 0.035% 1.0 i) 0.94
p ’ p
[0 0 1.0 0 0 i
0 _4.5110-104 0 1.0 — 0.826 0

:0113(1)04 . _0% 1'0_%:
— L0 0 1.0 - 2T 0

0 0 0 1.0 0

0 0 0 0 1.0 — 23 |
[001.0 0 0 ]
00010 0
000 O 1.0—%

Table 5. Sensitivity matrix for each mode

These matrixes comprise five columns. The first and seconsl @oreespond to input sensor faults,
and the last three ones correspond to the output sensa.favdtry column of the FS is associated to
a faulty mode in Fig. 3. For every nominal mode there are 4 faulty modes labeled fron®-24.

The sety; = {ouo1, uo2, o3, Cuos} FEPresents the unobservable spontaneous events. &Eygnt
corresponds to the volume in tafik reaching its maximum, i.er, > ;. Evento,, corresponds to
the case in which the input flow is less than the output flow flBmi.e., ¢i" < ¢“. The other events
are related to the other virtual tanks. TheSet, = {019,016, 039,041,041} COMprises the fault

ns

events related to faulty modes (in this case they corresfsensor faults).

7.3 Simulation scenarios

The simulator of the sewer network implemented@®yampo and Pui¢2009 in Matlab, allows us to
validate the methodology. Data provided by rain gaugessponds to real episodes of rain occurred
in Barcelona registered by CLABSA. The data provided by limeters is generated by the simulator
through the rain gauge data.

A first simulation scenario (named as Scenario | in the falhgillustrates the system state tracking
and fault diagnosis. Figl shows the rain gauge measurements for the considered riabdepand the
measurements provided by the limnimeters with a sample ém&¢ = 300s. Therefore, the mode
sequence can be deduced from system measurements.

Fig. 5 shows in solid line the simulated system state evolutiorsfmenario |, whereas the dash line is
the state sequence estimated by the diagnoser.

The state sequenceds — q3 — ¢1 — ¢s. Initially, neither virtual tank is in overflow. Next}; is in
overflow whereas latef; leaves the overflow condition. Finally, a fault in sengg is simulated. Fig.

6 illustrates the residual evolution (nominal residual comentsr{(k) (in green in the figure), bound
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Figure 4. Example of a rain episode occurred in Barcelona
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Figure 5. State diagnoser sequence vs mode sequence fari®den

projections off'; (k) (in blue and red in the figure) artde incoming event occurrence correspond to
the black vertical lines. The associated signature-eventge detailed in Table6) for the considered
scenario. Notice that, for instance, when a transition fraodeq; — g3 occurs then{(k) ¢ Ty (k)
andri(k) € T's(k) holds. Notice that all modes are discernable accordingetiterion explained in
Section5. Then, the fault is detected comparing the observed sigmatith the theoretical signature
according to SectioA.

Consider the same scenario, but the set of residuals anéza@daising fixed thresholds correspond-
ing to the highest zonotopes bounds in order to avoid fatserd (see Figr). In Fig 8, the corresponding
diagnoser state sequence is shown. Notice that when usirgditfireshold, some mode changes may
be detected later by the diagnoser (an extra delay appetire mode detection process). Moreover, in
the case of the fault in senséy, the residual sensitive to the fault is activated laterefatftiree sam-
ples) and oscillates inside and outside its threshold b&uhkis complicates the detection process by
the diagnoser.

Consider another scenario (named as Scenario 1), whereditiva fault in sensof.3g occurs at time
3600s. Consequently the residuals of mageare triggered and the diagnoser stops. Notice that in Fig.
9, when the fault occurs}(k) ¢ T's(k) holds. Then, Algorithn? is activated and determines that the
most probable fault is a fault in sensbsy. In the case of using fixed thresholds, the results are simila
sice the zonotopE;(k) bounds at this time instant are close to the maximum limieghold).

Fig. 10 shows in solid line the simulated system state evolutiorsfoenario 11, whereas the dash line
is the state sequence estimated by the diagnoser.
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Figure 7. Fault detection using a fixed threshold for Scenario |
7.4 Analysis

The diagnoser report is provided in Tabléor both scenarios. Transitian — g3 occurs aB000s and it
is reported aB300s andq; — g3 occurs ati200s is reported ab100s . For Scenario Il, an additive fault
in sensorLsg appears at tim8600s and it is detected &900s when the system is in modg. A delay
is present since the residuals have a first order dynamio/meteand uncertainty is taken into account.

After detecting a fault, continuous dynamics must be reaateybto take into account the fault effect.
Faults affect the continuous model used to generated tlof setiduals. The loss of information should
be compensated otherwise diagnosis would be erroneouBi(sed). This is not a trivial task. It could
be considered whenever a new system model have a reasonéibéeaxecution time to update it.
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Figure 9. Fault detection using interval models for ScenHri

The occurrence time between two transitionsHil is an important aspect to be considered. The
sampling time, the residuals dynamics and the observalelet®wccurrence play an important role in
hybrid diagnosis. For this reason, the methodology assuhag¢sevents can sequentially occur during
the system evolution in a minimal time between them (see Wpsion 2). This time is associated with
the dwell time and the sampling time. As it can be seen in Tabléhenever there is a mode change, the
algorithms to compute residuals, verify consistency tasts update the current diagnoser state can be
executed in realtimé< 300s) for the sewer network.

The use of a binary coding would involve a loss of informatgimce the residual activation might
exhibit different dynamics (slow or fast). Zonotopes imprahe fault detection algorithm, avoiding the
loss of information. The sensitivity function without bimeation allows a major degree of discernability
between modes. Full mode discernibility is verified for tbasidered part of the sewer network.
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Mode change Reported event State diagnosefr Occurrence Detection time (s)
time (s) | Adaptive thresholq Fixed threshold
Scenario |
q1 — g3 014 (g3,{}) 3000 3300 3600
3 — q1 041 (@1, {}) 4200 5100 5400
q1— G5 op (a1, {f1}) 4800 5100 6000
fault fp19 € F in Mode ¢,
Scenario Il
Q1 —q3 014 (g3, {}) 3000 3300 3300
qs — q17 (Sf:{ (q17, {fg}) 3600 3900 3900
fault fr39 € F in Modegs

Table 6. Hybrid diagnoser report

8. Conclusions

In this paper, a methodology and architecture to designgndiser in the framework of hybrid systems
considering uncertainty in the parameters and additiver éras been proposed. The methodology is
robust since it considers modeling errors in the paramergdsadditive errors that comprise the effects
of noise in measurements and discretisation errors. Thty [g@ace equations are used to evaluate the
residuals on-line eliminating the dependence of the stat@bles, and the uncertainty is determined
based on the equivalence that there exists between infutitomnodels and parity equations. Parity
relations can be expressed in regressor form and an adéptdshold that bounds the effect of model
uncertainty in residuals can be generated using zonotdpésallows to formulate the fault detection
as a consistency test at every sampling time based on clggitiémon-existence of a parameter value
in the parameter uncertainty set and additive error sudhntioglel in mode is consistent with all the
system measurements. The performance of the proposedsappras been successfully tested in a part
of the Barcelona sewer network
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