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In this paper, diagnosis for hybrid systems using a parity space approach that considers model uncertainty is
proposed. The hybrid diagnoser is composed of modules which carry out the mode recognition and diagnosis
tasks interacting each other, since the diagnosis module adapts accordingly to the current hybrid system mode.
Moreover, the methodology takes into account the unknown but bounded uncertainty in parameters and additive
errors using a passive robust strategy based on the set-membership approach. An adaptive threshold that bounds
the effect of model uncertainty in residuals is generated for residual evaluation using zonotopes, and the parity
space approach is used to design a set of residuals for each mode. The proposed fault diagnosis approach for
hybrid systems is illustrated on a piece of the Barcelona sewer network.
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1. Introduction

Most real systems are on-line controlled and supervised by means of automatic computer-based con-
trol systems. But, they are subject to faults that can appear in the plant components, sensors and ac-
tuators. Many of these systems present a behavior that changes with the operating mode, where every
mode corresponds to a discrete-state of the system that could have a different behaviour (i.e., continu-
ous dynamic model). These systems are better described using hybrid models that integrate continuous
and discrete dynamics. There are several hybrid modelling approaches as, e.g. hybrid automaton mod-
els (Hofbaur and Williams 2004) or hybrid bond graph models (Narasimhan and Biswas 2007; Daigle
2008). Hybrid models can be used for the system monitoring, fault diagnosis and control tasks. Model-
based online diagnosis requires quick and robust reconfiguration processes when a mode change oc-
curs, as well as the ability to keep the nominal behavior of the system on track during transient states
(Bregon et al. 2010). On-line fault diagnosis allows reconfiguring the system after the fault appearance,
by activating some fault tolerance mechanisms, increasing the system resilience (i.e., the capability to
recover the system functions after a partial system damage has occurred)(Blanke et al. 2006).

Recently, in the literature, model based techniques have been proposed to diagnose hybrid systems
(Travé-Massuyès et al. 2008; Cocquempot et al. 2004; Daigle 2008). The continuous behavior in each
mode is described using differential equations. These techniques extend, in some way, existing model-
based approaches for non-hybrid systems being able to handle the continuous and discrete-event system
behaviors. In a hybrid system, the diagnoser should be parameterized as a function of the current mode.
Thus, the proposed diagnoser should be able to evaluate the behavior of the hybrid system online, and to
detect and isolate the mode and the faults. InTravé-Massuyès et al.(2008), the discrete-event behavior
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is modeled as a set of discrete modes, that can include nominal or faulty modes, and transitions be-
tween them are governed by events. Following the methodology proposed bySampath et al.(1995) and
Vento et al.(2011), a diagnoser combining the discrete and the continuous dynamics is built by means of
a behavior automaton. InCocquempot et al.(2004), a global vision on how to detect and isolate faults in
hybrid systems by generating the set of residuals is provided. However, a formal methodology to build a
hybrid diagnoser is not proposed, and measurement uncertainty is not accounted for.

The contribution of this paper is to present a fault diagnosis method for hybrid systems where the
current operation mode is recognized by generating a set of residuals designed by means of the parity
space approach and that taking into account model uncertainty in the residual evaluation. The robustness
is enhanced using a passive strategy based on generating an adaptive threshold that considers the effect
of parameter and additive error uncertainty (including noise and discretization errors) in the residual
evaluation using zonotopes, extending the results presented inBlesa et al.(2012); Vento et al.(2012) to
hybrid systems.

The structure of this paper is the following. In Section 2, the hybrid model is defined, which accounts
for parameter uncertainty. In Section 3, the fault detection technique for hybrid systems is introduced.
Fault isolation and mode recognition are described in Section 4 and Section 5, respectively. In Section 6,
an application case study based on the sewer network of the Barcelona city is used to assess the validity
of the proposed approach. Finally, Section 7 summarizes themain paper conclusions.

2. Problem Statement

2.1 Hybrid model

Let us consider that the model of the hybrid system to be diagnosed can be described by the following
hybrid automatonHA =< Q,X ,U ,Y,F ,G,H,Σ,T >, where:

• Q is a set of modes. Eachqi ∈ Q represents a nominal operation or a faulty mode of the system
i.e.Q = QN ∪ QF with |Q| = nq.

• q0 ∈ Q is the initial mode.
• X ⊆ ℜnx defines the discrete-time continuous state space.x(k) ∈ X is the discrete-time state

vector at samplek andx0 the initial state vector.
• U ∈ ℜnu defines the discrete-time continuous input space.u(k) ∈ U is the discrete-time continu-

ous input vector.
• Y ∈ ℜny defines the discrete-time continuous output space.y(k) ∈ Y is the discrete-time contin-

uous output vector.
• F is a set of faults. Every faulty modeqi ∈ QF corresponds to a faultfi ∈ F as well as a fault

eventσf ∈ ΣF .
• G defines a set of discrete-time state affine functions with parametric uncertainty for each nominal

mode1:

x(k + 1) = Ai(θ̃)x(k) + Bi(θ̃)u(k) + Fxi(θ̃)f(k) + Exi(θ̃) (1)

whereAi(θ̃) ∈ ℜnx×nx, Bi(θ̃) ∈ ℜnx×nu andExi(θ̃) ∈ ℜnx×1 are the state matrices in modei,
andf(k) ∈ ℜnf represents the system faults, withFxi(θ̃) ∈ ℜnx×nf being the fault distribution
matrix in modei. The model parameters(θ̃) are considered unknown but bounded by an interval
set, i.e., they belong to the setΘ = {θ ∈ ℜnθ|θ ≤ θ ≤ θ}. This set represents the uncertainty on
the exact knowledge of the real system parameters(θ̃).

• H defines a set of discrete-time output affine functions with parametric uncertainty for each nom-

1The effect of the fault is assumed unknown and modeled by the vectorf.
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inal mode1:

y(k) = Ci(θ̃)x(k) + Di(θ̃)u(k) + Fyi
(θ̃)f(k) + Eyi

(θ̃) + Niñ(k) (2)

whereCi(θ̃) ∈ ℜny×nx, Di(θ̃) ∈ ℜny×nu andEyi
(θ̃) ∈ ℜny×1 are the output matrices in modei

andFyi
(θ̃) ∈ ℜny×nf is the fault distribution matrix in modei. ñ(k) ∈ V is a vector of dimension

nñ × 1 corresponding to the additive error that includes the effects of noise in measurements and
discretisation errors. The additive error is unknown but itis assumed to be bounded by a setV.

• Σ = Σs ∪ Σc ∪ Σf is a set of events. Spontaneous mode switching events (Σs), input events (Σc)
and fault eventsΣf are considered. Each spontaneous eventσs ⊆ Σs defines when the state vector
intersects a jump surfaceSσs

= {x(k) ∈ X : sσs
(x(k)) = 0}, with sσs

being a linear switching
condition.Σ can be partitioned intoΣo ∪ Σuo whereΣo represents the set of observable events
andΣuo represents the set of unobservable events. It is assumed that Σf ⊆ Σuo, Σc ⊆ Σo andΣs

can be contained in both partitions.
• T : Q× Σ → Q defines a partial discrete state transition function.

Alternatively, the model given by (1)-(2) can be expressed in input-output form using the shiftp-
operator (or delay operator) assuming zero initial conditions as follows

y(k) = M i(p
−1, θ̃)u(k) +Υi(p

−1, θ̃)f(k) + Emi(p
−1, θ̃) +Ωi(p

−1)ñ(k) (3)

where:

M i(p
−1, θ̃) = Ci(θ̃)(pI − Ai(θ̃))

−1Bi(θ̃) + Di(θ̃)

Υi(p
−1, θ̃) = Ci(θ̃)(pI − Ai(θ̃))

−1Fxi(θ̃) + Fyi
(θ̃)

Emyi
(p−1, θ̃) = Eyi

(θ̃)
p

p− 1

Emxi(p
−1, θ̃) = Ci(θ̃)(pI − Ai(θ̃))

−1Exi(θ̃)
p

p− 1

Emi(p
−1, θ̃) = Emyi

(p−1, (θ̃)) + Emxi(p
−1, θ̃)

Ωi(p
−1) = Ni

Table1 summarizes when the transition function inHA is possibly defined. The symbol”−” indicates
that the transition between the corresponding two modes is not possible. Notice that transitions between
nominal modes are possible in any sense and transitions fromfaulty modes to nominal modes are not
possible.

Destination modes
QN QF

Source modes
QN Σs ∪ Σc ΣF

QF - -
Table 1. Transition function defined for theHA

Another aspect to consider is that the composition of component automata is done for operation modes
that belong toQN , whose dynamical behavior is described by equations (1)-(2). Faulty modes are added
a posteriori to the resulting hybrid automaton. Thus, the number of faulty modes associated with each
mode inQN equals to|F|. This model results from an adaptation ofLygeros et al.(2003); Bayoudh et al.
(2008) andVento et al.(2010).
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2.2 Overview of the proposed fault diagnosis approach

Model-based FDI relies on comparing the estimated behaviorof the system obtained from a non-
faulty model with the real measured behavior available through sensor measurements (Cocquempot et al.
2004). The FDI algorithm for hybrid systems takes into account which is the current operation modei
of the hybrid system to adapt the model used to generate the predicted output. Thus, a set of residu-
als adapted to the mode dynamic behavior can be generated andevaluated as in the case of non-hybrid
systems. The set of residuals for each mode including the uncertainty in parameters and noise is given
by:

r i(k,θ) = y(k)− (ŷi(k,θ) + Nin(k)) (4)

wherey(k) is the real behavior and̂yi(k,θ) is estimated behavior considering parameter uncertainty
θ ∈

[
θ,θ

]
in modei. Additive noisen(k) bounded by the setV (i.e.n(k) ∈ V) represents the uncertainty

about the exact knowledge of the real noiseñ. The predicted output can be obtained using observers or
parity equations (Chow. and Willsky 1984; Blanke et al. 2006; Meseguer et al. 2010a).

The architecture to detect and isolate faults in hybrid systems is provided in Fig.1. Two separate
stages are considered for hybrid system diagnosis: offline and online processes. In the offline process,
the hybrid automaton model is built through the component parallel composition and the generation of
a set of equations which depend on the operation mode. Residuals for each mode are generated and an
exploration of feasible hybrid automaton traces is carriedout to study mode discernibility. Therefore,
the discernibility study and observable events of the system allow to build a behavior automaton (B)
(Vento et al. 2011). This information is used to predict which mode changes canbe detected and isolated.
Hence, a diagnoser is built fromB applying the methodology developed bySampath et al.(1995) for
discrete-event systems diagnosis.
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Figure 1. Conceptual block diagram for the hybrid system diagnosis methodology

On the other hand, in the online process, the tasks are carried out by the three blocks highlighted in
blue in Fig.1. Mode recognitionand fault diagnosisblocks deal with possible changes in the system
operation mode based on consistency indicators and observable event occurrences. Both blocks cooper-
ate together. Thediagnoser decisionblock gives a final diagnostic according to information provided by
mode recognitionandfault diagnosisblocks that takes into account the effect of model parameters and
noise uncertainties, in residuals bounding their effect byzonotopes.
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The current diagnoser state(qD) contains information on all modes the system is possibly operating
in. If more than one mode is contained inqD, those modes are non discernible. A mode change in
HA implies a nominal or a faulty mode change. In the online diagnosis, a set of events are identified
describing a feasible trajectory of the physical system.

The discernibility property allows to predict wether a modechange can be detected and identified
when the operation mode is described by a dynamic model (Bayoudh et al. 2008; Meseguer et al. 2010b;
Cocquempot et al. 2004). In the case of faults, discernibility properties are related todetectabilityand
isolability based on the fault signature matrix (Meseguer et al. 2010b) or based in the non-binarized
sensitivity matrix (Blesa et al. 2012).

In online diagnosis, the following assumptions are made:

Assumption 1. Two modes changes do not occur at the same time.

Assumption1 considers the fact that two events cannot be detected at the same time, since there would
be uncertainty in the dynamic model to be used in the residualcomputation.

Assumption 2. The residual dynamics have time to stabilize between two consecutive mode switchings.

Assumption2 implies that transitions between modes should be slower than the residual dynamics
generator. This concerns the dwell time requirement, the time elapsed to reach the steady state in a
stable way needed by the continuous dynamics of the operation modes before other transitions occur.
Otherwise, the transition might not be correctly detected.

Assumption 3. After a mode change occurrence, all the residuals sensitiveto this change are activated
at some time and persist during the whole mode change isolation process.

Assumption3 concerns the fact that the logic to detect and isolate mode changes is based on the steady
state response of the set of residuals, assuming that the residuals sensitive to the mode change remain
activated.

Assumption 4. No mode change will occur after a fault has occurred.

According to Assumption4, once a fault has been detected, the online diagnosis process stops since
it is assumed that the system does not further evolve. Whenever a fault occurs the set of residuals and
models must be adapted to appropriately perform diagnosis.The considered faults affect the system
parameters without changing the system configuration. Thiskind of faults leads to a loss of information,
hence to compensate this the system model must be recalculated.

3. Fault detection

Consider the linear system represented by the state space model in discrete-time (1)-(2), the predicted
output, using the parity space approach (Blanke et al. 2006), in matrix form is represented by:

Ȳ(k) = Oi(θ)x(k − ρ) + Tui(θ)Ū(k) + Tf i
(θ)F̄(k) + TEi(θ) + TNiN̄(k) (5)

whereȲ(k) =
[

y(k − ρ) y(k − ρ+ 1) · · · y(k)
]T

and Ū(k) =
[
u(k − ρ) u(k − ρ+ 1) · · · u(k)

]T

andF̄(k) =
[
f(k − ρ) f(k − ρ+ 1) · · · f(k)

]T
, N̄(k) =

[
n(k − ρ) n(k − ρ+ 1) · · · n(k)

]T
andρ is

the parity space order. The parity space matrices are given by:
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Tui(θ) =




Di(θ) · · · 0 0
Ci(θ)Bi(θ) · · · 0 0

...
. . .

...
Ci(θ)(Ai(θ))

ρ−1Bi(θ) · · · Di(θ)


 TNi =




Ni · · · 0 0
0 · · · 0 0
...

. . .
...

0 · · · Ni




TEi(θ) =




Eyi(θ)
Ci(θ)Exi(θ) + Eyi(θ)

...
Ci(θ)(Ai(θ))

ρ−1Exi(θ) + · · ·+ Eyi(θ)


 Oi(θ) =




Ci(θ)
Ci(θ)Ai(θ)

...
Ci(θ)(Ai(θ))

ρ




Tf i
(θ) =




Fyi
(θ) · · · 0 0

Ci(θ)Fxi(θ) · · · 0 0
...

. . .
...

Ci(θ)(Ai(θ))
ρ−1Fxi(θ) · · · Fyi

(θ)




If there exists value ofρ such that

rank
[

Oi(θ) Tf i
(θ)
]
< (ρ+ 1)ny (6)

the left nullspace of
[

Oi(θ) Tf i
(θ)
]

is not empty. The dimension of this subspace,nr, is given as
nr = (ρ+1)ny−rank

[
Oi(θ) Tf i

(θ)
]
. Condition (6) should be satisfied for allθ ∈ Θ. In Kołodziejczak

(1999), a procedure to check the satisfaction of this condition isgiven based on testing a finite number
of θ values.

Let Wi(θ) be anr × (ρ + 1)ny matrix such thatWi(θ)Oi(θ) = 0. Multiplying the left and right
terms of (5) by Wi(θ) in such a way that eliminates the dependence ofx(k), the analytical redundancy
relations are expressed by the following equalities:

r i(k,θ) = Wi(θ)Ȳ(k)− Wi(θ)Tui(θ)Ū(k)− Wi(θ)TEi(θ)− Wi(θ)TNiN̄(k) = Wi(θ)Tf i
(θ)F̄(k)

(7)
Because of the inclusion of uncertain parameters in the continuous dynamics of the hybrid sys-

tem model, the determination ofWi(θ) is not a trivial task. One possible approach is proposed in
Ploix and Adrot(2006). Here, a different approach, based on the equivalence thatthere exists between
the parity space approach and input-output models (Ding et al. 2008), is used. Assume that the system
model input-output form at a given operating point where thejth output respect to thelth input in mode
i is described the following transfer function:

yj(p,θ) =
bρ,i(θ)p

ρ + bρ−1,i(θ)p
ρ−1 + · · ·+ b0,i(θ)

pρ + aρ−1,i(θ)pρ−1 + · · ·+ a0,i(θ)
ul(p) (8)

A way to construct the parity space residuals is based on defining the transformation vector as follows

Wi(θ) =
[
a0,i(θ) · · · aρ−1,i(θ) 1

]
(9)

This definition can be justified according to the Cayley-Hamilton theorem. Following this theorem, it
can be proved thatWi(θ)Oi(θ) = 0 is satisfied by considering each output of Equation (8) indepen-
dently:
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Ai(θ)
ρ + aρ−1,i(θ)Ai(θ)

ρ−1 + · · · + a0,i(θ)Ai(θ) = 0

⇒
[
a0,i(θ) · · · aρ−1,i(θ) 1

]




ci(θ)
ci(θ)Ai(θ)

...
ci(θ)Ai(θ)

ρ


 = 0

whereAi(θ), ci(θ) denotes the state space matrices of the transfer function given by Equation (8). More-
over,

Wi(θ)Tui(θ) =
[
b0,i(θ) · · · bρ−1,i(θ) bρ,i(θ)

]

Wi(θ)TNi =
[
a0,i(θ)Ni · · · aρ−1,i(θ)Ni Ni

]

and

Wi(θ)TEi(θ) =
[
e0,i(θ) · · · eρ−1,i(θ) eρ,i(θ)

]

Under this approach, the number of residuals is equal to the number of system outputs for a given
mode.

Alternatively, the residuals can be expressed using the input-output form according toMeseguer et al.
(2010a) as follows:

r i(k,θ) = (I − Hi(p
−1,θ))(y(k)− Nin(k)) − Gi(p

−1,θ)u(k)− Emi(p
−1,θ) (10)

whereGi(p
−1,θ), Hi(p

−1,θ) andEmi(p
−1,θ) can be obtained from the input-output model in predictor

form. Moreover, with the previous selection ofWi(θ), an equivalence between input/ouput and parity
space predictors can be established through the following relations:

Hi(p
−1,θ)(y(k)− Nin(k)) = Wi(θ)




Ip−ρ

...
I


 (y(k)− Nin(k))

Gi(p
−1,θ)u(k) = Wi(θ)Tui(θ)u(k)

Emi(p
−1,θ) = Wi(θ)TEi(θ)

3.1 Parity space in regressor form

From (7), a model in regressor form for every output can be obtained

yj(k) = ψj
i (k)ξi + eji (k) j = 1 · · · ny (11)

7
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where

• ψj
i (k) is the regressor vector of dimension1× nξ,i which can contain any function of inputsu(k)

and outputsyj(k).
• ξi ∈ Ξi is the parameter vector of dimensionnξ,i × 1
• Ξi is the set that bounds the parameterξi values.
• eji (k) is the additive error bounded by a constant|eji (k)| ≤ εji .

Remark3.1. The dependence of parameter vectorξi and additive erroreji (k) in Eq. (11) with respect to
the parameter vectorθ and additive errornj(k) in Eq. (2) can be analytically obtained from Eq. (7).

Remark3.2. In the same way, setΞi and boundsεj can be related to setsΘ andV.

Theny individual models (11) in modei can be expressed in a compact form as aMultiple Input and
Multiple Output(MIMO) model

y(k) = Ψi(k)ξi + ei(k) (12)

where

• Ψi(k) is the regressor matrix of dimensionny × nξ,i that contains the regressor vectors.
• ei(k) is a vector of dimensionny × 1 that contains the additive errors (including noise).

3.2 Residual evaluation

Considering that the parameter vectorξi is bounded by an interval set.i.e

Ξi =
{
ξi ∈ ℜnξ,i |ξj

i
≤ ξji ≤ ξ̄ji j = 1, ..., nξ,i

}
(13)

that can be parametrized as a particular case of a zonotope (Blesa et al. 2011) as follows

Ξi = ξ0i ⊕ K iB
nξ,i =

{
ξ0i + K iz : z ∈ Bnξ,i

}
(14)

with centreξ0i and matrix uncertainty shapeK i equal to anξ,i × nξ,i diagonal matrix:

ξ0i =

(
ξ1
i
+ ξ̄1i
2

,
ξ2
i
+ ξ̄2i
2

, · · · ,
ξnξ,i

i
+ ξ̄

nξ,i

i

2

)
(15)

K i = diag

(
−ξ1

i
+ ξ̄1i
2

,
−ξ2

i
+ ξ̄2i
2

, · · · ,
−ξnξ,i

i
+ ξ̄

nξ,i

i

2

)
(16)

and ⊕ denotes the Minkowski sum,Bnξ,i ∈ ℜnξ,i×1 is a unitary box composed bynξ,i unitary
(B = [−1, 1]) interval vectors.

Considering model (12) residual (7) can be computed as

r i(k) = y(k) −Ψi(k)ξi − e(k) (17)

8
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and taking into account uncertainty in parameters and in additive error, the residual can be bounded by a
zonotope (Blesa et al. 2012) defined by

Γi(k) =
(
y(k)−Ψi(k)ξ

0
i

)
⊕
(
Ψi(k)K i Πi

)
B

nξ,i+ny (18)

with

Πi = diag
(
ε1i , · · · , ε

ny

i

)
(19)

Then, an output measurement vectory(k) will be consistent with the model (12) if

0 ∈ Γi(k) (20)

where0 is a vector ofny zeros. Test (20) can be rewritten as

r0i (k) ∈ Γ̄i(k) (21)

with r 0i (k) the nominal residual

r0i (k) = y(k)−Ψi(k)ξ
0
i (22)

andΓ̄i(k) the zonope with the same shape asΓi(k) but centered in zero

Γ̄i(k) = 0⊕
(
Ψi(k)K i Πi

)
B

nξ,i+ny (23)

Test (21) involves checking whether or not the nominal residualr0i (k) (point) belongs to the zonotope
Γ̄i(k) (set) and can be implemented using Algorithm (1) that consists in determining the feasibility
of a linear constraint satisfaction problem that can be efficiently solved using linear programming
(seeBlesa et al.(2012)).

Algorithm 1 IsConsistent(r0i (k), Γ̄i(k))

Require: Ψi(k),K i,Πi

1: if ∃z(k) ∈ B
nξ,i and∃eji (k) ∈ [−εji , ε

j
i ],∀j := 1, ..., ny such thatr0,ji := Ψj

i (k)K iz(k) +

eji (k),∀j := 1, ..., ny then
2: return true
3: else
4: return false
5: end if

4. Fault isolation

The isolation module is responsible of identifying which isthe fault that is present in the system. Faults
are isolated by checking the observed fault signature with the fault signatures stored in the theoretical
fault signature matrix.

9
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For faults, the residual fault sensitivity can be determined using its internal form. In the case of the
parity space approach, this form is given by (7) as follows:

r i(k) = Wi(θ)Tf i
(θ)F̄(k) (24)

According toMeseguer et al.(2010a), the residual fault sensitivity is given by

Λi(p
−1) =

∂r i(k)
∂f

(25)

Thus, the residual fault sensitivity under the parity spaceapproach is given by:

Λi(p
−1,θ) = Wi(θ)Tf i

(θ)




Inf
p−ρ

...
Inf


 (26)

Remark4.1. A set of nf faults would be isolable by means of the sensitivity matrixΛi(p
−1,θ) if

this matrix satisfies thatcolumn rank(Λi(p
−1,θ)) = nf for all θ ∈ Θ. As previously indicated, in

Kołodziejczak(1999), a procedure to check the satisfaction of this condition for all θ is given based on
testing a finite number ofθ values.

DefiningΛ0
i as

Λ
0
i = Λi(p

−1,θ0) (27)

whereθ0 is the nominal parameter and considering single faults, thefault isolation procedure can be
implemented by solving the following algorithm fork ≥ kf as proposed inBlesa et al.(2012)

Algorithm 2 fι=Fault_Isolation(r0i (k),Λ
0
i )

1: for all j := 1, ..., nf do

2:

(
Jopt
i,j (k), f

opt
i,j (k)

)
:= min

f
Ji,j(f, k)

subject toJi,j(f, k) :=
k∑

h:=max{kfault,k−ℓ+1}

∥∥∥ri
(
h, θ0

)
− λ0i,jf

∥∥∥
2

whereλ0i,j := ∂ri/∂fj is thejth column ofΛ0
i andℓ is the maximum time horizon

3: end for
4: fι := arg min

j∈{1,··· ,nf}

{
Jopt
i,j (k)

}

5: return fι

Remark4.2. Algorithm 2 involves solvingnf multi-output least square error optimization problems in
time horizonh for everynf possible single faults. The most probable faultfι is determined as the fault
that gives the minimum function costJi,j(f, k) after solving the set of least square error problems for
the set of considered single faults.

5. Mode recognition

The mode recognition task is implemented through the mode change detection and recognition modules
(see Fig,1).

10
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5.0.1 Mode change detection

The aim of this module is to detect when a mode transition occurs in the hybrid system. The mode
change detection from modei to modej is inferred when an inconsistency in the set of residuals of the
modei is detected while at the same time the set of residuals corresponding to modej are proved to be
consistent.

Definition5.1. Two modesqi andqj are said to be weakly non-discernible if and only if residuals r0i (k)
(generated considering the modei model) andr 0j(k) (generated considering the modej model) both
belonging to their zonotopic sets (i.e.,r0i (k) ∈ Γ̄i(k), r0j (k) ∈ Γ̄j(k) holds) when they are computed
using signals(y(k),u(k)) corresponding to modeqi or modeqj.

The notion of non-discernability was first introduced byCocquempot et al.(2004), where necessary
and sufficient conditions were provided for the parity spaceapproach in the state space representation.

In the case that residuals are generated using the parity space approach, the discernibility function is
equivalent to evaluate the following condition (deduced byCocquempot et al.(2004)) without parametric
uncertainty:

rank[Oi] 6= rank[Oj ] 6= rank
[
Oi Oj ∆ij

]
(28)

where∆ij = Tui − Tuj .
This condition can be extended considering parametric uncertainty and matricesExi and Eyi

appearing in the continuous dynamics of the hybrid model, such that proceeding with a similar analysis
the condition of non discernibility can be rewritten as follows

rank[Oi(θ)] = rank[Oj(θ)] = rank
[

Oi(θ) Oj(θ) ∆ij(θ) ∆Eij
(θ)
]

(29)

where∆ij(θ) = Tui(θ)− Tuj(θ) and∆Eij
(θ) = TEi(θ)− TEj(θ).

Condition (29) should be satisfied for allθ ∈ Θ. As previously indicated regarding Condition (6), in
Kołodziejczak(1999), a procedure to check the satisfaction of this condition for all θ is given based on
testing a finite number ofθ values.

Thus, the following property can be defined:

Definition 5.2. A mode change from modeqi to modeqj is detectable at time instantk if and only
if the nominal residual of modei fulfills r 0i (k) /∈ Γ̄i(k) and the nominal residual of modej fulfills
r0j (k) ∈ Γ̄j(k)

This definition implies that a mode change from modei to modej is detectable if modei and modej
are discernable.

5.0.2 Mode change isolation

Once a mode transition has been detected, the new mode shouldbe identified. To identify it, the nominal
residual of each possible successor mode are checked to verify which of them belong to their zonotopic
set using Algorithm1.

Definition5.3. Two mode changes,i→ j andi→ l are isolable if the following conditions are satisfied
at any time instantk:

(1) Both mode changes are detectable
(2) In the case of a mode changei → j the residuals satisfy:r 0i (k) /∈ Γ̄i(k), r 0j(k) ∈ Γ̄j(k) and

r 0l (k) /∈ Γ̄l(k)

11
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(3) In the case of a mode changei → l the residuals satisfy:r0i (k) /∈ Γ̄i(k), r0j (k) /∈ Γ̄j(k) and
r 0l (k) ∈ Γ̄l(k).

6. Hybrid diagnoser

The diagnoser automaton is a finite state machineD =< QD,ΣD, TD, qD0
>, where:

• qD0
= {q0, ∅} is the initial state of the diagnoser, which is assumed to correspond to a nominal

system mode.
• QD is the set of the diagnoser states. An elementqD ∈ QD is a set of the formqD =

{(q1, l1), (q2, l2), · · · (qn, ln)}, whereqi ∈ Q andli ∈ ∆ where∆ defines the power set of fault
labels with∆F = {f1, · · · , fγ}, γ is the total number of faults in the system andγ ∈ Z+. In ∆F ,
∅ represents the nominal behavior,

• ΣD = Σo is the set of all observable events.
• TD : QD × Σo 7→ QD is a partial transition function of the diagnoser.

The hybrid diagnoser is offline built following the methodology explained inVento et al.(2011). The
diagnoser performs diagnostics using online observationsof the system behavior; it is also used to state
and verify offline the necessary and sufficient conditions for diagnosability (Sampath et al. 1995). Faults
are handled by discrete-event systems as unobservable events in the system model that are detected
through the identified observable events. The diagnoser is represented by a finite state machine whose
current stateqDcurrent_state

contains the set of feasible modes the system is possibly operating in. The
initial state is assumed to be known.

On the other hand, Algorithm3 briefly describes the residual-based reasoning carried outby the di-
agnoser to identify an event occurrence. The algorithm checks for the current diagnoser state whether
r0current_state(k) ∈ Γ̄current_state(k) holds or not. In case of a diagnoser state change, by means of
signature events, the set of residuals of some successor diagnoser state will fulfillr 0succ_state(k) ∈
Γ̄succ_state(k). In the case of a fault, the set of residuals in the current diagnoser state are compared
with the sensitivity function as explained in Section4 to isolate the fault. State successors are denoted
by Succs(qDcurrent_state

) = {qDsucc_state
∈ QD : ∃σ ∈ ΣD : TD(qDcurrent_state

, σ) = qDsucc_state
}. When

observable events occur they are identified instantaneously (see line 8 in Algorithm3).

7. Results

7.1 Case Study Description

The application case study is based on a part of the Barcelonasewer network. In general, sewers are
pipelines that collect and transport wastewater from city buildings and rain drains to treatment facilities
before being released to the sea. Sewers are generally gravity operated, though pumps may be used if
necessary (Ocampo and Puig 2009).

The city of Barcelona has a combined sewer system (waste and rainwater go into the same sewer) of
approximately 1500 Km. Additionally, the yearly rainfall is not very high (600 mm/year), but it includes
storms typical of the Mediterranean climate that cause a lotof flooding problems and combined sewer
overflows to the sea that cause pollution. Such a complex system is conducted through a control cen-
ter in CLABSA (Barcelona Sewer Company) using a remote control system (in operation since 1994)
that includes sensors, regulators, remote stations and communications. Nowadays, the urban drainage
system contains 21 pumping stations, 36 gates, 10 valves and10 retention tanks which are regulated in
order to prevent flooding and combined sewer overflow to the environment. The remote control system
is equipped with 56 remote stations including 22 rain-gauges and 136 water-level sensors which provide
real-time information about rainfall and water level into the sewer system. All this information is cen-
tralized at the CLABSA Control Center through a supervisorycontrol and data acquisition (SCADA)
system.

12
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Algorithm 3 Hybrid_Diagnoser
1: current_state := 0
2: loop
3: k(qDcurrent_state

) := {σ ∈ ΣD : TD(qDcurrent_state
, σ) is defined.}

4: while IsConsistent(r0current_state(k), Γ̄current_state(k)) and σo ∈ k(qDcurrent_state
) does not occur

do
5: Evaluater0current_state(k) according to (7)
6: end while
7: next_state := current_state
8: if σo occuredthen
9: next_state is such thatqDnext_state

:= TD(qDcurrent_state
, σo)

10: print Transition from diagnoser state qDcurrent_state
to qDnext_state

11: current_state := next_state
12: else
13: for all qDsucc_state

∈ Succs(qDcurrent_state
) do

14: if IsConsistent(r0succ_state(k), Γ̄succ_state(k)) then
15: print Transition from diagnoser state qDcurrent_state

to qDsucc_state

16: current_state := succ_state
17: break
18: end if
19: end for
20: if next_state = current_state then
21: fι := Fault_Isolation(r0current_state(k),Λ

0
current_state);

22: print Fault fι has occurred
23: return
24: end if
25: end if
26: end loop

There are two wastewater treatment plants (labeled withWWTP1 andWWTP2 in Fig. 2). A
wastewater treatment plant consists in plants where, through physicochemical and biological processes,
organic matter, bacteria, viruses and solids are removed from wastewaters before they are discharged in
rivers, lakes and seas. Nowadays the inclusion of such elements within the sewer networks is of great
significance in order to preserve the ecosystem and maintainthe environmental balance inside the water
cycle.

Fig.2 shows the model of the considered part of the Barcelona network using the virtual tank modeling
approach (Ocampo and Puig 2009). In order to illustrate the methodology, let us consider only tanksT1,
T2 andT3, placed inside the red square in Fig.2.

The elements that appear in the considered part in Fig.2 are: two virtual tanks (T0, andT1), one real
tank (T2), three limnimeters to measure the sewer levels (L39, L41 andL47), two rain gauges to measure
the input rain intensity in the virtual tanks (P19 andP16), and two redirection gates placed downstream
T0 andT1, which allow to change the flow direction. In this particularcase study, fixed position gates
have been assumed.

The dynamic model of the virtual tank is given by the following discrete-time equation representing
the water volume:

Ti : vi(k + 1) = vi(k) + ∆t(̺ini (k)− ̺outi (k)− ̺desi (k))

with i ∈ {0, 1}. The overflow is given by:

13



Monday 11th January, 2016 International Journal of Systems Science paper_HYSETMB

T1

T2

T3

T4

T5

T6

T7

T9

T10

T12

R1

R2

R3

R4

G1

G2

CV3

G4

L39

L41

L16

L47

L80

L9

L11

L8

L3

L27

L7

L53

L56

P19

P16

P20

P16

P16

P20

P14

P20

P20

WEIR OVERFLOW DEVICE

RAINFALL

LEVEL GAUGE

REDIRECTION GATE

RETENTION GATE

WWTP1

WWTP2

Llobregat
treatment plant

Besos
treatment plant

MEDITERRANEAN SEA

VIRTUAL TANK

REAL TANK

̺outG1a

̺outG1b

̺outG2a

̺outG2b

̺outCV3

̺outG4a

̺outG4b

̺outR1a

̺outR1b

̺outR3b

̺outR2b

Figure 2. Barcelona test catchment

̺desi (k) =

{
̺ini (k) − ̺outi (k) if vi(k) ≥ vi
0 otherwise

(30)

The input flow associated with a virtual tank is given by:

̺ini = ̺pluvi (k) +

H∑

h=1

̺outhi (k) +

L∑

l=1

̺desli (k) (31)

where ̺pluvi (k) = Siφiui(k) is associated with the rain intensity,̺outhi (k) corresponds to all the
output flows of the other tanks pouring into tank Ti and ̺desli (k) corresponds to all overflows
pouring into the tank Ti and h, l ∈ Z+.

The output flow for every tank is given by:

̺outi (k) =

{
βivi(k) if ̺ini (k) < ̺outi (k)
βivi if vi(k) ≥ vi

(32)

The relation between level and volume and the measurements provided by the sensors are de-
scribed by the equations below:

Li(k) =
βi

Mi
vi(k) (33)
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The parameters of the sewer network are described in Table2.

Parameter description units (MKS)
βi Volume to flow conversion factor of external tankTi l

s

Mi Conversion factor in the output valve inTi -
Si Area of virtual tankTi m2

γi Absorption factor of tankTi -
vi Maximum volume in tankTi m3

Table 2. Virtual tank parameters

Hybrid phenomena like overflows in sewers and tanks (blue dash lines illustrate this overflow situation
in Fig. 2, in virtual tanks) can appear and change their behavior. A hybrid model is used in order to
describe such behavior and to design a hybrid diagnoser to detect and isolate faults. The Diagnoser
reasons according to Algorithm3, and it is built based on the methodology presented inVento et al.
(2011).

7.2 Hybrid modeling

The hybrid automataHA describing the sewer network is illustrated in Fig.3. There are 24 operation
modes which 4 of them are nominal operation modes (i.e.,|QN | = 4) corresponding to the overflow or
no overflow conditions of the virtual tanks. In the figure suchconditions are represented byO andWO,
respectively. For example, mode 1 means that no tank is in overflow situation, mode 2 means that only
T0 is in overflow, mode 3 means onlyT1 is in overflow and mode 4 both in overflow. The initial mode
corresponds toq0 = q1. Transitions are bound to spontaneous mode switching events (e.g., no input
events are considered) which are represented in the figure asinequalities. Such events are unobservable
since state variables (e.g., tank volumes) are not measured. The other 20 modes correspond to faulty
modes (i.e.,|QF | = |QN | · |F| = 20) representing additive faults in sensors.
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Figure 3. Hybrid automaton for the sewer network

For each mode, a different dynamical model according to hybrid model (1)-(2) is defined.
The continuous dynamical model for each modeqi ∈ QN ∪ QFs

is provided in Table3.
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qi Ai Bi Exi

1 T1, T2 : WO



1−∆tβ1 0 0
∆tβ1 1−∆tβ2 0
0 ∆tβ2 1−∆tβ3






∆tS1ϕ19 0

0 ∆tS2ϕ16

0 0






0
0
0




2 T1 : O,T2 : WO



0 0 0
0 1−∆tβ2 0
0 ∆tβ2 1−∆tβ3






0 0
0 ∆tS2ϕ16

0 0







v1
∆tβ1v1

0




3 T1 :WO,T2 : O



1−∆tβ1 0 0

0 0 0
0 0 1−∆tβ3






∆tS1ϕ19

0 0
0 0







0
v2

∆tβ2v2




4 T1, T2 : O



0 0 0
0 0 0
0 0 ∆tβ3






0 0
0 0
0 0







v1
v2

∆tβ2v2




Table 3. State space matrices for each modeqi ∈ QN where the tank volumes are the state variables

The output function is given by equation(34)



y1(k)
y2(k)
y3(k)


 =




β1

M39

0 0

0 β2

M41

0

0 0 β3

M47






x1(k)
x2(k)
x3(k)


 (34)

with the same matrix Ci for all modes and Di = 0.
These continuous dynamical models have been used for residual generation. For instance, the

predictor used for residual generation corresponding to all modes are detailed in Table4.

qi Hi(θ) Gi(θ) Emi(θ) parameter uncertainty

1



θ1 0 0
θ2 θ3 0
0 θ4 θ5






θ6 0
0 θ7
0 0






0
0
0




θ1 ∈ [0.7240, 0.8500] θ5 ∈ [0.8648, 1.0152]
θ2 ∈ [0.1522, 0.1787] θ6 ∈

[
1.0388 · 104, 1.2195 · 104

]

θ3 ∈ [0.7599, 0.8921] θ7 ∈
[
0.8648 · 104, 4.8724 · 104

]

θ4 ∈ [0.0234, 0.0381]

2



0 0 0
0 θ1 0
0 θ2 θ3






0 0
0 θ4
0 0






θ5
θ6
0




θ1 ∈ [0.7599, 0.8921] θ4 ∈
[
4.1506 · 104, 4.1506 · 104

]

θ2 ∈ [0.0324, 0.0381] θ5 ∈ [1.3848, 1.6257]
θ3 ∈ [0.8648, 1.0152] θ6 ∈ [0.7390, 0.8676]

3



θ1 0 0
0 0 0
0 0 θ2






θ3 0
0 0
0 0







0
θ4
θ5




θ1 ∈ [0.7240, 0.8500] θ4 ∈ [3.4697, 4.0731]
θ2 ∈ [0.8648, 1.0152] θ5 ∈ [0.1222, 0.1435]

θ3 ∈
[
1.0388 · 104, 1.2195 · 104

]

4



0 0 0
0 0 0
0 0 θ1






0 0
0 0
0 0






θ2
θ3
θ4


 θ1 ∈ [0.8648, 1.0152] θ3 ∈ [3.4697, 4.0731]

θ2 ∈ [1.3848, 1.6257] θ4 ∈ [0.1222, 0.1435]

Table 4. Residuals generation forqi ∈ QN ∪ QF

The uncertain parameters have been estimated using the algorithm proposed byPloix and Adrot(2006)
leading to the intervals shown in the last column. Since a different model corresponds to in each mode,
the number of parameters also changes for each mode.

The residual expression for the sewer network can be expressed using the relation between parity space
and predictor as follows:

r i(k) =
[
Hi(θ) I

]
(Ȳ(k)− NiN̄(k)) −

[
Gi(θ) 0

]
Ū(k)− Emi(θ)
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where the value ofWi(θ) is given by:

Wi(θ) =
[
Hi(θ) I

]

The additive error is bounded byeji = 0.1. The fault setF includes faults in the output sensors (fL39,
fL41 andfL47) as well as faults in the input sensors (fP19 andfP16). Applying (26), the theoretical fault
signature matrix is obtained selectingFyi =

[
0 I
]

andFxi =
[
−Bi(θ) 0

]
to represent output and input

sensor faults respectively. The residual fault sensitivity matrices for each mode is given in Table5.

Λ
0
i = Λi(p

−1,θ0)[
fP19

fP16
fL39

fL41
fL47

]


−1.13·104

p
0 1.0− 0.787

p
0 0

0 −4.51·104

p
−0.165

p
1.0− 0.826

p
0

0 0 0 −0.0352
p

1.0− 0.94
p






0 0 1.0 0 0

0 −4.51·104

p
0 1.0 − 0.826

p
0

0 0 0 −0.0352
p

1.0 − 0.94
p






−1.13·104

p
0 1.0 − 0.787

p
0 0

0 0 0 1.0 0
0 0 0 0 1.0 − 0.94

p






0 0 1.0 0 0
0 0 0 1.0 0
0 0 0 0 1.0− 0.94

p




Table 5. Sensitivity matrix for each modeqi

These matrixes comprise five columns. The first and second ones correspond to input sensor faults,
and the last three ones correspond to the output sensor faults.Every column of the FSi is associated to
a faulty mode in Fig. 3. For every nominal mode there are 4 faulty modes labeled from9-24.

The setΣs = {σuo1, σuo2, σuo3, σuo4} represents the unobservable spontaneous events. Eventσuo1
corresponds to the volume in tankT1 reaching its maximum, i.e.v1 ≥ v1. Eventσuo2 corresponds to
the case in which the input flow is less than the output flow fromT1, i.e.,qin1 < qout1 . The other events
are related to the other virtual tanks. The setΣFns

= {σf19, σf16, σf39, σf41, σf41} comprises the fault
events related to faulty modes (in this case they correspondto sensor faults).

7.3 Simulation scenarios

The simulator of the sewer network implemented byOcampo and Puig(2009) in Matlab, allows us to
validate the methodology. Data provided by rain gauges corresponds to real episodes of rain occurred
in Barcelona registered by CLABSA. The data provided by limnimeters is generated by the simulator
through the rain gauge data.

A first simulation scenario (named as Scenario I in the following) illustrates the system state tracking
and fault diagnosis. Fig.4 shows the rain gauge measurements for the considered rain episode and the
measurements provided by the limnimeters with a sample timeof ∆t = 300s. Therefore, the mode
sequence can be deduced from system measurements.

Fig. 5 shows in solid line the simulated system state evolution forScenario I, whereas the dash line is
the state sequence estimated by the diagnoser.

The state sequence isq1 → q3 → q1 → q5. Initially, neither virtual tank is in overflow. Next,T1 is in
overflow whereas laterT1 leaves the overflow condition. Finally, a fault in sensorP19 is simulated. Fig.
6 illustrates the residual evolution (nominal residual componentsr 0i (k) (in green in the figure), bound
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Figure 4. Example of a rain episode occurred in Barcelona
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Figure 5. State diagnoser sequence vs mode sequence for Scenario I

projections ofΓ̄i(k) (in blue and red in the figure) andthe incoming event occurrence correspond to
the black vertical lines. The associated signature-eventsare detailed in Table6) for the considered
scenario. Notice that, for instance, when a transition frommodeq1 → q3 occurs thenr 01(k) /∈ Γ̄1(k)
andr 03(k) ∈ Γ̄3(k) holds. Notice that all modes are discernable according to the criterion explained in
Section5. Then, the fault is detected comparing the observed signature with the theoretical signature
according to Section4.

Consider the same scenario, but the set of residuals are binarized using fixed thresholdsτi correspond-
ing to the highest zonotopes bounds in order to avoid false alarms (see Fig.7). In Fig8, the corresponding
diagnoser state sequence is shown. Notice that when using a fixed threshold, some mode changes may
be detected later by the diagnoser (an extra delay appears inthe mode detection process). Moreover, in
the case of the fault in sensorP19, the residual sensitive to the fault is activated later (after three sam-
ples) and oscillates inside and outside its threshold bounds. This complicates the detection process by
the diagnoser.

Consider another scenario (named as Scenario II), where an additive fault in sensorL39 occurs at time
3600s. Consequently the residuals of modeq3 are triggered and the diagnoser stops. Notice that in Fig.
9, when the fault occursr03(k) /∈ Γ̄3(k) holds. Then, Algorithm2 is activated and determines that the
most probable fault is a fault in sensorL39. In the case of using fixed thresholds, the results are similar
sice the zonotopēΓ3(k) bounds at this time instant are close to the maximum limit (threshold).

Fig. 10 shows in solid line the simulated system state evolution forScenario II, whereas the dash line
is the state sequence estimated by the diagnoser.
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Figure 6. Mode change and fault detection using interval models for Scenario I
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Figure 7. Fault detection using a fixed threshold for Scenario I

7.4 Analysis

The diagnoser report is provided in Table6 for both scenarios. Transitionq1 → q3 occurs at3000s and it
is reported at3300s andq1 → q3 occurs at4200s is reported at5100s . For Scenario II, an additive fault
in sensorL39 appears at time3600s and it is detected at3900s when the system is in modeq3. A delay
is present since the residuals have a first order dynamic behavior and uncertainty is taken into account.

After detecting a fault, continuous dynamics must be recomputed to take into account the fault effect.
Faults affect the continuous model used to generated the setof residuals. The loss of information should
be compensated otherwise diagnosis would be erroneous (seeFig. 10). This is not a trivial task. It could
be considered whenever a new system model have a reasonable online execution time to update it.
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Figure 8. State diagnoser sequence vs mode sequence for Scenario I using a fixed threshold
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Figure 9. Fault detection using interval models for Scenario II

The occurrence time between two transitions inHA is an important aspect to be considered. The
sampling time, the residuals dynamics and the observable events occurrence play an important role in
hybrid diagnosis. For this reason, the methodology assumesthat events can sequentially occur during
the system evolution in a minimal time between them (see Assumption2). This time is associated with
the dwell time and the sampling time. As it can be seen in Table6, whenever there is a mode change, the
algorithms to compute residuals, verify consistency testsand update the current diagnoser state can be
executed in realtime(≤ 300s) for the sewer network.

The use of a binary coding would involve a loss of informationsince the residual activation might
exhibit different dynamics (slow or fast). Zonotopes improve the fault detection algorithm, avoiding the
loss of information. The sensitivity function without binarization allows a major degree of discernability
between modes. Full mode discernibility is verified for the considered part of the sewer network.
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Figure 10. State diagnoser sequence vs mode sequence for Scenario II

Mode change Reported event State diagnoser Occurrence Detection time (s)
time (s) Adaptive threshold Fixed threshold

Scenario I
q1 → q3 δ14 (q3, {}) 3000 3300 3600
q3 → q1 δ41 (q1, {}) 4200 5100 5400
q1 → q5 δf1 (q1, {f1}) 4800 5100 6000

fault fP19 ∈ F in Modeq1
Scenario II

q1 → q3 δ14 (q3, {}) 3000 3300 3300
q3 → q17 δf3 (q17, {f3}) 3600 3900 3900

fault fL39 ∈ F in Modeq3
Table 6. Hybrid diagnoser report

8. Conclusions

In this paper, a methodology and architecture to design a diagnoser in the framework of hybrid systems
considering uncertainty in the parameters and additive error has been proposed. The methodology is
robust since it considers modeling errors in the parametersand additive errors that comprise the effects
of noise in measurements and discretisation errors. The parity space equations are used to evaluate the
residuals on-line eliminating the dependence of the state variables, and the uncertainty is determined
based on the equivalence that there exists between input/output models and parity equations. Parity
relations can be expressed in regressor form and an adaptivethreshold that bounds the effect of model
uncertainty in residuals can be generated using zonotopes.This allows to formulate the fault detection
as a consistency test at every sampling time based on checking the non-existence of a parameter value
in the parameter uncertainty set and additive error such that model in modei is consistent with all the
system measurements. The performance of the proposed approach has been successfully tested in a part
of the Barcelona sewer network
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Algebra and its Applications, 287(1), 215–222.
Lygeros, J., Henrik, K., and Zhang, J. (2003), “Dynamical Properties of Hybrid Automata,”IEEE Transactions on

Automatic Control, 48(1), 2–17.
Meseguer, J., Puig, V., and Escobet, T. (2010a), “Fault Diagnosis using a Timed Discrete Event Approach based

on Interval Observers,”Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
40(5), 900–916.

Meseguer, J., Puig, V., and Escobet, T. (2010b), “Observer gain effect in linear interval observer-based fault detec-
tion,” Journal of process control, 20(8), 944–956.

Narasimhan, S., and Biswas, G. (2007), “Model-Based Diagnosis of Hybrid Systems,”IEEE Transactions on Sys-
tems, Man and Cybernetics, 37(3).

Ocampo, C., and Puig, V. (2009), “Fault-tolerant model predictive control within the hybrid systems framework:
Application to sewer networks,”International Journal of Adaptive Control and Signal Processing, 23(8), 757–
787.

Ploix, S., and Adrot, O. (2006), “Parity relations for linear uncertain dynamic systems,”Automatica, 42, 1553–
1562.

Sampath, M., Sengupta, R., and Lafortune, S. (1995), “Diagnosability of Discrete-Event System,”IEEE Transac-
tions on Automatic Control, 40(9), 1555–1575.

Travé-Massuyès, L., Bayoudh, M., and Olive, X. (2008), “Hybrid Systems Diagnosis by coupling Continuous and
Discrete event Techniques,” inProceedings of the 17th World Congress, july, Seoul, Korea, pp. 7265–7270.

Vento, J., Puig, V., and Sarrate, R. (2010), “Fault Detection and Isolation of Hybrid System using Diagnosers that
combine Discrete and Continuous Dynamics,” inConference on Control and Fault Tolerant System, october,
Nice, France.

Vento, J., Puig, V., and Sarrate, R. (2011), “A Methodology for building a Fault Diagnoser for Hybrid Systems,” in
9th European Workshop on Advance Control and Diagnosis, November, Budapest, Hungary.

Vento, J., Puig, V., and Sarrate, R. (2012), “Parity Space Hybrid System Diagnosis under Model Uncertainty,” in
20th Mediterranean Conference on Control and Automation (MED), July, Barcelona, Spain.

22


