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Abstract stochastic noise instead of bounded noise. The errors af-
fecting the system dynamics are kept bounded because this
type uncertainty really corresponds to many practicabsitu

tions, for example tolerances on parameter values. Combin-

In this paper, we propose a box particle filter-
ing algorithm for state estimation in nonlinear

systems whose model assumes two types of un-
certainties: stochastic noise in the measurements
and bounded errors affecting the system dynam-
ics.These assumptions respond to situations fre-
quently encountered in practice. The proposed
method includes a new way to weight the box
particles as well as a new resampling procedure
based on repartitioning the box enclosing the up-
dated state. The proposed box patrticle filtering
algorithm is applied in a fault detection schema

ing these two types of uncertainties following the seminal
ideas of[5] and [6] within a particle filter schema is the
main issue driving the paper. This issue is different from th
one addressed 7] in which the focus is put on Bernouilli
filters able to deal with data association uncertainty. The
proposed method includes a new way to weight the box par-
ticles as well as a new resampling procedure based on repar-
titioning the box enclosing the updated state.

The paper is organized as follows. Section 2 describes
the problem formulation. A summary of the Bayesian fil-

illustrated by a sensor network target tracking ex-

tering is presented and the box-particle approach is intro-
ample.

duced. The main steps of this approach are developed in
section 3. Section 4 and 5 are devoted to the repartitioning
. of the boxes and the computation of the weight of the box
1 Introduction particles in order to control the number of boxes. In section
For various engineering applications, system state estima® the pox particle filter is u_sed fo_r state estimation andtfaul
tion plays a crucial role. Kalman filtering (KF) has been detectlon;the_resglts obtained with the proposed method fo
widely used in the case of stochastic linear systems. The? {arget tracking in a sensor network are presented in sec-
Extended Kalman Filter (EKF) and Unscented Kalman Fil- tion 7. (_Zonclusmn and future work are overviewed in the
ter (UKF) are KF’s extensions for nonlinear systems. These!ast section.

methods assume unimodal, Gaussian distributions. On the )

other hand, Particle Filtering (PF) is a sequential Monte 2 Problem formulation

Carlo Bayesian estimator which can be used in the casgye consider nonlinear dynamic systems represented by dis-

of non-Gaussian noise distributions. Particles are p@hctu - ete time state-space models relating the stéts to the
states associated with weights whose likelihoods are dgfine ,ea3sured variablgs(k) g

by a statistical model of the observation error. The efficyen
and accuracy of PF depend on the number of particles used
in the estimation and propagation at each iteration. If the x(k+1) = f(x(k),u(k),v(k)) (1)
number of required particles is too large, a real implementa y(k) = h(x(k)) +e(k),k=0,1,... )
tion is unsuitable and this is the main drawback of PF. Sev-
eral methods have been proposed to overcome these shonvheref : R™» x R"» x R"™ — R"» andh : R"» — R™
comings, mainly based on variants of the resampling stageare nonlinear functionsy(k) € R™+ is the system input,
or different ways to weight the particleil]). y(k) € R™ is the system outpuk (k) € R™= is the state-
Recently, a new approach basedoon particleswas pro- ~ space vectole(k) € R"v is a stochastic additive error that
posed by[2; 3]. The Box Particle Filter handles box states includes the measurement noise and discretization ercor an
and bounded errors. It uses interval analysis in the state upis specified by its known pdf.. v(k) € R"- is the process
date stage and constraint satisfaction techniques torperfo noise.
measurement update. The set of box particles is interpreted In this work the process noise is assumed bounded
as a mixture of uniform pdf'¢4]. Using box particles has  |vi(k)| < o; with i = 1,...,n,, i.ep, ~ U([V]), where
been shown to control quite efficiently the number of re- [V] = [—01,01] X -+ X [=0pn,, 0n,].
quired particles, hence reducing the computational cast an . _
providing good results in several experiments. 2.1 Bayesian filtering
In this paper, we take into account the box particle fil- Given a vector of available measurements at instant
tering ideas but consider that measurements are tainted by (k) = {y(i),i = 1,...,k}, Y(0) = y(0), the Bayesian
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solution to compute the posterior distributipfx (k)| Y (k)) e to provide the prior probabilities associated to the par-
of the state vector at instakt+ 1, given past observations ticles of the new state estimation set

Y (k) is given by (Gustafsson 2002): P(x(k + DI[Y (k) i=1,--, Ny (10)

p(x(k+1[Y(k)) = 3 Interval Bayesian formulation

. (3) This section deals with the evaluation of the Bayesian so-
/ﬂw p(x(k + Dx(k)pCe(k)[Y (k) dz (k) lution of the state estimation problem considering bounded

state boxes (6).
where the posterior distributiop(x(k)|Y (k)) can be ©)

computed by 3.1 Measurement update
Whereas each particle is defined as a box by (6), the mea-
1 surement is tainted with stochastic uncertainty defined by
p(x(k)|Y (k) = —a(k)p(}’(k?)|X(k))P(X(k‘)\Y(k -1) the pdfp.. The weightw (k)" associated to a box particle is

(4) updated by the posterior probabiliiy([x(k)]*| Y (k)):
wherea(k) is a normalization constani(y(k)|x(k)) is

the likelihood function that can be computed from (2) as: w(k) = LP([x(k)]ﬂY(k 1))y (k) — h([x(R)])

A(k)
p(y(k)x(k)) = pe(y (k) — h(x(k)) (5) . i
andp(x(k)|Y (k — 1)) is the prior distribution. = A—k)P([X(k)] 1Y (k- 1))/k p}:(g’(k) — h(x(k))) dx(k)
Equations (5), (4) and (3) can be computed recursively X EBR] (11)
given the initial value ofp(x(k)| Y (k — 1)) for £ = 0 de- i=1,...,N;

noted ag(x(0)) that represents the prior knowledge about where the normalization constahtk) is given by
the initial state.

. . Ny
2.2 Objective | AG) =D PO IY (= 1) [ pely(h) = ) ()
Considering the assumptions of our problem, we adopt a i=1 @ (k)€[x (k)]

particle filtering schema which is well-known for solving 12)
numerically complex dynamic estimation problems involv-

ing nonlinearities. However, we propose to use box pagicle ~ then
and to base our method on the interval framework. Box par-

ticle filters have been demonstrated efficient, in particida N ;
reduce the number of particles that must be considered to Zw(k) =1 (13)
reach a reasonable level of approximatizh _ =1 .

Let's consider the current state estimatgk) as a set, de- The deduction of the measurement update equation (11)

noted by{ X' (), that is approximated i/, disjoint boxes from the particle filtering update equation (4) is detailed i
A (k)} PP by dis| the Appendix fom, = 1, without the loss of generality. The

x(k)] i=1,-- N (6) principle of the proof is that the point particles are gradipe
‘ A ) ‘ _ into particle groups inside boxes, then the posterior proba
where [x(k)]" = [x(k)",x(k)], with x(k)*,x(k)? € bility of a box can be approximated by the sum of posterior
R™ . The width of every box is smaller or equal to a given probabilities of the point particles when the number of éhes
accuracy for every component, i.e particles tends to infinity.

4 . . . 3.2 State update
(k) —a;(k) <65 i=1,--- N, j=1,...,n, This step is similar to the state update state 4&Jimnd[3].
. _ o () Hence, we have:
whered; is the predetermined minimum accuracy for every
componeny. N,

del\rfgtr:é)\gr, every boxx(k)]" is given a prior probability p(x(k+1)[Y (k) ~ Zw(k)iu[f]([x(k)]i,u(k),[v(k)]) (14)

1=1
P(x(E) Y (k—1)) i=1,---, Ny (8) Thg intgrval boxe&(k_ + 1)|x(k)]* are computed from
. (1) using interval analysis as follows,
with v
> P(®)] Y (k=1)) > (9) (k4 1)x(B)) ~ [f)([x(k) k), [v(k)])  (15)
=t _ The update interval boxes inherit the weightgk)® of
wherey € [0, 1] is a confidence threshold. their mother boxegx(k))’ i = 1,.. ., Nj.
Then, given a new output measuremg(i), the problem T
that we consider in this paper is: 4 Resampling
e to compute the state estimatgk + 1), Once the updated boxés(k + 1)|x(k)]* and their associ-

e to decide about the numbé¥,  ; of disjoint boxes of  ated weightsv(k)? have been computed, the objective is to
the approximation oft'(k + 1), each with accuracy compute a new set of disjoint boxes. This corresponds to
smaller or equal td;, the resampling step of the conventional particle filter.
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4.1 Repartitioning

We assume that the new boxes are of the same size, that they Algorithm Weights-new-boxes A, [x(k +
cover the whole space defined by the union of the updated ...

boxes[x(k + 1)|x(k)]* i = 1,..., Ny, and that their weight
is proportional to the weight of the former boxes.

For this purpose, a support box s&tis computed as the
minimum box such that

ZDU

Z is partitioned intaM disjoint boxes of the same size

(k 4+ 1)|x(k)]". (16)

2" i=1,--- M (17)
where[z]’ = [z',z], z', 2z € R, and
The box component widths are computed as
Z - 2,
€= — Jj=1...,n (19)
WL]

wherem; is the number of intervals along dimensign
computed as

—Zi
9;
where[.] indicates the ceiling function angj the mini-

mum accuracy for every state compongmtefined in Sec-
tion 2.2. In this way, we guarantee that

mj = | ji=1,...,n, (20)

Ej§5j jZl,...,’l’L,c (21)

Finally, the numbe/ of boxes of the uniform grid par-
tition is given by

(22)

N
M=1]m;
j=1

Once the new boxes]’ have been computed, the weight
of the new boxes, can be computed as
wiy’)

(23)

ol [z (k + 1) x(k)) O[]’

Z( Hz [z (k 4+ 1) (F))|

i=1,...,M

where[v;]’ refers to thd-th component of the vectdy]’
and the interval widtlz; — z; is denoted by|[x;]| for more
compactness. The new weights fulfill

Ny

Zw =D ulk

1=1

—1 (24)

The new weightsv? in (4.1) can be computed efficiently

using Algorithm 1. This algorithm searches the number

Ninter of boxes ofZ that intersect everx(k + 1)[x(k)}.
Then, the weightw(k)? is distributed proportionally to

the volume of the intersection between the updated boxes

[z(k + 1)|z(k)]’ and each of theV;,., boxes ofZ that
have a non-empty intersection.
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Algorithm 1 Weights of the new boxes.

1)|x(k)]*,
, ek + 1 |x< IV w(k)! . w(k)N)
w: < 01= M
for ji=1,. Nk do
[NiTLte7-7 V,-nte,,] = intersec([x(k + 1)[x(k)})’, Z)
for h = 17 . 'aNinter do
1= V'inte'r(h)
i i 7o [z (k+1) [ x (k)] N[z .
w, =w, + — ;":[wll|([zl(k)jtl()\>)c](kgj[‘l] w(k)!
end for
end for
Return (wl,...,w)
endAlgorithm

4.2 Controlling the number of boxes

Once the new disjoint boxes and their associated weights
have been computed, the associated weights can be used
to select the set of boxes that are worth pushing forward
through the next iteration. This is performed by selecting
the boxes with highest weights and discarding the others. In
order to fulfill the confidence threshold criterium (9) pro-
posed in Section 2.2, Algorithm 2 is proposed. Thelget

of weightsw! associated to the box&g' is defined as

W, = {wl,..., wM}. (25)

Given a desired confidence thresheldthe M disjoint
boxes[z|’ that compose the uniform grid partition 8fand
vector W, with the associated weights, Algorithm 2 deter-
mines the minimum numbéY, ., ; of boxesz|* with highest
weightsw? that fulfill

(26)

Nyt
g w, >
i=1

The new state estimat(k + 1) is approximated by this
set of Nj.;.1 boxes and their prior probability by

P(x(k+DI'[Y(k) # Wi, i=1,...,Ngs1. (27)

wherelV} 41 arethelV, ., highest weights oV, associated
with the disjoint boxes$x(k + 1)]%,i = 1,--+ , Ni41, that

approximateY' (k+1). W,g'ﬂ can be referred as tleepriori
weights.

Algorithm 2 State update at step + 1 with confidence
thresholdy.

Algorithm State-updateg]®, ..., [z]™ W, 7)
Yo = 0, {X(k+1)} {0}, Wig1 < {0}, Npg1 < 0
while 4. < v do

[value, pos| = max(W.,)
addbox (X (k + 1), [2]P°°)
addelement(Wy1, value)
Ye = Ve + value
W, (pos) < 0
Niy1+ N1 +1
endwhile
Return (X (k + 1), Wit1, Ni41)
endAlgorithm
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This algorithm generates a set of state box&sk + 1)} e Abnormallow sum of the unnormalized posterior prob-
a list of weightsWW;_,, a cumulative weight variable., ability of all the particles at instant, which means
and a cardinality variabléVy,. At the beginning of the that all the particles have been penalized by the cur-
algorithm, the state boxes and weight list are initialized a rent measurements. This abnormality can be checked

empty sets and cumulative weight and cardinality variable by thresholding\ (k) defined in (12).

are initialized to zero. The loop "while" operates as a sort- |t enough representative fault free data are available, the
ing, eliminating the boxes with smallest weights so that the jndjcators defined above can be determined by means of
cumulative sum of the boxes with largest weights is greaterthresholds computed with these data. For example, the
or equal to the threshold If the state space is not bounded, threshold that defines the abnormal abrupt change in state
the threshold < v < 1 does not guarantee a bounded num- estimation can be computed as
ber of boxes in a worst-case scenario in which the measure-

V&) =%~ 1) (&) — % — 1)"

ments do not emphasize some particles against others. IPAX™*" = g1 max
=

this case, a maximum number of particléswax should be (29)
imposed. whereL is the length of the fault free scenario afid > 1

) . ) a tuning parameter. Then the fault detection test consists i
5 State estimation and fault detection checking at each instahtif

5.1 State estimation

Once the set ofV,,; disjoint boxes[x(k + 1)]}, i =
1,---, Niky1, that approximatet'(k + 1) and their asso-

ciateda priori weightsW,g'Jr1 have been computed, their
measurement updated weightgk + 1) are obtained us-

ing (11). Then, according t®], the state at instakt+ 1 is

V() — (k — 1)) (k(k) — %(k — 1))7 > Axmee
(30)
In a similar way, threshold\™" that defines the min-
imum expected unnormalized posterior probability can be
computed as

approximated by AT = Fy min (A(7)) (31)
N1 o whereA(7) is determined using (12) arid< 5, < lis a
X(k+1)= > wk+1)x4(k+1) (28)  tuning parameter. Then the fault detection test consists in
i=1 checking at each instahtif
wherex@(k: +1) is the center of the particle box(k + 1')}i. A(k) < A™n (32)
Algorithm 3 summarizes the whole state estimation pro-
cedure. 6 Application example
Algorithm 3 State estimation In this section a target tracking in a sensor network exam-
Algorithm State estimation ple presented in8] is used to illustrated the state estima-
Initialize  X(0), N, and P(x(k)][Y(k — tion method presented abov_e. T_he proble_m consists of three
1))ke0.i=1... Ny sensors and one target moving in the horizontal plane. Ea_ch
for b — “1‘7 ..., enddo sensor can measure distance to the target, and by combining
Obtain Input/Output datéu(k), y(k)} these a position fix can be computed. Fig. 1 depicts a sce-
Measurement update nario with a trajectory and a certain combination of sensor
computeA (k) using Eq. (12) locations 61, S» and.Ss).
computew(k)® using Eq.(11) = 1... Ny
State estimation .
computex(k) using (28)
State update 85y
computex(k + 1)|x(k)]* i = 1... Ny using (15) af
computeZ that fulfils (16) 25l
compute disjoint boxe]’ i = 1,--- , M of (17) s,
compute weights’ using Algorithm 1 7 ¢
compute new state estimation using Algorithm 2~ & 1s -
N1 disjoint boxes that approximaeé(k+1) 1t e &3
Prior probabilities given by weightd/;. 1 0sl
end for ' s
endAlgorithm or .
-0.5
EREY 0 05 1 15 2 25 3
5.2 Fault detection X,(m)

In our framework, fault detection can be formulated as de-

tecting inconsistencies based on the state estimationoTo dFigure 1: Target true trajectory and sensor positions in the
so, we propose the two following indicators: bounded horizontal plane

e Abruptchangesin the state estimation provided by (28)
frominstant:—1 to instantk, i.e. abnormal high values The behaviour of the system can be described by the fol-
of /(x(k) — %(k — 1))(x(k) — %(k — 1))T lowing discrete time state-space model:
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Box particle filtering weight of boxes using measurement yl(l)

(26)-(a0)+n(2d) e

( yi (k) ) \/(wl(k) —81,1)% + (z2(k) — S1,2)?

yggg = | V@i(k) = S21) + (a2(k) — S22)*
Y3
V@i (k) = S3.1) + (a2(k) — Sa.2)° 3 o |
. (k) Box particle filtering weight of boxes using measurements yl(l),yz(l) and y3(1)
1 .
+ | ex(k) 02
( es(k) )

wherez; (k) andxo (k) are the object coordinates bounded o

by —1 < z1(k) < 3and—-1 < a9(k) < 4Vk > 0.
Ts = 0.5s is the sampling timey, (k) and vz (k) are the
speed components of the target that are unknown but con
sidered bounded by the maximum speed = 0.4m/s
(joa (k)| < o0 and vz (k)| < o). w1 (K), ya(k) anduys (k)
are the distances measured by the sensdfs; denotes  Figure 3: Box weights using measuremegntk) (up) and
the componenj of the location of sensar. e;(k), ea(k) measurements; (k), y2(k), y3(k))T (down)
andesz(k) are the the stochastic measurement additive er-
rorsp., ~ N(0,0;) with 01 = 092 = 03 = v/0.05m.
Fig. 2 shows the evolution of the real sensor distances
and measurements in the target trajectory scenario ddpicte Box particle filtering weight contour of boxes using measurement y, (1)

HO

. . 4 . : :
n Flg 1. # Real point
3r ®  Estimated BPF ||
2r il
~ 4 L il
E Real 1
b Measured ot B
o 2
c
3 -1 . . .
B z
g, ‘ 15 2 25 3
0 5 10 15

Box particle filtering weight of boxes using measurements yl(l),yz(l) and y3(1)

T T
# Real point
B  Estimated BPF ||

=

Distance 2 (m)
o
o (%) L (%))
T T
. E
I = o = N w S
L

0 5 10 15 |
. - @Es ,
27 21 -o0s 0 05 1 15 2 25 3
5 1r 1
8, ‘ ‘

0 5 ) 10 15 . . .

Time (s) Figure 4: Box weight contours using measuremertt)

(up) and measurementsg; (k), yo(k), y3(k))T (down)

Figure 2: Real and measured distances from the target to the
sensors

instantt = 1 (y1(1),y2(1) andys(1)) (down). Fig. 5 de-
picts the box weights and their contours using the measure-
ments at hand at instaht= 2.

In order to apply the state estimation methodology pre-
sented above, a minimum accuragy= 6> = § = 0.2m
has been selected for both components. No a priori infor-
mation has been used in the initial state. Then, a uniform The real trajectory and the one estimated using (28) are
grid of disjoint boxes with the same weights and componentshown in Fig. 6.
widthse; = e = ¢ that covers all the bounded coordi-

nates—1 < z; < 3 and—.l < g g.z‘l.has been chosen as lated and satisfactory results of the fault detection %303
initial stateX’(0). Posterior probabilities of the boxes have and (32) have been obtained for faults bigger tham: us-
been approximated by weights(k)' computed using the . g thresholdsAx™a= and A™" computed with (29) and
new sensor distances measurements in (4.1). State uDdaL%l)withL 3200, 8, = 1.1 andp, = 0.9

has been computed considering speed bounds in (33). Th
new boxes have been rearranged considering the minimum Fig. 7 shows the real trajectory and the one estimated us-
accuracy and their associated weights have been computedng (28) when an additive fault 6£0.5m affects sensof;
using (4.1). Finally, Algorithm 2 with threshold = 1 has at timek = 22. The behaviour of fault detection tests (30)
been applied to reduce the number of boxes. and (32) is depicted in Fig. 8. As seen in this figure, both

Figs. 3 and 4 depict the box weights and their contoursthresholds are violated at time instént 22 and therefore
using measurement (1) (up) and all the measurements at the fault is detected at this time instant.

Finally, different additive sensor faults have been simu-
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Box particle filtering weight of boxes using available measurements at instant k=2

35
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3l Box Particle Filter
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Figure 7: Trajectories in fault scenario
Figure 5: Box weights (up) and Box weights contours
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A Box patrticle algorithm has been proposed for estimation . .
and fault detection in the case of nonlinear systems withA DemonStra_t'on of Measurement update:
stochatic and bounded uncertainties. Using this method in ~ "From particles to boxes"

the case of a target tracking sensor networks illustrages it
feasibility. It has been shown how the measurement up- ,
date state for the box particle is derived from the particle Consider the particlegz (k) }§V:1 uniformly distributed in
case. However convergence and stability of thisfilter have t ()i ¢ [2(k),z(k)] Vj = 1,..., N wherex(k), z(k) €
be proved. Resampling unfortunatly drops information and 0 according td1] the relative posterior probability
waives guaranteed results that characterize intervaysisal ¢4 a5ch particle is approximated by

based solutions. However without resampling the particle

filter suffers from sample depletion. This is the reason why 3 1 j j
resampling is a critical issue in particle filtering (Gustain Plx(R)TY (k) ~ mP(x(k) Y (k= 1)pe(y(k) = hlz(k)"))
2002). This approach has to be compared to other PF vari- (35)
ants which reduce the number of partic[@$ and further ~ With

A.1 Particle filtering

investigations concerning resampling are required, in par N i
ticular if we want to take better benefit of the interval based c(k) =Y P(x(k)'[Y (k) (36)
approach. j=1
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A.2 Grouping particles
If we group theN particles inN, groups ofAN elements

NEI
{ekyP 1 = Jle®) Y ipay - BD
i=1

with N, = 2L
If we select the groups of points in such a way that

{z(k)HEN - pan € [2(R)]" Vi=1,...,N, (38)
where
[z(k)]" = [x(k) + (i — )AL,z (k) + AL (39)
with L
(k) — z(k)
AL = N, (40)

If the number of particle®v — oo and thereforeA N —

AN

>

j=1+(i—1)AN

P([x(k)]'[Y (k) ~ P(x(k)'[Y (k) (41)

according to (35)

P([x(K)]'[Y (k) ~

S oan PRV Y (k= 1)pe(y(k) — h(z(k)’))
o AN an PRI (k= 1)pe (y(k) — h(x (k)7

If we consider the particles in the same graupave the
same prior probabilities, then:

px(k) Y (k = 1)) =
P([x(k)]'[Y (k- 1))
AN

Vj =1+ (i—1)AN,... iAN
(43)

and (42) leads to

P([x (k)Y (k) ~
P(x(R)ITY (k= 1) 520 im1yan ey (k) — h(z(k)))

o (PR (k= 1) AN (s pe((R) — h(z(k)7))
(44)

If the N particles are uniformly distributed in the interval
[z(k), z(k)], i.e

(k) —z(k)Y ' =Axk) Vji=2,...,N (45)
where o
x(k)—z(k) AL
Ax(k) = ~ N (46)
Then
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iAN

>

j=14(i—1)AN

(AN)Az(K)
/ pe(y(k) — h(z(k)))dz(k) ~
J (14 (i—1)AN)Az(k)

/ pe(y(
w(k)elz(k))’

Finally, multiplying the numerator and denominator of
equation (44) byAz, we obtain the particle box measure-
ment update equation

pe(y(k) — h(z(k)’))Ax(k) ~

(47)

k) = h(a(k)))dz(k)

P(x(R)] Y (k) ~
PUX(R)Y (k = 1) [, 0 cogeogs Pe (k) — h@(k)))da(k)
S (PUE)IY (k= 1)) [, 0o oyt Pe(wR) — ha(k)))da(k))

(48)
that corresponds to the equation (11) with

A(k) =
NQ

P([x(E)'[Y (k-1 c(y(k) — h(z(k)))dz(k

l;( (xR Y ( ))/m(k)e[x(k)]lp ) = h(x(k)))dz(k))

(49)
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