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Abstract: In order to take into account the scarcity of the water resource and the increasing of the 
population, the management of drinking water networks has to be improved with the use of new tools and 
actions that allows fighting against wasting water. The monitoring of drinking water networks is based on 
the use of sensors to locate malfunctions (leaks, quality/contamination events, etc.). Practical 
implementation has to be carried out by optimizing the placement of the number of sensors and improving 
the detection and localization of malfunctions. Techniques for the detection and localization of leaks have 
been proposed in the last years based on the evaluation of residuals obtained by means of the comparison 
between the measurements obtained by the sensors and the values obtained by simulating the water network 
in a leak free scenario. In this paper, a data-driven approach based on the use of statistical classifiers 
working in the residual space is proposed for leak localization. The classifiers are trained using leak data 
scenarios in all the nodes of the network considering uncertainty in demand distribution, additive noise in 
sensors and leak magnitude. Finally, the proposed approach is tested using the well-known Hanoi network 
benchmark. 
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1. INTRODUCTION 

Water leaks in water distribution networks (WDN) can cause 
significant economic losses in fluid transportation leading to 
increase reparation costs that finally generate an extra cost for 
the final consumer. In many WDN, losses due to leaks are 
estimated to account up to 30% of the total amount of extracted 
water. This is a very important amount in a world struggling to 
satisfy water demands of a growing population. 

Several works have been published on leak detection and 
isolation (localization) methods for WDN (see e.g. Wu et al. 
(2011)), Puust et al. (2010) and references therein). Model 
based leak detection and isolation techniques have also been 
studied starting with the seminal paper of Pudar and Liggett 
(1992) which formulates the leak detection and localization 
problem as a least-squares estimation problem. However, the 
parameter estimation of water network models is not an easy 
task (Savic et al. (2009)). The difficulty lies in the non-linear 
nature of water network model and the few measurements 
usually available with respect to the large number of 
parameters to be estimated that leads to an underdetermined 
problem. Alternatively, in Pérez et al. (2011, 2014), a model 
based method that relies on pressure measurements and leak 
sensitivity analysis is proposed. This methodology consists in 
analyzing the residuals (difference between the measurements 
and their estimation using the hydraulic network model) on-
line regarding a given threshold that takes into account the 

modeling uncertainty and the noise. When some of the 
residuals violate their threshold, the residuals are compared 
against the leak sensitivity matrix in order to discover which 
of the possible leaks is present. Although this approach has 
good efficiency under ideal conditions, its performance 
decreases due to the nodal demand uncertainty and noise in the 
measurements. This methodology has been improved in 
Casillas et al. (2012) where an analysis along a time horizon 
has been taken into account and a comparison of several leak 
isolation methods is offered. In case where the flow 
measurements are available, leaks could be detected more 
easily since it is possible to establish simple mass balance in 
the pipes. See for example the work of Ragot et al. (2006) 
where a methodology to isolate leaks is proposed using fuzzy 
analysis of the residuals. This method finds the residuals 
between the measurements with and without leaks. However, 
although the use of flow measurements is viable in large water 
transport networks, this is not the case in water distribution 
networks where there is a dense mesh of pipes with only flow 
measurements at the entrance of each District Metering Area 
(DMA). In this situation, water companies consider as a 
feasible solution the possibility to installing some pressure 
sensors inside the DMAs, because they are cheaper and easy 
to install and maintain.  

In this paper, a new approach for leak localization in WDN is 
presented. This approach combines the use of models and 
classifiers. Models are used to generate residuals while 



 
 

     

 

classifiers are used for analysing the residuals taking into 
account the residual leak sensitivity. Finally, the proposed 
approach is applied to a case study based on the Hanoi water 
network and compared against the angle method introduced in 
Casillas et al. (2012). 

This paper is organized as follows: Section 2 presents an 
overview of the proposed approach. Section 3 describes the 
proposed methodology. Section 4 presents the results of the 
application of this methodology in Hanoi case study. Finally, 
Section 5 draws the main conclusions. 

 

2. OVERVIEW OF THE PROPOSED APPROACH  

2.1 Overview 

The aim of the proposed methodology is to localize leaks in a 
water distribution network using pressure measurements and 
their estimation using the hydraulic network model. This 
methodology is complementary to the analysis of DMA night 
consumes that is used for detecting and estimating the leakage 
level (Puust et al. (2010)). 

Model based leak localization method is based on comparing 
the monitored pressure disturbances caused by leaks at certain 
inner nodes of the DMA network with the theoretical pressure 
disturbances caused by all potential leaks obtained using the 
DMA network mathematical model. Thereby, the residual set, 
rns, is determined by the difference between the measured 
pressure at inner nodes, pns, and the estimated pressure at 
these nodes obtained using the network model considering a 
leak-free scenario, 0p̂ ns 

ˆ( ) ( ) ( )k k k  0r p p    (1) 

The size of the residual vector r, ns, depends on the number of 
inner pressure sensors of the DMA network. In (Pérez et al. 
(2011)), an optimal pressure sensor placement for leak 
localization was presented to achieve the minimum 
economical costs (number of sensors) keeping a suitable 
performance of the leak localization method. The number of 
potential leaks, fnn, is considered to be equal to the number 
of network nodes nn, since from the modeling point of view as 
proposed in Pudar and Liggett (1992) and Pérez et al.  (2014) 
leaks were assumed to be in these locations.  
 
The fault diagnosis approach proposed in this paper is depicted 
in Fig. 1. It is based on using pressure residuals (1) between 
available pressure measurements in the network and 
estimations of these magnitudes provided by a hydraulic 
simulator (Epanet) combined with a statistical classifier. This 
classifier determines the most probable leak that produces the 
mismatches between the measurements and the estimations. 
 
The hydraulic model simulated by Epanet considers a known 
structure (pipes, nodes and valves) and network parameters: 
pipe coefficients and estimated water demands (using 

historical billing records) in the nodes ( 1d̂ ,…, ˆ
nnd ) since in 

general in real practice nodal demands 1d ,…, 
nnd   are not 

measured (except for some particular consumers where 

automatic metering readers (AMR) are available). On the other 
hand, pressure measurements are subject to the effect of sensor 
noise n . Finally, when a leak if  appears in the network the 

leak magnitude if  is not completely known. 
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Fig. 1. Leak localization scheme 

 

2.2 Motivation 

The proposed approach summarized in Fig. 1 is an alternative 
to the sensitivity-to-leak analysis (Pérez et al., (2011, 2014)) 
where instead of using a classifier, the theoretical pressure 
disturbances caused by all potential leaks are stored in the 
sensitivity matrix Ωnsnn (with as many rows as DMA inner 
pressure sensors, ns, and as many columns as potential leaks 
(DMA network nodes, nn)) is obtained as 
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where each element sij measures the effect of the leak fj in the 
pressure pi of the node where the inner pressure sensor i is 
located. The leak isolation is based on matching the residual 
vector (1) against all the columns of the sensitivity matrix 
using some metrics (see Casillas et al. (2012) for details). 

However, in practice, it is extremely difficult to calculate Ω 
analytically in a real network because a water network is a 
large scale problem described by a multivariable non-linear 
system of equations which may also be non-explicit. Thereby, 
the sensitivity matrix is generated by simulation of the network 
model approximating the sensitivity sij by  

ˆ ˆ
jif i0

ij
j

p p
s

f


    (3) 

where ˆ
jifp is the predicted pressure in the node where the 

pressure sensor i is placed when a nominal leak fj is forced in 
node j and ˆ i0p is the predicted pressure associated with the 

sensor i under a scenario free of leaks (Pérez et al. (2011)). 
Then, repeating this process for all nn potential faults the 
approximation of the sensitivity matrix is obtained.  



 
 

     

 

 
Another difficulty of the leak sensitivity approach is that the 
practical evaluation of (3) is highly depending on the nominal 
leak fj. If the real leak size (in general unknown) is different 
from the nominal one, the real sensitivity will be different from 
the one computed using (3). This will lead to worsen leak 
localization results. The approach proposed in this paper aims 
to overcome these difficulties.  
 

3. DESCRIPTION OF THE PROPOSED APPROACH  

In this section, the methodology proposed to build a classifier 
that implements the leak localization and the performance 
evaluation of the proposed scheme (Fig. 1) are described. 

3.1 Classifier training 

Given a set of data    
 

      1 1 2 2, , , , , ,N Nl l l= r r r                 (4) 

where s
i

nr  are the pressure residuals (features) in different 

leak scenarios and il   are the labels (classes) that indicate 

the node where the leak has been produced i.e. 
 1, 2, ,  nn � . Then, the problem of building the classifier 

in Fig. 1 can be addressed by means of formulating a 
multilabel supervised classification problem. This problem 
consists in designing a function  
 

: {1,2, , }ns
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See (Kotsiantis, 2007), for a complete	survey	of	supervised	
machine	learning	algorithms.	
	
In	order	to	get	an	accurate	classifier,	the	set	of	data	 	has	
to	 be	 enough	 representative	 of	 the	 real	 system,	 i.e.	
residuals	 ir 	 have	 to	 take	 into	account	all	 the	differences	

between	 the	 real	 WDN	 and	 the	 Epanet	 model: different 
demand distributions, noise realizations and leak magnitudes. 
As it is not possible to obtain this amount of data for the real 
system, the residuals can be generated replacing the real 
system by the Epanet model, in the scheme depicted in Fig. 1, 

with different realizations of demand distributions 1d ,…, 
nnd

, noise realizations n  and leak magnitudes 1f
 ,…, 

nnf . 

3.2 Classifier evaluation 

Once the classifier has been designed, its performance can be 
evaluated using a validation data set   
 

      ' ' ' ' ' ' '
1 1 2 2, , , , , ,N Nl l l= r r r                  (6) 

Applying function g  defined in (5) to the residuals '
ir , the 

complete confusion matrix   defined in Table 1 can be 
obtained. 
 
 

Table 1. Confusion matrix of the validation data 
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where ,i i  indicates the number of times that a leak scenario 

in node i, if  has been correctly diagnosed as ˆ
if   (true positive) 

and , ,
1

nn

i j i i
j

   indicates  the number of times that a leak 

scenario in node i has been wrongly classified. From Table 1, 
the precision of correct diagnosis of every leak if  can be 

defined as 
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If the precision index (7) is smaller than a desired threshold    
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where   is the admissible percentage of wrong leak 
isolability, then a new class i* (composed class) that groups 
class i and the other classes with the biggest ,i j  such that  
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is created. After checking all the rows of the confusion matrix 
 , if the precision index (7) is bigger or equal to       

1,..., ni n   then the classifier defined by Eq. (5) is considered 

suitable for the leak localization problem. On the contrary, if 
new classes have been created in order to fit (9) a new set of 
classes is defined as 

 
 2 2 21, 2, ,    with  n n nn n n �            (10) 

where the classes of 2�contain the new composed classes 

obtained in the grouping process described above and the 
classes of   that are not contained in the new classes.  

Once the new set of classes 2� has been defined, new sets of 

data 2 and '
2  are generated to train a new classifier  

2 2: {1,2, , }n
nsg n                       (11) 

 
and, with a new confusion matrix 2  obtained applying (11) 

to residuals of set '
2 . Then, if the precision index (7) is bigger 

or equal to   21,..., ni n  , the grouping process is stopped. 

Otherwise, the process of grouping the number of classes, 



 
 

     

 

training a new classifier and evaluating its behavior is repeated 
until this condition is satisfied. 

3.3 Leak localization evaluation 

Once a classifier has been obtained 
 

: {1,2, , }n
n

s
F Fg n                         (12) 

 
that provides a precision index (7) bigger than    

1,..., nFi n  , being nFn  the final number of different classes. 

The composed classes that contain more than one of the 
original classes in � (i.e. nodes in the WDN) are studied.  

The main drawback of grouping original classes in order to get 
a given precision in the leak location is that when classifier 
(12) will classify a leak scenario in a composed class it will not 
be able to distinguish between the nodes related to this class. 
Thus, the provided leak localization will have an uncertainty 
given by the number of these nodes and distance between 
them.  

4. CASE STUDY 

This section illustrates the application of the proposed 
methodology to a benchmark water distribution network: the 
Hanoi water network. Moreover, the obtained results are 
compared to the ones obtained by applying the leak-sensitivity 
method (summarised in Section 2.2) using the angle metric 
proposed in Casillas et al. (2012). 

4.1 The Hanoi network 

The Hanoi network (see Fig.2) consists of one reservoir, 34 
pipes and 31 junction nodes. Leaks in all nodes are considered. 
The known variables are the reservoir pressure and the 
pressures in nodes 14 and 30. The demand in each node is 
assumed to be uncertain, i.e. the instantaneous values are 
unknown but inside known limits. 

 

Fig. 2. Hanoi water network. 

 

4.2 Classifier training 

For the Hanoi network, the direct use of the raw residuals 
associated to the measured pressures in nodes 14 and 30 would 
provide poor isolation results. This can be easily seen in Fig. 

3, which shows points in the residual space computed for a 
leak of 50 l/s (1.7% of the total demand) with 10% uncertainty 
on demands.  

 

Fig. 3. Raw residuals for a leak size of 50 l/s with a 10% 
uncertainty in demands. 

In order to improve the leak localization results, a FIR filter is 
applied to the residuals. This procedure aims to geometrically 
separate the points associated to one leak scenario from the 
others associated to other leaks. The implemented filter is 
defined as 

 1
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Tk h h q h q k    r r       (13) 

with the following coefficients:  
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where T  is the order of the filter and 1S   is a scaling ratio 
that provides an extra weight to the current residual ( )kr .  

The performance of the residual filtering depends on the filter 
parameters T and S. In principle, the bigger the two parameters 
are the better the leak localization performs. However, it is of 
interest to determine if there is a point for which an increment 
in the value of both parameters does not improve substantially 
the obtained results, whose quality can be associated with the 
final number of distinguished classes.  

Fig. 4 shows the effect of the filter order (or window size) T 
on the number of classes, considering 0.5   in Eq. (8), for 
different leak magnitudes, assuming a scaling ratio S=100. It 
can be observed that for each considered leak magnitude, the 
number of classes increases with the filter order at the 
beginning (small values for the filter order) and then it 
becomes almost constant around a given maximum value. 
Moreover, it can be observed that the value of T for which the 
number of classes stabilizes is quite similar and around T=20 
for all the considered leak magnitudes. This value is chosen as 
the optimal filter order. 



 
 

     

 

 

Fig. 4. Influence of the filter order T on the number of obtained 
classes for different leak magnitudes, with S=100. 

Fig. 5 shows the influence of the scaling ratio S on the number 
of classes for different leak magnitudes, assuming the use of 
the optimal filter order given by T=20. It can be seen that for 
each considered leak magnitude, the number of classes 
becomes almost constant around a given maximum value 
when the value for the scaling ratio is higher than a given 
threshold value. However, this threshold value for S is 
different for different leak magnitudes. Hence, instead of 
working with a fixed value for S, working with a set of 
different values of S associated to different ranges of leak 
magnitudes is proposed. The set of chosen values is 
summarized in Table 2. 

 

 

Fig. 5. Influence of the scaling ratio S on the number of 
obtained classes for different leak magnitudes, with T=20. 

 

Table  2. Selected values for the scaling ratio S for different 
ranges of the leak magnitude. 

Leak range 
(l/s) 

Scaling ratio 
S 

0-25 100 
25-50 50 
50-100 20 

100-150 10 
>150 5 

The results of the residual filtering process can be seen in Fig. 
6, which shows points in the residual space for a leak of 50 l/s 
with 10% uncertainty on demands (the same conditions 
leading to the raw residuals plotted in Fig. 3). Comparing with 
Fig. 3, it can be seen that much more classes will be easily 
distinguished, although not as many as possible faults. 

Working with leaks in the interval [20,60] l/s (between 0.67% 
and 2% of the total demand), after applying the proposed data 

transformation and reduction of number of classes procedures, 
the classifier is proven to distinguish up to 28 classes (for 31 
possible leak locations), being the most common case one in 
which 26 classes are identified: 24 classes containing just one 
leak location, one class associated to three leak locations and 
one class associated to four. These classes are shown in Fig. 2. 
Non-circled nodes belong to classes containing only one leak 
position while nodes circled in a given colour belong to the 
same class. It must be noticed that leaks associated to a same 
class correspond to nodes situated in the same area. 
Summarizing, 24 leaks are expected to be perfectly located 
while the other seven can only be approximately located. 

 

 

Fig. 6. Transformed residuals for a leak size of 50 l/s with a 
10% uncertainty in demands. 

 

4.3 Leak localization results 

In order to illustrate the good performance of the proposed 
methodology, a complete set of results for leak localization in 
the Hanoi network is summarized in this subsection. 
Moreover, the obtained results are compared with the results 
obtained by using the leak-sensitivity analysis with the angle 
metrics proposed in Casillas et al. (2012). 

The comparison of the proposed method with the angle method 
is not straightforward since both methods present different 
types of results. The angle method always indicates (correctly 
or incorrectly) a precise leak location, whereas the method 
based on classifiers proposed in this paper may provide as 
result that the leak can be in several (close between them) 
possible locations. Due to this, the proposed method is 
completed with classifiers that are applied in a second round if 
the class to which the leak is identified to belong is associated 
to more than one location, trying to determine the exact 
location. 

Table 3 shows average percentages for perfect isolation 
obtained by using both the proposed method and the angle 
method under different conditions. The averages are computed 
based on the results of applying leak magnitudes of 20, 30, 40, 
50 and 60 l/s to each node (5*31 single-fault scenarios). Line 
entitled “Noise 2%” corresponds to values computed with a 
noise of 2% on measurements and no uncertainties. 



 
 

     

 

“Uncertainty on leak 10%” corresponds to a 10% uncertainty 
on leak magnitude, none on demands and no noise. 
“Uncertainty on demands 10%” corresponds to a 10% 
uncertainty on demands, none on leak magnitude and no noise. 
Finally, “All” corresponds to 10% uncertainties on leak and 
demands and 2% noise. Training values are computed with the 
same nominal leak magnitudes, uncertainties and noise as the 
values used for testing.  

 

Table  3. Percentage (%) of  location of known leaks in the 
range [20,60] l/s. 

Known leak size 
Classifier Angle 

method 
Noise 2% 83,55 72,87 

Leak uncertainty 10% 83,96 87,74 
Demand uncertainty 10% 54,48 25,16 

All 53,02 25,16 

 

The results presented in Table 3 show that the classifier is 
likely to be preferred over the angles method, especially when 
there are demand uncertainties. From a practical point of view, 
it may be sufficient to localize the leak within a given (small) 
area. For instance, with a relaxation of two nodes, it may be 
considered that the location is correct if a leak is attributed to 
a node that is situated less than two nodes away from the node 
that really presents the leak. This aspect is considered in the 
results presented in Table 4.  

 

Table  4. Percentage (%) of location with error distance <2 
for leaks in the range [20,60] l/s . 

 
Classifier Angle 

method 
Noise 2% 98,21 95,48 

Leak uncertainty 10% 98,04 98,71 
Demand uncertainty 10% 82,40 52,90 

All 82,76 57,42 

 

The values presented in Table 4 show that when there is no 
uncertainty on demands the two methods provide quite similar 
results in all cases. However, the method based on classifiers 
is significantly more accurate when there is uncertainty on 
demands. The difference of accuracy in this case seems 
significant enough to justify the use of the classifier method 
since the uncertainty on demands is a troublesome problem in 
practical leak localization applications. 

Finally, it has been considered that the magnitude of the 
nominal leak used to train/tune the methods can be different 
from the real leak in the system. Results with training values 
have been computed with a leak magnitude value 10 l/s higher 
and lower than the tested values. The efficiencies given for 
leaks of magnitudes 20, 30, 40, 50 and 60 l/s are similar to the 
obtained considering perfect known leak magnitude, i.e. 
around 80% using the classifier method and around 50% using 
the angle method.  

5. CONCLUSIONS 

In this paper, a new fault localization approach based on the 
combined use of models, pressure sensors and classifiers has 
been proposed. The hydraulic model of the network is used to 
generate residuals by comparing model predictions against the 
available measurements provided by sensors. Once residuals 
have been generated they are analysed using supervised 
classifiers in order to allow the leak localization. The 
classifiers are calibrated using data in leak scenarios in all the 
nodes of the network considering uncertainty in demand 
distribution, additive noise in sensors and uncertainty in leak 
magnitude. Finally, the proposed approach has been 
successfully tested using the well-known Hanoi network 
benchmark. 
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