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When an accurate hydraulic network model is available, direct modeling techniques are very 

straightforward and reliable for on-line leakage detection and localization applied to large class 

of water distribution networks. Nonetheless, the assumption of single-leak scenarios is usually 

considered and may not hold in real applications. This paper presents a leakage detection and 

localization method suitable for multiple-leak scenarios in a large class of water distribution 

networks. This method can be seen as an upgrade of a direct-modeling approach in which a 

global search method based on Genetic Algorithms (GAs) has been integrated in order to 

estimate the water loss hotspots and their size. This is an inverse / direct modeling method 

which seeks to take benefit from both approaches: the exploration capability of GAs and the 

straightforwardness and reliability offered by the availability of an accurate hydraulic model. 

The application of the resulting method in a district metered area of the Barcelona water 

distribution network is provided and discussed.  
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1. INTRODUCTION 

Continuous improvements on water loss management are being applied based on the use of 

new available technologies. Nonetheless, the whole leakage localization process may still 

require long periods of time (i.e. weeks, months) with an important volume of water wasted 

before the leak is found[1]. To avoid these inconveniences, leakage detection and localization 

based on mathematical models may be used [2] which can “compare” the data gathered by 

installed sensors in the network with the data obtained by a model of this network. The use of 

flow and pressure sensors together with hydraulic models of the water network for leak 

detection and localization is a suitable approach for the on-line monitoring of water 

balance [3][4][5].  



[1] presents a straightforward direct modelling methodology for leakage detection and 

localization in district metered areas (DMAs1) of water distribution networks which is inspired 

by the binary model-based fault diagnosis theory [6] and takes benefit from those available 

DMA hydraulic models used by water operators. In [7], the method proposed in [1] was 

extended to work with non-binary fault signatures enhancing the overall performance of the 

method. Nonetheless, as inheritance coming from the standard model-based diagnosis theory 

[6], the assumption of single-leak scenarios is made and may not hold in real applications. As a 

consequence, when dealing with multiple-leak scenarios, inaccurate results might be obtained.  

Considering the approach presented by [7], this paper highlights the existing trade-off when 

using a straightforward direct modeling technique assuming a single leak scenario and also 

presents an extension of this method suitable for multiple-leak scenarios where a global search 

method based on GAs has been integrated. The resulting method is a hybrid inverse / direct 

modeling method which tries to take benefit from both approaches: the exploration capability 

of GAs to estimate network water loss hotspots and the size of the leaks and the 

straightforwardness and reliability offered by the availability of an accurate hydraulic model. 

Regarding the application, a DMA of the Barcelona water distribution network has been used to 

illustrate the performance of both methods using simulated single and multiple-leak scenarios 

and a real multiple-leak scenario.  

This paper is organized as follows: Section 2 presents the case study used to illustrate the 

performance of the leakage detection and localization methods. Section 3 recalls the direct 

modeling method proposed by [7] and describes the proposed extension to handle multiple-leak 

scenarios highlighting their performances in simulated single and multiple-leak scenarios. 

Then, in Section 4, the performance of both methods is described using a real multiple-leak 

scenario.  

2. CASE STUDY DESCRIPTION 

In this paper, Nova Icaria DMA of the Barcelona water distribution network) has been used to 

illustrate the performance of the assessed leakage detection and localization methods 

considering simulated single and multiple-leak scenarios and a real multiple-leak scenario. 

Nova Icaria DMA has two inlets (Alaba and Llull), 1996 nodes and 3442 pipes. In Figure 1, 

the water network of Nova Icaria DMA can be seen where the two DMA inlets have been 

highlighted using red triangle symbols. Regarding the instrumentation, the Nova Icaria DMA is 

provided by flow and pressure sensors at every inlet and by 6 inner pressure sensors (green star 

symbols) already deployed in the DMA. 

3. MODEL-BASED LEAKAGE LOCALIZATION METHOD 

3.1. Mathematical Modeling 

The method proposed by [7] works with steady-state models concatenated in an Extended 

Period Simulation (EPS) [8] where the governing laws are determined by the conservation of 

mass / energy [2] and, a demand model is also considered. Thereby, the demand of node i is 

determined by the nodal base demand bdi and the demand pattern pa,i estimated using the billing 

information. Then, leaks are assumed to be located in the nodes and simulated as an emitter 

coefficient Cj generating a leakage size depending on the pressure of that node ( [9][10]): 

                                                           

1
 District Metered Area (DMA) is a defined area of the distribution system that can be isolated by valves and for which 

the quantities of water entering and leaving can be metered.  
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where fj is the leak size; Cj is the associated emitter coefficient; pj is the pressure at node j; and 

γ is an exponent in the range of 0.5 (Hazen-Williams, Darcy-Weisbach, Chezy-Manning 

formulas). In this method, the DMA EPS hydraulic model is implemented in EPANET [11] 

updating the boundary conditions of the network at a given time instant k using the inflow and 

pressure measurements at the DMA inlets. 

 
Figure 1 Water network of Nova Icaria DMA (EPANET model) highlighting inner pressure sensors (green stars) and 

DMA inlets (red triangles) 

3.2. Direct modeling method assuming single-leak scenarios 

3.2.1. Method description 

The method proposed by [7] is based on comparing the monitored pressure disturbances caused 

by leaks at certain inner nodes of the DMA network with the theoretical pressure disturbances 

caused by all potential leaks which are obtained using the DMA hydraulic model. Thereby, the 

residual set, r∈ℜns, is determined by the difference between the measured pressure at certain 

network nodes, p∈ℜns, and the predicted pressure at these nodes considering a scenario free of 

leaks, 0
p̂ ∈ℜns: 

( )ˆ ˆ ˆ
t

1 10 ns ns0
p p p p= − = − −

0
r p p �      (2) 

The size of the residual vector r, ns, depends on the number of inner pressure sensors of the 

DMA network. Regarding the number of potential leaks, f∈ℜnp, it is equal to the number of 

network nodes, np since from the modeling point of view, leaks are placed in these locations 

(single-leak scenario assumption). On the other hand, the theoretical pressure disturbances 

caused by all potential leaks are stored in the theoretical fault signature matrix, FSM∈ℜns×np 

[6], with as many rows as DMA inner pressure sensors, ns, and as many columns as potential 

leaks (DMA network nodes), np. This matrix can be obtained from a sensitivity-to-leak analysis 

which evaluates the theoretical effect of all potential leaks fj in the pressure of all the monitored 

nodes, pi [7]:  
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where ˆ
jif

p is the predicted pressure in the node where the pressure sensor i is placed when a 

nominal leak of size f is forced in node j and ˆ
i0

p is the predicted pressure associated with the 

sensor i under a scenario free of leaks. Both the matrix FSM and the vector r depend on the 

demand and boundary conditions [12] and must be computed at every analysis time step. 

Regarding the leakage localization process at time instant k, this is based on a correlation 

process which compares the residual vector r(k) (Eq. (2)) with the theoretical signatures of all 

potential leaks (columns of matrix FSM(k); Eq. (3)) applying the correlation function2. Those 

potential leaks whose theoretical signatures have the biggest correlation values with the residual 

vector r(k) point out the most probable nodes to have the leak.  

( )( ),max       ,       , , 
jj

k j 1 npρ = …r FSM
      (4) 

where 
, j

ρr FSM
 is the obtained correlation between the residual, r(k,) and the jth–column of the 

theoretical fault signature matrix, FSMj, associated with a potential leak in node j. 

3.2.2. Method performance under multiple-leak scenarios considering the Nova Icaria 

DMA 

In this section, the performance of the direct modeling method (Section 3.2.1) is illustrated 

using a simulated single-leak scenario and an extension of the previous one in which an 

additional simulated leak is added (multiple-leak scenario). In this analysis, all the simulated 

leaks have been forced using an emitter coefficient C=0.92 being 6.5 l/s the average size of the 

resulting leak given that the average pressure in this DMA is around 50 m.w.c. (Eq. (1)).  

In Figure 2, the left plot shows the performance of this method in the simulated single-leak 

scenario highlighting the leak exact location (red cross), the predicted most correlated location 

(blue spot) and other predicted high-correlated locations (black spots)(> 98% of the highest 

correlation). In this scenario, this method predicts the exact location of the simulated leak. 

Nonetheless, a remarkable area of nodes presenting similar correlation values are also 

highlighted since their corresponding theoretical fault signatures are almost non-distinguishable 

in regard to the predicted most correlated location. On the other hand, the right plot in Figure 2 

shows the performance of this method using the multiple-leak scenario mentioned above. In this 

case, the most correlated location predicted by the method (blue spot) misses the exact location 

of the simulated leaks. Nonetheless, the method highlights an area of nodes presenting similar 

correlation values which does contain the location of one of the two simulated leaks. This result 

is also valuable for the network operator to find the exact location of the leak (i.e. using 

acoustic loggers).  

3.3. Hybrid inverse/direct modeling method handling multiple-leak scenarios 

3.3.1. Method description 

Quevedo et al., 2011 assumes single-leak scenarios constraining the number of potential leaks 

(f∈ℜnp) to the number of network nodes (np) considering one different leak per node at the 

same time instant; consequently, the FSM number of columns (Eq. (3)) is also set to np. A 

straightforward procedure to extend this method to deal with multiple-leak scenarios may be 

increasing the number of accepted potential leakage scenarios considering also the existence of 

different nodes with leaks at the same time. As a result, the number of columns of FSM matrix 

also increases and consequently, so does its computation time. In order to overcome this 

drawback, an optimization process based on a global search method (i.e. GAs) could be 

integrated in order to select wisely those scenarios that best match the observed fault signature 
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(Eq. (2)). According to [13], the resulting method can be seen as a calibration process (inverse 

modeling method) where the leak locations and size are considered as model parameters and 

have to be adjusted. [13] and [8] pointed out the goodness of Evolutionary Algorithms (i.e. 

GAs) to carry out the calibration of water network models. In [14] and [15], the procedure 

presented in [13] was extended to solve the leakage localization problem.  
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Figure 2 Performance of the direct modeling method using a simulated single-leak scenario (on the left) and a scenario 

where an extra simulated leak has been added (on the right). The leak exact locations (red cross), the most correlated 

location predicted by the method (blue spot) and other locations presenting also high correlations (black spots)(> 98% 

of the highest correlation) have been highlighted. 

Considering the approaches presented by [15] and [7], the approach presented in this paper can 

be considered as an inverse / direct modeling method which tries to take benefit from both 

approaches: on the one hand, the exploration capability of GAs to estimate water loss hotspots 

and their size and on the other hand, the straightforwardness offered by the availability of an 

accurate network hydraulic model to assess the goodness of the potential solutions proposed by 

the GAs. In this way, the result of the proposed method is a estimation of the potential multiple-

leakage scenario fv
*∈F that best matches the observed theoretical signature (Eq. (2)) where the 

set F is defined as follows: 

{ }* *
, , ,( ) ( , ); 1, , ; 1, ,

nl
o v o v o vx f Nd C o nl v nF

+= ∈ ℜ = = =vF f Z � �     (5) 

nl being the number of leakage hotspots that may exist at the same time and nF the maximum 

number of considered multiple-leakage scenarios. Thereby, a given potential multiple-leakage 

scenario fv
*, is determined by a set of nl leaks, *

,o vf ∈fv
*, which are characterized by the tuple 

(Ndo,v, Co,v) where Ndo,v  is the node index where the leak is located (1 ≤ Ndo,v ≤ np) and Co,v is 

the emitter coefficient value which determines de size of that leak (0 ≤ Co,v ≤ C
max). Then, 

according to Eq. (3), the theoretical observed signature related to fv
* can be computed as 

follows: 

( )* ˆ ˆ ˆ ˆ
t

v 10 ns01 ns
p p p p= − −* *

v vf f
FSM �       (6) 

Thus, the goodness of fv
* is computed using the correlation function, 

,
ρ *

vr FSM
(Section 3.2.1) 

between the observed fault signature, r (Eq. (2)) and the associated theoretical fault signature, 

FSMv
* (Eq. (6)). In general, the optimization problem solved by the GA can be written down as 

follows: 

( )( )
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∈
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v

vf F
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Regarding the number of considered potential multiple-leakage scenarios, nF, which determines 

the GA search-space, in general, this parameter is determined by 
np

nl

 
 
 

being huge for large-class 

of networks. Nonetheless, when considering that just a reduce number of theoretical fault 



signatures FSMj (Eq. (3)) are distinguishable given the use of a constrained number of sensors 

[1], the search-space is also considerable reduced to 
nf

nl

 
 
 

 where nf is the number of 

distinguishable theoretical fault signatures FSMj (Eq. (3)) (nf<np and nf≥nl). 

In Figure 3, the conceptual scheme of the procedure followed at time instant k by the resulting 

GA-based inverse / direct modeling method can be seen. In this scheme, those new steps 

required by the GA-based optimization process are highlighted in green while the others 

correspond to those steps associated with the direct modeling approach described in Section 

3.2.1.   
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Figure 3 Conceptual scheme of the procedure followed by the leakage location GA-based inverse / direct modeling 

method at time instant k highlighting in green those news steps required for the GA-based optimization process.  

3.3.2. Method performance under multiple-leak scenarios considering the Nova Icaria 

DMA 

In this section, the performance of the method presented in Section 3.3.1 is illustrated using the 

simulated multiple-leak scenario described in Section 3.2.2. In Figure 4, the obtained results are 

shown pointing out in blue spots the most correlated locations obtained in hourly runs during a 

whole day. The locations predicted by the method are close to the exact locations. The 

discrepancy between the predictions and the exact locations may be explained as follows: GA 

provides only (near) optimal solutions and as seen in Figure 2, there are nodes contained in a 

certain areas whose theoretical fault signatures are almost non-distinguishable.  

4. REAL MULTIPLE-LEAK SCENARIOS 

4.1. Leakage scenario description 

In this section, the performance of the direct and hybrid modeling methods presented in 

(Section 3.2.1 and Section 3.3.1) are illustrated using a real multiple-leak scenario affecting the 

Nova Icaria DMA . During the first half of 2011, an increase of the DMA minimum night flow 

in 4 l/s was already noticed by DMA SCADA operators. However, since the beginning of 

September 2011, the DMA minimum night flow started a progressive worsening reaching an 

overall increase of 10 l/s in October 2011 when both leaks could be found.  



4.2. Obtained results using the direct and hybrid modeling methods 

In Figure 5, the left plot shows the performance of the direct modeling method using the above 

mentioned real multiple-leak scenario highlighting the leak exact locations (red cross), the most 

correlated location predicted by the methods (blue spot) and other locations presenting also high 

correlations (> 98% of the highest correlation). In this case, the leak location predicted by this 

method is reasonably close to the locations of the real leaks. Apart from the fact of assuming a 

single leak, the resulting prediction error is due to the discrepancies between the hydraulic 

model and the real performance of the DMA network. On the other hand, the right plot (Figure 

5) illustrates the performance of the hybrid inverse/direct modeling method which can predict 

the location of the leaks with a reasonable error. Mainly, this error is due to the mismatch 

between the DMA hydraulic model and the real water network operation and the fact that the 

GA-based optimization process can only provide nearly optimal solutions.  
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Figure 4 Performance of the hybrid inverse/direct modeling method using a multiple-leak scenario highlighting the leak 

exact location (red cross) and the most correlated locations predicted by the method (blue spot) obtained at every hourly 

run over a whole day. 

5. CONCLUSIONS 

This paper presents a hybrid inverse / direct modeling method suitable for multiple-leak 

scenarios. The resulting approach is an extension of a straightforward direct modeling method 

based on the use of available network hydraulic models but constrained to single-leak 

scenarios. This paper highlights the existing trade-off when using a straightforward direct 

modeling approach assuming a single-leak scenario regarding the results obtained with the 

hybrid inverse / direct modeling method capable to handle multiple-leak scenarios.  

The Nova Icaria DMA of the Barcelona water distribution network has been used to illustrate 

the performance of both approaches using simulated single and multiple-leak scenarios and a 

real multiple-leak scenario. In general, when considering multiple-leak scenarios, the direct 

modeling method tends to indicate the location of one of the leaks with an acceptable error due 

to the single-leak assumption and to the modeling inaccuracies. On the other hand, the locations 

predicted by the hybrid method are satisfactorily close to the exact locations of the leaks and 

the discrepancy is mainly due to the modeling errors and to the fact that the GA-based 

optimization process can only provide nearly optimal solutions. 
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Figure 5 Performance of the direct modeling method (on the left) and the hybrid inverse/direct modeling method (on the 

right) using real multiple-leak scenario and highlighting the leak exact locations (red cross), the most correlated 

locations predicted by the methods (blue spot) and other locations presenting also high correlations (> 98% of the 

highest correlation). 
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