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Management and operation of a multiple-objective multisource water supply system from the 

point of view of the conjunctive use of water sources is a very complex problem whose solution 

is not just obtained using analytical models but also through a negotiation process among 

stakeholders and in which Public Bodies have a main role. For these reasons, this problem has 

been addressed using conservative approaches based on simulation models or simulation – 

linear optimization models parameterized using few parameters which, in general, are already 

covered by existing generalized modelling tools using a longer or shorter trial and error 

process. However, these conservative approaches have drawbacks and constraints when dealing 

with certain complexities of water supply systems (i.e.: non-linearity, uncertainty or stochastic 

nature) that may prevent them of finding an optimal solution.  

This paper identifies and tests suitable simulation-optimization approaches found in existing 

generalized modeling tools for optimizing operating rules of multisource water supply systems 

in terms of system guarantee and resulting operating costs. The main purpose is to find out 

whether these approaches are already covering the decision support needs of managers, Public 

Bodies or other stakeholders involved in the operation of these systems, or ‘ad-hoc’ tools may 

be needed 

Keywords: Water Resources Management, Generalized Modelling System, Optimizing 

Operating Rules, Multiple-Source and Multiobjective Water Supply System. 

 

1. INTRODUCTION 

According to [1], the management and operation of multiple-objective multisource water-

supply systems, typically exploiting multiple surface water and groundwater resources, tend to 

be extremely complex. The combination of supply sources and the associated complex 

hydraulic network that delivers water to various demand nodes are often too numerous [2]. The 

large number of variables involved, the nonlinearity of dynamics, the stochastic nature of future 



inflows, and other uncertainties of water resources systems render their management a difficult 

but imperative task [3]. Complexity further increases since the management of these systems 

usually involve many objectives and purposes which might compete among them [1] (i.e. 

maximizing water supply system reliability, meeting water demands, , maximizing hydropower 

generation, cutting operating costs).Based primarily on past experience, reservoir operators 

arrive at some feasible alternatives and mode of operation. In most instances, these alternatives 

are not necessarily optimal, resulting in loss of efficiency and benefits. Decision models can 

help this type of problem considerably by integrating all technical, environmental, economic, 

and social aspects relevant to decision making [4] and can lead authorities and the water 

utilities to undertake a structured and systematic analysis.  

The main purpose of this paper is to identify and test suitable simulation-optimization 

approaches found in existing generalized modeling tools for optimizing operating rules of 

multisource water supply systems coupling integrated water resources management approach at 

the regional level (long-term management) based on water supply sustainability optimization 

(water supply guarantee) and selected operational objectives set for short-term operation in the 

water supply-system (mainly, minimizing water supply deficits and operating costs). The main 

goal is to identify strengths and weaknesses of these approaches and the current tendencies of 

these tools to overcome their drawbacks. A simple but representative case of study inspired in 

the Barcelona water supply system will be used. 

In the paper reminder, past and current trend in water resource management modeling (methods 

and tools) is reviewed in Section 2. Then, simulation-optimization approaches found in existing 

generalized modeling are assessed using the case of study (Section 3). Finally, the conclusions 

are presented in Section 4. 

 

2. WATER RESOURCE MANAGEMENT  

2.1. Modeling approaches 

The management and operation of multisource water-supply systems tend to be extremely 

complex demanding a conjunctive use
1
 of the system’s water sources [1] and the use of models 

to support the decision-making / operation process [4]. A number of mathematical models have 

been developed and applied over the last several decades which, mainly, are grouped into two 

large categories: optimization and simulation methods [5][6].  

Traditionally, the management of multisource and multi-objective water supply systems is 

based on predetermined operation rules which are obtained through a negotiating / discussing 

process supported by simulation models [3]. In general, the following drawbacks can be 

pointed out in this process: many trials are required to test every possible operation rule 

combination, optimum solution could not be achieved. In spite of these drawbacks and the 

development and growing use of optimization techniques, simulation models remain the 

primary tool for reservoir planning and management studies in practice [3]. Simulation models 

allow a more detailed and faithful representation of a real-world system performance than 

optimization models do [4]. As mentioned, the main drawback of simulation is that it requires 

prior specification of the system operating policy. In consequence, the only way to locate an 

optimal policy is through subsequent trials. The studies of large scale systems [4] have 

                                                           
1
The conjunctive use of a multiple-source system was described by Walsh (1971) as ‘the joint use of two or more water 

resources according to a planned rule, leading to a cheaper supply than that gained by their independent use’
  



indicated that even with the use of simple optimization approaches (i.e.: Linear Programming 

optimization), valuable results can be obtained to simplify simulation. [7] presented an 

approach combining simulation and optimization modelling where operation rules of water 

sources are parameterized using few parameters which are estimated using optimization in 

order to obtain an optimal solution. In this scheme, simulation model is used to assess the 

goodness of the estimated parameter set.  

[3] pointed out that due to the stochastic aspect of water resources systems, deterministic 

optimization methods such as linear and dynamic programming [8][9] cannot provide optimal 

solutions. To tackle these drawbacks, Evolutionary algorithms may be used as optimization 

models [10][11]: i.e. Genetic algorithms (GAs). The evolutionary computation (EC) approach 

has been tried out to overcome the complexities, such as, multi-objectives, uncertainty, 

nonlinearity, discontinuity and discreteness which limit the applications of analytical 

optimization methods in reservoir systems optimization. 

2.2. Modeling tools 

In general, modelling systems (tools) applied to water resource management can be classified 

into two groups: generalized modelling systems [6] and site specific (ad-hoc) systems [6]. 

Those systems belonging to the first group are built without considering a specific water supply 

system meaning that they can be applied to a large number of water systems using a certain 

customization. This group of models trends to offer a wide flexibility to the user trying to cover 

those general aspects common in a large number of cases of study. However, they may not 

cover some specific requirements of certain water supply systems. On the other hand, site 

specific or ad-hoc modelling tools are designed and built to be applied in a concrete water 

supply system following predefined objectives. This second approach let obtain very accurate 

solutions covering in details all the known requirements. However, the application of these 

tools to other cases of study may require a lot of re-programming effort. According to [6], the 

general trend in recent years has been to shift away from customized system-specific models to 

generalized models.  

As mentioned in Section 2.1, existing generalized modeling systems are still based, mainly, on 

simulation methods [4][6]. The main reason is due to simulation approaches are more detailed, 

clear and therefore, faithful for water supply system managers [3]. Besides, decisions about 

operation rules of water sources are usually also based on a negotiating process among certain 

related stakeholders (i.e.: Public Body, Local operators and special users) where modeling tools 

are just used as decision support systems. Thereby, the main requirement for these modeling 

systems is that they can reproduce accurately the performance of water supply systems. In this 

sense, modeling systems are required to be capable of describing any water system operation 

rule. In some cases, modeling systems have a customizing environment to implement specific 

operation policies not included in their standard options and an own language syntax.  

Nonetheless, as mentioned in previous section, a pure simulation approach can be very time 

consuming where the used trial and error process does not guarantee an optimal solution. As a 

response to this drawback, the trend in existing generalized modeling systems is to combine the 

simulation approach with a simple and deterministic optimization approach (Rani et al., 2010). 

In general, in this approach the optimization algorithm is parameterized using few parameters 

whose values must be identified by users to try to obtain suitable solutions. 

Although this simple combined simulation – optimization approaches does not let obtain 

optimal solutions since they do not consider important aspects affecting to water resource 

systems (i.e.: stochastic, non-linear, complex nature) [3][10][11], existing generalized 



modelling tools are not integrating more accurate modelling methods (i.e.: GAs). The main 

reason is that in general, generalized modelling tools try to cover a wide set of water resource 

management problems rather than focusing on a specific problem. In [6], the five types of 

generalized modeling tools representative of the existing state-of-the-art in reservoir/river 

system modelling capabilities are described. 

Nonetheless, current providers of generalized modeling tools are very aware of this constraint 

and therefore, a functionality that current modelling systems are starting to offer to overcome 

this drawback is its capacity to be linked with external software modules mainly implementing 

accurate optimization algorithms [12][13]. In this sense, current modelling systems also tend to 

offer a customizing environment where these systems can be customized for specific 

requirements when it is needed. As example, the Aquator generalized modeling tool
2
 

implementing a pure simulation approach can be linked to generalized multi-objective 

optimization module based on GA [13]
 3
. On the other hand, [12] proposes an approach where 

Aquatool generalized modeling tool [14] which is based on a simple optimization
4
 – simulation 

approach is linked to the PIKAIA GA-based optimization tool [15].  

3. ASSESSMENT OF SIMULATION-OPTIMIZATION APPROACHES 

 3.1. Introduction 

In Section 3, the following approaches will be considered: Simulation – Linear Programing 

(LP
5
) Optimization, Simulation / LP Optimization – Genetic Algorithm (GA), Simulation – 

Optimization based on a Genetic Algorithm. These approaches are tested focusing on the water 

supply guarantee and operating cost optimization considering an illustrative case of study 

inspired in the regional water resource system that supplies Barcelona.  

3.2. Case study description 

The considered water supply system has two reservoirs and one desalination plant as water 

sources and supplies water to two demands nodes. Regarding reservoirs, the main properties of 

this type of water sources are: initial Storage (Sini), minimum and Maximum storage (Smin, Smax), 

maximum reservoir outflow (Qmax), unitary operating cost (Cost). In regard to the desalination 

plant, the main properties of this type of water source are: maximum desalination plant outflow 

(Qmax), unitary operating cost (Cost). Regarding to the water supply system demands, the main 

considered properties are: demand time series (Demand), demand priority (Priority). In Error! 

Reference source not found., a basic graph of the considered water supply system can be seen. 

The main difference between both reservoirs is the corresponding operating costs: 0.2 for 

Rerservoir 2 while 0.1 for Reservoir 1. However, the desalination plant still has much higher 

operating costs (0.4) but its supply capacity at every time instant is also much more limited such 

as it occurs in the reality. Regarding the two existing demands, the main difference is that 

Demand 1 has a higher priority than Demand 2. In Error! Reference source not found., the 

considered reservoir inflows and demand time series (volum units) of a given period of time can 

be seen. Each period is divided into 10 time instants and repeats periodically. Thereby, the 

considered whole simulation time contains 6 periods of time with 10 time instants each. 

Regarding the values of these demand time series, all three water sources are required to supply 

the predicted demand.  

                                                           
2 http://www.oxscisoft.com/aquator/ 

3 See pag 19, newsletter Circulation Nº 112 of the British Hydrological Society 

4 The optimization method implemented in Aquatool is based on linear programing (LP)/network flow programing 
(NFP) 
5 Network Flow Programming has been used instead of Linear Programming since it is requires for the optimization of 

the systems efficiency (guarantee) during a given period of time. This method can be considered an extension of the 

known Linear Programming method 



Reservoir 1

Smin=2

Smax=60

Sini=10

Qmax=25

Inflow 1

Cost=0.1

Reservoir 2

Smin=2

Smax=60

Sini=10

Qmax=25

Inflow 2

Cost=0.2

Desalination Plant 1

Qmax=5

Cost=0.4

Demand 1

Priority=2
Demand 2

Priority=1

 

Figure 1 Basic scheme of the considered water supply 

system 

Table 16 Reservoir inflows and demand time series 

i Inflow 1 (-) Inflow 2 (-) Demand 1 (-) Demand 2 (-)

1 2 2 6.2 1

2 2 2 6.2 1

3 12 12 22.2 1

4 15 15 27 1

5 12 12 22.2 1

6 9 9 17.4 1

7 6 6 12.6 1

8 4 4 9.4 1

9 3 3 7.8 1

10 3 3 7.8 1  

3.3. Simulation – Linear Programing (LP) Optimization 

When considering a multi-objective optimization considering maximizing water supply system 

guarantee (efficiency) while minimizing resulting operating costs as optimization objectives, 

the obtained objective function has the following aspect: 

Min( - )
G SYS C SYS

W G W C         (1) 

where GSYS and CSYS are the resulting system guarantee and operating costs, correspondently 

being WG and WC their corresponding weights. On the other hand, this objective function is 

subject to a set of constraints determined mainly by system mass balance equations, constraints 

related to Sini, Smin, Smax and Qmax, etc. Additionally, it must be taken into account that this 

optimization problem is not solved for every time instant but considering all the simulation 

time ( 600 time instants) since this is a requirement when performing system guarantee or 

efficiency analysis.. In the following, the described simulation-optimization method is solved 

considering the case of identifying all system feasible operation points in terms of system 

guarantee / efficiency and resulting operating costs (WG≠0 and WC≠0) using an iterative (trial 

and error) process where WG=1 while Wc is being valued using different values ranging from 

WC=0 until WC=25 using a step of 0.1 (Error! Reference source not found.). This iterative 

process let determine an estimation of the Pareto Optimal solutions. In the following, more 

details are given about the most important operation points shown in Error! Reference source 

not found.. Point 1: this is the system operation point obtained WC=0 obtaining the maximum 

system guarantee value (100%). Point 2: this operation point is obtained when the use of those 

more expensive water sources are starting to be penalized (WC=0.1): it can be considered as an 

estimation of the optimum operation point (maximum efficiency at the minimum operating 

costs
7
). Point 3: its main characteristic is that the demand with lower priority (Demand 1) is not 

supplied anymore. Point 4: in this operation point apart from not supplying Demand 1, that part 

of Demand 2 that requires the use of the desalination plant is not supplied either.   

3.4. Simulation / LP Optimization – Genetic Algorithm (GA)  

The iterative process presented in previous section could not be so straightforward in more 

complex systems or when additional optimization objectives are considered. In this line, (Reis 

                                                           
6 Numerical values of this case of study have been inspired by the reference: Savić, D. A., Bicik, J., & Morley, M. S. 

2011 A DSS Generator for Multiobjective Optimisation of Spreadsheet-Based Models. Environmental Modelling and 

Software, 26(5), 551-561.
 

7  A bigger reduction of the operating costs also implies a reduction of the system efficiency. 



et al., 2005) suggests using a Genetic Algorithm (GA) linked to Simulation – LP Optimization 

method. This approach is tested in this section using the considered case of study where a 

potential solution is given by a set of values for WG and WC. The iterative process is mastered 

by GA and pursues finding an estimation of the Pareto Optimal solutions (Pareto Front). The 

steps that determine this iterative process are the following: Step 1: Generating population of 

solutions (GA tool) using the solutions selected in a previous step an applying the GA native 

processes; Step 2: Evaluate fitness of every solution. The fitness of a certain solution is given 

by the corresponding values of GSYS and CSYS given by the Simulation – LP Optimization tool; 

Step 3: Evaluate whether the stopping criteria of the iterative process is reached (GA tool). If it 

is not reached, then a new iteration starts jumping into Step 1. Otherwise, the process ends 

obtaining an estimation of the Pareto Optimal solutions (GA tool). The obtained Pareto 

Optimal solutions (Pareto Front) can be seen in Error! Reference source not found. which 

are very similar to the ones obtained in previous section (Error! Reference source not 

found.)
8
 with the exception of Point 1 which cannot be found since it is not a Pareto Optimal 

solution. 
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Figure 2 Evolution of the system guarantee / efficiency regarding 

the resulting operating costs. 
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Figure 3 Evolution of the system guarantee / efficiency 

regarding the resulting operating costs: Pareto Optimal 
solutions. 

3.5. Simulation – Optimization based on a Genetic Algorithm 

In this section, considering that the stochastic and non-linear nature of water resource systems 

may prevent the application of the methods presented in Section 3.2 and Section 3.3, a 

Simulation – Optimization method based on GAs (Simulation – GAs) will be used to identify 

the optimal outflows associated to every water source to meet the existing water demands. In 

this case, it is assumed that the outflows of a water source for a certain period will repeat 

periodically for the other periods of the simulation time. As a consequence, the unknowns that 

must be solved by this method are the ones shown in Error! Reference source not found.. In 

this Simulation – GAs approach, a potential solution is given by a set of values of the unknowns 

determined by Error! Reference source not found.. Then, the 3 steps of the iterative process 

explained in Section 3.4 can also be applied in this case using the simulation tool to obtain the 

fitness values (GSYS, CSYS) associated with every solution. Then, at the end of this iterative 

process, an estimation of the Optimal Pareto solutions (Pareto Front) will be obtained (Error! 

Reference source not found.).  

                                                           
8 Point 1’=Point 2, Point 2’= Point 3, Point 3’ = Point 4, Point 4’ = Point 5 and Point 5’ = Point 6.

 



Regarding the obtained Pareto Optimal solution curve, three main linear segments can be 

identified proposing a conjunctive used of the water sources ordered from the cheapest one 

(Reservoir 1) to the most expensive one (Desalination Plant). Res.1: this segment is just 

determined by the use of Reservoir 1; Res.1+Res.2: this segment use intensively Reservoir 1 

and partially, Reservoir 2; Res.1+Res.2+DP: in this case, both reservoirs are used intensively 

while using partially, the desalination plant ending when the system efficiency reaches 100%. 

The obtained results are very similar to the ones of previous sections. Nonetheless, this method 

can be used when considering non-linearities or stochastic nature of the system.  
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Figure 4 Evolution of the system guarantee / efficiency 

regarding the resulting operating costs: estimation of the 

Pareto Optimal solutions9. 

Table 2 Unknowns related to every water source 

i Reservoir 1 (-) Reservoir 2 (-) Desal. Plant (-)

1 X1 Y1 Z1

2 X2 Y2 Z2

3 X3 Y3 Z3

4 X4 Y4 Z4

5 X5 Y5 Z5

6 X6 Y6 Z6

7 X7 Y7 Z7

8 X8 Y8 Z8

9 X9 Y9 Z9

10 X10 Y10 Z10  

4 . CONCLUSIONS 

The main purpose of this paper is to identify and test suitable simulation-optimization 

approaches found in existing generalized modeling tools for optimizing operating rules of 

multisource water supply systems in terms of system guarantee and resulting operating costs. 

The general trend in modeling tools has been to shift away from customized system-specific 

tools to generalized modeling tools in which simulation models or simulation – linear 

optimization models parameterized using few parameters remain the primary methods since 

they are more detailed and clear and therefore, faithful. However, this approach may not always 

let obtain optimal solutions since they do not consider important aspects (i.e.: stochastic, non-

linear, complex nature). Therefore, a functionality that current modelling tools are starting to 

offer to overcome this drawback is its capacity to be linked with external software modules 

implementing accurate and complex optimization methods (i.e.: Evolutionary Algorithms).  

On the other hand, a basic but representative case of study inspired in the Barcelona water 

supply system has been used to test those methods. First, a Simulation – Linear Programing 

(LP) Optimization approach has been tested. In this case, the user must set up the optimization 

problem using a trial and error process in order to obtain a suitable solution. It may not be 

suitable for complex systems or when considering additional linear optimization objectives. 

Besides, when considering non-linear optimization objectives or the stochastic nature of water 

resource systems, this optimization method is not appropriate. Then, the Simulation / LP 

Optimization – Genetic Algorithm (GA) approach has been tested which speeds up the user trial 

                                                           
9 the Operating Costs* variable used in x-axis is not equal to system operating costs but it has been obtained as a 

weighting sum of the operating cost of every water source such that the use of cheaper water sources are stimulated 



and error process of finding the suitable settings of the Linear Programming algorithm. 

Thereby, this method is suitable when this trial and error process is not very straightforward 

(i.e.: complex systems, considering additional optimization objectives, etc). Finally, the 

Simulation – Optimization based on GAs has been considered. This method is especially 

suitable when non-linear optimization objectives/ water resource system stochastic nature are 

considered. Regarding the use of GAs in this approach, they are more sensitive to their 

initialization and setting values than they are in the previous approach. Nonetheless obtained 

results are suitable. 
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