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Abstract— In the recent years, the presence of alternative
power sources, such as solar panels, wind farms, hydro-pumps
and hydrogen-based devices, has significantly increased. The
reasons of this trend are clear: contributing to a reduction
of gas emissions and dependency on fossil fuels. Hydrogen-
based devices are of particular interest due to their significant
efficiency and reliability. Reforming technologies are among the
most economic and efficient ways of producing hydrogen. In
this paper we consider the regulation of hydrogen outflow in
an ethanol steam reformer (ESR). In particular, a fast model
predictive control approach based on a finite step response
model of the process is proposed. Simulations performed using
a more realistic non-linear model show the effectiveness of the
proposed approach in driving the ESR to different operating
conditions while fulfilling input and output constraints.

I. INTRODUCTION

The use of hydrogen as an energy vector could substan-
tially decrease the quantity of gas emissions and the strong
dependence on fossil fuels [1]. Compared to traditional
combustion-based technologies, hydrogen-powered devices,
such as fuel cells, are two times more efficient. In partic-
ular, durability and reliability of fuel cells are significantly
improved when pure hydrogen, rather than hydrogen with
mixture gas, is used. On the other hand, the main drawback
of using hydrogen is related to its production. Although
hydrogen can be generated in many ways [2], most of them
are expensive and require the use of large chemical plants,
which in turn lead to added difficulties in terms of hydrogen
storage and transport. Reforming technologies can overcome
aforementioned problems [3], [4]. Hydrogen production from
ethanol reforming has attracted increasing attention over the
last decades. Compared to other oxygenated fuel families,
ethanol is a suitable alternative fuel due to its low toxic-
ity, high contents of hydrogen, and environmental friendly
nature. Nowadays, hydrogen can be obtained from ethanol
by using different reforming techniques such as the ethanol
steam reforming, oxidation steam reforming, partial oxida-
tion, and decomposition [2].
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The regulation of energy-related devices such as Ethanol
Steam Reformers (ESR) is challenging due to the system
nonlinearities and model uncertainties, and the potential of
such devices to lead to highly unsafe operations. So far,
the control of this type of processes has been addresses by
few authors only. In [5], a design for mass flow control of
ethanol/water and temperature regulation of a 1 kWe thermal
plasma reformer is presented. This work, as well as [6],
proposes PID control schemes but do not consider either
physical or operational constraints. Moreover, these strategies
do not take full advantage of available information about the
system (e.g., future references for batch operation). On the
other side, optimization-based approaches, such as Model
Predictive Control (MPC), allow for hydrogen outflow regu-
lation while taking into account input and output constraints
[7], [8], [9]. However, these strategies are usually based on
full-state feedback. Unfortunately, given the dimensions of
the resultant prediction model and the complexity added by
the design of state observers, this implementation might be
impracticable in real time.

In this paper, the regulation of the hydrogen outflow in
an isothermal low-temperature ESR is addressed using a
Quadratic Dynamic Matrix Control (QDMC) scheme [10]
based on a linear input-output approximation of the con-
sidered MISO system. This approach allows to implement
a model predictive controller in real-time that guarantees
proper performance on the highly nonlinear ESR model.
Simulations show the effectiveness of the proposed approach
in driving the ESR to different operating conditions while
fulfilling the constraints.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes the ESR and presents the nonlinear
model used here as virtual reality. Section III describes
the control-oriented model and its identification. Section IV
presents the key concepts related to the QDMC approach.
Section V presents and discusses the simulation results
obtained from the application of the QDMC to the ESR.
Finally, in Section VI the main conclusions are drawn.

II. ESR DESCRIPTION

In this work, a system for the production of hydrogen
from ethanol is considered. This system integrates a catalytic
ethanol steam reactor and a separation stage based on a
selective membrane. In the reactor, a mixture of different
gases is obtained from the reformation of ethanol with
water. In the separation stage, hydrogen is separated from
the other gases. Both operations occur in series in a single



reaction and separation module named staged membrane
reactor. Further details of the physical description of the
settling can be found in [4].

The kinetic equations of the most relevant chemical
reactions of ethanol steam reforming over a Co3O4ZnO
catalyst have been taken from [11] and are here summarized:

C2H5OH −−→ CH3CHO + H2, (1a)
C2H5OH −−→ CO + CH4 + H2, (1b)

CO + H2O −−⇀↽−− CO2 + H2, (1c)
CH3CHO + 3 H2O −−→ 2 CO2 + 5 H2, (1d)

where (1a) corresponds to the ethanol dehydrogenation into
acetaldehyde (CH3CHO), (1b) to the ethanol decomposition
into carbon monoxide (CO), metane (CH4) and hydrogen
(H2), (1c) to the water-gas shift, and (1d) to the acetaldehyde
steam reforming into H2 and carbon dioxide (CO2).

In the following, the ESR behavior will be approximated
by a one-dimensional dynamic model (assuming certain
conditions are satisfied, i.e., isothermal operations, plug-
flow reactor modeling, diffusion slower than convection,
low-diameter monoliths, isobaric conditions, low operating
pressure). The model is based on the mass balance of
each of the seven j ∈ (1, 2, . . . , 7) considered components
(C2H5OH, H2O, CH3CHO, CH4, CO, CO2 and H2). The
mass balance is described by the following set of Partial
Differential Equations (PDEs):

∂Cj(t, z)

∂t
+Cj(t, z)

∂v(t, z)

∂z
+v(t, z)

∂Cj(t, z)

∂z
=
∑
i

νj,i ri(t),

(2)
Cj(0, z) = Cj,0(z) ∀ z ∈ [0, L], (3)
Cj(t, 0) = Cj,in(t) ∀ t ≥ 0, (4)

where (3) and (4) are the initial and the boundary con-
ditions, respectively, while i ∈ (a, b, c, d) is the reaction
index according to (1). Variable t indicates time while z
the position along the axial direction of the reactor (in
m). Notice that L is the axial length of the reactor (in
m). Cj indicates the concentration of j-th component (in
mol/m3), and Cj,in the concentration at the reactor inlet.
The stoichiometric coefficient of the j-th component in the
i-th reaction (dimensionless) is denoted by νj,i while the
reaction rate of the i-th reaction by ri (in mol/(m3 min)).
This latter describes the speed of each chemical reaction in
(1) and depends jointly on the concentration, temperature,
pressure and time through non-linear relations (see [8] for
further details). The linear velocity of the gas mixture is
denoted by v (in mol/s) and is defined as v = vin(1 + εX),
where ε represents the molar relation of the considered
reaction and X the conversion rate. This latter is defined as
X =

Cj,in−Cj

Cjε+Cj,in
. The volumetric flow rate Q (in m3/min)

is defined as Q = Av, with A being the section of the
tubular reactor (in m2). The molar flow rate F (in mol/min)
is function of the concentration, i.e., Fj = QCj . In the
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separation module, a tubular membrane divides the volume
in two parts: the retentate side and the permeate side (see
Fig. 1). A paladium-based membrane that only permeates
the hydrogen has been considered in the separation stage.
To model the retentate side, where no reactions occur, the
right-hand side of (2) should be replaced by the hydrogen
permeated through the membrane (per volume unit). Due to
connection in series of the stages, the boundary conditions
for the separation stage (retentate) are given by the flow rates
at the reaction stage outlet. On the permeate side, only the
accumulated hydrogen flow rate is modeled and atmospheric
pressure is assumed. In order to model the mass transfer
mechanism, the Sieverts law has been used [4]

FH2 =
Pe
ρ
Am

(√
PH2,r −

√
PH2,p

)
, (5a)

Pe = Pe,0 e
− Ea

RT , (5b)

where FH2 is the molar flow rate of hydrogen that
permeates the membrane (in mol/min), Pe is the membrane
permeability (in mol/(m min Pa0.5)), ρ is the membrane
thickness (in m), Am is the membrane surface area (in m2),
PH2,r is the H2 partial pressure at the retentate side (in
Pa), PH2,p is the H2 partial pressure at the permeate side
(in Pa), Pe,0 is the permeability pre-exponential factor (in
mol/(m min Pa0.5)), T is the temperature (in K), Ea is the
apparent activation energy (in J/mol), and R is the ideal gas
constant (in Pa m3/(mol K)). Here, Pe,0 and Ea values have
been taken from the parameters fitting procedure reported in
[8] using experimental data of a staged-membrane reactor
conducting ethanol steam reforming with a cobalt-based
catalyst and a paladium-based membrane.

The original set of PDEs in (2) has been spatially
discretized using a backward finite differences, i.e.,

∂Cj
∂z

=
Cj(z)− Cj(z − 1)

∆z
, (6)

thus leading to a set of high-order and non-linear Ordinary
Differential Equations (ODEs), describing a dynamic model
with two inputs, i.e., the inlet ethanol and water flow rates,
FC2H5OH,in and FH2O,in, respectively, and the outlet hydro-
gen molar flow rate FH2 as the considered output. In this
paper, the spatial discretization was carried out considering
20 discretization points. For further details about the model
and the values of all the parameters, see [8], [11].

III. CONTROL-ORIENTED MODELING APPROACH

According to Section II, the overall model is defined as
a set of 7 non-linear PDEs that, once discretized, result in



140 non-linear ODEs. Optimization-based controllers (such
as MPC) have great advantages over PIDs since they are
able to (i) easily deal with MIMO systems, (ii) include input
and output constraints, (iii) explicitly optimize performance,
(iv) take into account future references. On the other hand,
the main drawback of MPC lies in its complexity. In-
deed, when dealing with high-order non-linear systems, their
computational burden may result prohibitive for real-time
control applications. For this reason, input-output models can
be employed in place of the high-dimensional state-space
representations in order to dramatically reduce the online
cost while still guaranteeing suitable performance. In the
following, a particular family of input-output models will
be considered, i.e., Finite Step Response (FSR) models.

A. Step Response Models

According to the FSR model formulation, when a linear
SISO system is considered, the the evolution of the plant
output over a time horizon N can be predicted as

yk = yss +

N−1∑
l=1

Sl∆uk−l + SN (uk−N − uss),

where uk and yk are the input and output of the plant
at time instant k while uss and yss are the steady-state
input and output, respectively. The FSR coefficients are
denoted by Sl while ∆uk := uk − uk−1. Notice that, for
asymptotically stable systems, N represents the settling time
(i.e. yk+N ≈ yk+N+1 ≈ · · · ≈ y∞). For a MIMO system,
the FSR formulation becomes

y1
k = y1

ss +

Nu∑
i=1

(
N−1∑
l=1

Sli,1∆uik−l + SNi,1(uik−N − uiss)

)

y2
k = y2

ss +

Nu∑
i=1

(
N−1∑
l=1

Sli,2∆uik−l + SNi,2(uik−N − uiss)

)
...

y
Ny

k = yNy
ss +

Nu∑
i=1

(
N−1∑
l=1

Sli,Ny
∆uik−l + SNi,Ny

(uik−N − uiss)

)
where Nu and Ny represent the total number of inputs and
outputs of the system, respectively.

B. Least-Square Identification

The FSR coefficients can be obtained by performing
a set of step responses on the real plant/high-order non-
linear model. Let denote with I := {1, 2, · · · , Nu} and
B := {1, 2, · · · , Ny} the set of manipulated and measured
variables, respectively. For each input channel i ∈ I a
step of magnitude j is applied while keeping all the other
inputs at steady state. Next, Λji,b ∈ RN are defined as the
step-response coefficients related to output channel b ∈ B,
obtained by normalizing the b-th output response with respect
to the magnitude of the applied step. Due to the non-
linearity of the model, a set (j1, · · · , jd) of inputs of different
magnitudes are applied to channel i, collecting all the results
in Λi,b := [(Λj1i,b)

T, · · · , (Λjdi,b)T]T. Finally, the “best” FSR

coefficients Sb
i :=

[
S1
i,b, · · · , SNi,b

]T
relating the i-th input

to the b-th output are obtained by minimizing

JS(Sb
i ) := ||ΓSb

i −Λi,b||
2

2
,

where Γ := [IN , IN , · · · , IN ]
T ∈ RN |Ji|×N . The nomencla-

ture | · | represents the cardinality of a set, and IM defines
a square identity matrix of dimension M ×M . The same
operation is repeated for all input and output channels.

IV. PREDICTIVE CONTROL STRATEGY

QDMC is a predictive control approach widely adopted
in industry. The suitability of this control scheme for SISO
and MIMO plants has been highlighted by many authors,
e.g., [12], [13]. When input-output models are considered
for controlling high-order systems, a QDMC scheme allows
to dramatically reduce the online computational complexity
of an optimization-based control approach [14], [15], [16].
In the following, the QDMC formulation for the SISO case
is firstly presented and then the discussion is extended to the
MIMO case in Section IV-B; for more details see [10], [17],
[18].

A. Future Output Predictions

Define the free response fk+q|k as the system output yk+q

obtained by assuming no input variations for all future steps
after k (∆uk+q = 0, ∀q ≥ 0), i.e.,

fk+q|k := yk+q in case of ∆uk+q = 0, ∀q ≥ 0,

and define

fk :=
[
fk|k fk+1|k · · · fk+N−1|k

]T ∈ RN .

Notice that xq|k represents the value of x at time q starting
from instant k. According to the expressions outlined in
Section III-A, the one-step-ahead predicted output can be
written as

ŷk+1|k = S1
1,1∆uk|k + fk+1|k, (7)

which accounts for the steady-state value of the system
output (fk+1|k) and the current input variation (∆uk|k).
Now, introduce h ≥ 0 as the prediction horizon and m as
the control horizon, with h ≥ m. The choice of m ≤ h
constrains the input variations to be zero after m, i.e.,
∆uk+g|k = 0, ŷk+g|k = fk+g|k, ∀g ∈ (m + 1, · · · , h),
which is computationally more efficient for the optimization-
based control algorithm later discussed in Section IV-C.
Then, it is possible to generalize the formulation of (7) to a
h-steps ahead prediction scheme as

ŷk = Ψfk + S1
1∆uk, (8)

where

ŷk :=
[
ŷk+1|k ŷk+2|k · · · ŷk+h|k

]T ∈ Rh,

∆uk :=
[

∆uk|k ∆uk+1|k · · · ∆uk+m−1|k
]T ∈ Rm.



The matrix Ψ is used as a shifting mask for the array
fk, while the low triangular matrix S1

1 contains the FSR
coefficients as

S1
1 =


S1

1,1 0 0 · · · 0
S2

1,1 S1
1,1 0 · · · 0

...
...

...
. . .

...
Sh1,1 Sh−1

1,1 Sh−2
1,1 · · · Sh−m+1

1,1

 ∈ Rh×m.

(9)
At each time instant k, the free response array is updated
taking into account the current input variations, i.e.,

fk+1 := Υfk + S1
1∆uk|k,

where Υ is a suitable shifting matrix, and f0 := f init0 ∈
RN represents the initial value of the free response array.
Discrepancies between the FSR model and the original non-
linear plant can be taken into account by considering a
correction term. A reasonable estimation of the unmeasured
disturbance is given by

dk|k = ymeask − fk|k,

where ymeask is the measured output at time instant k.
The correction term can be therefore incorporated in the
prediction equation as follows:

ŷk = Ψfk + S1
1∆uk + dk,

where dk := [dk+1|k dk+2|k · · · dk+h|k]T ∈ Rh and it
is assumed that dk|k = dk+1|k = · · · = dk+h|k. The
overall prediction scheme contains the contribution of past
inputs (Ψfk), the future control actions (S1

1∆uk), and the
correction term (dk).

B. Future predictions for MIMO systems

The prediction scheme, introduced in the previous section
for SISO plants, can be straightforwardly extended to MIMO
systems as follows:

ŷ1
k

ŷ2
k
...

ŷ
Ny

k


︸ ︷︷ ︸

ỹk

=


n1

k

n2
k
...

n
Ny

k


︸ ︷︷ ︸

f̃k

+


S1

1 · · · S1
Nu

S2
1 · · · S2

Nu

...
. . .

...
S

Ny

1 · · · S
Ny

Nu


︸ ︷︷ ︸

S̃


∆u1

k

∆u2
k

...
∆uNu

k


︸ ︷︷ ︸

∆ũk

(10)

where ỹk ∈ RNy h, f̃k ∈ RNy h, S̃ ∈ RNy h×Nu·m and
∆ũk ∈ RNum. Notice that the elements nb

k = Ψfb
k + dbk,

while the elements Sb
i are the FSR coefficients matrices

relating the i-th input to the b-th output and structured as
shown in (9), whereas ∆ui

k represents the input variations
applied to the i-th input.

C. Optimal Control Law

The QDMC design implies the minimization of a given
cost function J(∆ũk) with respect to the input sequence

∆ũk while enforcing both input and output constraints. The
related optimization problem can be stated as

min
∆ũk

ek
TQ̃ek + ∆ũk

TR̃∆ũk, (11)

subject to ∆umin ≤∆ũk ≤ ∆umax, (12)
umin ≤ ũk ≤ umax, (13)
∆ymin ≤∆ỹk ≤ ∆ymax, (14)
ymin ≤ ỹk ≤ ymax, (15)

where the array

ek = f̃k + S̃∆ũk − r̃

represents the differences between predicted outputs ỹk and
reference trajectories r̃. The positive semi-definite matrix Q̃
and the positive definite matrix R̃ are used as weighting fac-
tors for reference tracking and input variations, respectively.

D. Receding Horizon Approach

At each time instant k, the solution of the optimization
problem produces an optimal input sequence ∆ũopt

k over
the next h time instants. According to the so called receding
horizon (RH) approach, the control action is provided by
applying only the first input variation to the plant, i.e.,

uik = uik−1 + ∆uik|k, ∀i ∈ I,

where uik−1 is the value of the i-th input applied to the plant
at time k − 1.

E. Output constraints softening

Even if correction terms based on the estimation of un-
measured disturbances are taken into account, discrepancies
between the non-linear plant and the FSR model could give
rise to violation of output constraints. For this reason, a
softening of such constraints is adopted in order to ensure
feasibility of the open-loop optimal control problem at each
iteration. Resorting to the definition of (10), the optimal
control law in (15) can be written in the form of a Quadratic
Programming (QP) problem as

min∆ūk
J = 1

2∆ūT
kH̄∆ūk + c̄T∆ūk,

subject to
Ā∆ūk ≤ b,

(16)

where H̄ and c̄ are a suitable matrix and a suitable array,
respectively, both used into the cost function, while the
matrix Ā and the array b are used to enforce input and
outputs constraints. The new optimization variable is now
defined as

∆ūk =

[
∆ũk

ε

]
where the term ε is weighted to account for the possible
violations of the output constraints. Refer to [17] for more
details about constraints softening and QP problem formula-
tion.



Fig. 2. FSR identified coefficients (black dashed line) and system outputs
(circle lines)

V. SIMULATION RESULTS

A. Scheme Setup

The FSR model used for the QDMC design has been
identified according to the approach outlined in Section III.
The system was subjected to different step inputs starting
from different initial conditions.

TABLE I
STEADY-STATE CONDITIONS USED IN LS IDENTIFICATION

uss
eth uss

wat yss

Steady state 1: 2.1× 10−3 9.78× 10−3 10.8122
Steady state 2: 1.9× 10−3 9.78× 10−3 9.7654
Steady state 3: 2.3× 10−3 9.78× 10−3 11.7689
Steady state 4: 2.2× 10−3 10× 10−3 11.1693
Steady state 5: 1.9× 10−3 8.8× 10−3 10.3813
Steady state 6: 2.1× 10−3 9.0× 10−3 11.2732

For each steady condition summarized in Table I, the
influence of the ethanol input has been recorded by varying
ueth with respect to its steady-state value and keeping
constant usswat. The same procedure was adopted to obtain
the influence of water input over the output. According to
the identified FSR coefficients shown in Fig. 2, it is possible
to see that both inputs have fast dynamics. On the other hand,
uwat shows a negative static gain with an inverse response
transient and its static gain is an order of magnitude smaller
than the one related to ueth.
According to physical limits, the following constraints have
been set in the control problem:

1.8× 10−3 ≤ uwat ≤ 2.4× 10−3 [mol/min],

8.76× 10−3 ≤ ueth ≤ 10.8× 10−3 [mol/min],

|∆uwat| ≤ 0.6× 10−3 [mol/(min s)],

|∆ueth| ≤ 2.04× 10−3 [mol/(min s)],
0 ≤ y ≤ 12 [ml/min],

|∆y| ≤ 3 [ml/(min s)].

All the simulations are performed starting the plant from
steady-state condition 1 of Table I. A time-varying reference
trajectory is used to drive the ESR to different operating
conditions. Such reference represents a certain rate of hy-
drogen demanded from a fuel cell placed in series to the
plant. In all the proposed scenarios, the controller runs with a
sampling time of 20 ms. The simulations are performed using

MATLAB and its numerical integrator ODE23s for solving
the non-linear model of the ESR. The commercial solver
MOSEK [19] is used to solve the QP problem on an i5 @
3.2-GHz 64-bit CPU system with 8 Gbytes of RAM and O.S.
Windows 10. The computational time required by MOSEK
to solve the optimization problem varies according to the
controller parameters. Finally, possible output violations have
been weighted by a factor ρy = ρ∆y = 103 in all the
proposed simulations.

B. Control Results

The behavior of the control inputs are shown in Figs. 3 and
4, where different time-varying trajectories have been used.
For both cases a prediction horizon h = 2 s and a control
horizon m = 1 s have been chosen. Notice that in this case
h has been chose long enough to guarantee the closed-loop
stability.

In Fig. 3, the reference trajectory (thin red line) drawn
by the fuel cell never goes beyond the output constraints.
As it may be expected, a higher value of Q̃ determines
a faster response of the controller to reach the set-point.
Input constraints are almost never active for both inputs,
thus avoiding excessive stress of actuators. It is interesting
to notice that, with R̃ = 10I2m and Q̃ = 1Ih, the control
input related to the water inflow is kept almost at a constant
value during the entire simulation. This fact is given since
variations in the water inflow would cost almost five times
more than the corresponding variations in the ethanol inflow.
However, when the controller is asked to be more reactive
(Q̃ = 10Ih), both inputs are conveniently used.

In Fig. 4, the case of a fuel cell demanding more than the
admitted hydrogen rate is addressed. The first 18 seconds
of simulation depict the same behavior as in the previous
scenario: as soon as the fuel cell demands to ESR a rate of
hydrogen that is higher than the admitted one, the controller
enforces the constraints by keeping the plant as close as
possible to the maximum output value. In this case, it is seen
that the control inputs have a slightly oscillating behavior that
is consequence of the presence of soft constraints. In order
to avoid this occurrence and to lower induced stress to the
actuators, higher values of ρy can be used, fact that, in turn,
reduces possible constraints violations. Finally, similarly to
the previous case, for Q̃ = 1Ih and R̃ = 10I2m the water
inflow is almost constant for the entire simulation, while
ethanol inflow has been used to drive the plant.

Even though in the presented results the constraints over
the water inflow are never active, they cannot be removed
in order to reduce the computational burden of the online
optimization. Indeed, since the proposed simulations do not
represent the general case, a possible violation of these limits
(e.g., generated by the influence of exogenous disturbances
or the effect of system faults) can lead to severe damages of
the plant.

VI. SUMMARY

In this work, a PDE-based model describing an ESR has
been introduced. Its non-linearities and complex structure



Fig. 3. ESR control with different control weights: Q̃ = 10 and R̃ = 1
(blue line), Q̃ = 1 R̃ = 10 (brown dash-dot line). Top panel: output
behavior tracking the set-point (thin red line) with inactive output constraints
(black dashed line). Bottom panels: Control actions and input bounds (black
dashed lines) obtained with h = 2 s and m = 1 s.

Fig. 4. ESR control with different control weights: Q̃ = 10 and R̃ = 1
(blue line), Q̃ = 1 R̃ = 10 (brown dash-dot line). Top panel: output
behavior tracking the set-point (thin red line) with active output constraints
(black dashed line). Bottom panels: Control actions and input bounds (black
dashed lines) obtained with h = 2 s and m = 1 s.

make the controllability very challenging with common con-
trol approaches like PID. For this reason, a QDMC algorithm
has been developed: this control strategy, according to a
linear FSR model of the plant, performs optimal online
control. Both input and output constraints are taken into
account in order to avoid possible risks and ensure safety
during plant operations. Even though a linear model is
used by the predictive controller, simulations show suitable
performance of the overall closed-loop system.
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