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Abstract— In order to cope with uncertainties present in
the renewable energy generation, as well as in the demand
consumer, we propose in this paper the formulation and
comparison of three robust model predictive control techniques,
i.e., multi-scenario, tree-based, and chance-constrained model
predictive control, which are applied to a nonlinear plant-
replacement model that corresponds to a real laboratory-scale
plant located in the facilities of the University of Seville. Results
show the effectiveness of these three techniques considering the
stochastic nature, proper of these systems.

I. INTRODUCTION
A microgrid is a small local network of electric generation

that is able to integrate some renewable energy sources.
Due to the intermittence in the power generation from the
renewable resources, storage devices (e.g., batteries, super-
capacitors, conventional capacitors, etc.) deserve special at-
tention in the operation of this type of systems. In particular,
we focus in this work on the use of hydrogen as an energy
store, see, e.g., [1] and [2].

The control aim in a microgrid is to meet the consumer’s
demand in an optimal, economic, and safe manner despite
the uncertainties that appear in the processes. Taking into
account that there are mathematical models available that
represent the main dynamics of these systems [3], and that
the control problem requires of handling issues such as
constraints, delays and disturbances, model predictive control
(MPC) can be used in this context. MPC is a strategy widely
used in industry for solving problems considering constraints
on the manipulated and controlled variables, delays, nonlin-
earities, etc. The main idea of MPC is to obtain a control
signal solving at each time instant an optimization problem
in a finite prediction horizon based on the system model [4].
The first component of the control signal is implemented
in the current time step and the problem is solved in the
next time instant following a sliding time horizon strategy.
Different MPC approaches have been applied in order to
achieve an economical and optimal efficiency in energy
management of a microgrid, see e.g., [5]–[8].

The classical formulation of MPC does not allow con-
sidering systems with uncertainties although some MPC
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schemes have been proposed to ensure stability and com-
pliance with constraints in the presence of disturbances [9].
It is worthwhile to mention that in the design of predictive
controllers for dynamical systems subject to disturbances
and/or uncertainty, we cannot strictly speak about feasibility
but a probability that a certain solution is feasible.

In this paper, we use three different stochastic-
programming-based MPC techniques to deal with the un-
certainty of the power demand and power generation. In
the first place, we consider multi-scenario MPC (MS-MPC),
which consists of calculating a single control sequence that
takes into account different possible evolutions of the process
disturbances. Hence, the control sequence calculated has a
certain degree of robustness against the possible realizations
of the uncertainties. This approach is used for example in
[10] in the field of control of smartgrids, and [11] for water
systems. One of its advantages is that it is possible to
calculate bounds on the probability of constraint violation
as a function of the number of scenarios considered [12].
An alternative to model the uncertainty that is faced by this
type of systems is to use rooted trees. The rationale behind
this approach is that uncertainty spreads with time, i.e., it
is possible to predict more accurately what the demand will
be in a short horizon than in a large one. For this reason,
the possible evolutions of the disturbances can be confined
within a tree. Consequently, the outcome, the so called tree-
based MPC (TB-MPC), is a rooted tree of control actions.
This approach is used for example in [13] for a semi-batch
reactor example and in [14] in the context of water systems.
Finally, chance-constrained MPC (CC-MPC) is also studied
in this work. CC-MPC uses an explicit probabilistic modeling
of the system disturbances to calculate explicit bounds on
the system constraint satisfaction. For instance, [15] presents
chance-constrained two-stage stochastic program for unit
commitment. In [16] presents a CC-MPC applied to the
stock management in hospital pharmacy. An application of
this technique in the context of the drinking water network
(DWN) of the city of Barcelona can be seen in [17]. Also,
[18] shows a comparison between TB-MPC and CC-MPC
approaches applied to DWN. Further, this subject has drawn
significant interest, a stochastic optimization model applied
in the context of the control of microgrids, seen, e.g., [19]–
[22] and references therein.

All the controllers presented in this paper have been tested
with the nonlinear model of a laboratory-scale microgrid
[23] and presented via simulation. The main contribution
of this paper relies on the suitable review and comparison
of the three proposed robust MPC techniques in order to



highlight their main advantages and weakness when coping
with disturbances and uncertainties within the closed loop of
a hydrogen-based microgrid.

The remainder of this paper is organized as follows. First,
a description of the microgrid and its linear model are shown
in Section II. Section III presents the optimization problem
and the robust MPC techniques formulation. The results from
simulations are shown in Section IV. Finally, in Section V,
some conclusions are drawn.

II. DESCRIPTION OF THE HYLAB MICROGRID

The microgrid used is the plant developed by HyLab. The
plant consists in a modular system equipped with various
components that allow experimentation and simulation of
various types of renewable energy sources. In Figure 1, the
experimental HyLab plant is shown.

Fig. 1: Experimental HyLab Plant

The system consists of a photovoltaic field, emulated by
an electronic power source, which produces electricity to
supply the load. Any power excess is stored in a battery
bank or derived to the electrolyzer. If the power obtained
from renewable energy is not enough, both the fuel cell
and the battery bank can provide power to the load, which
is emulated by the electronic load source. The microgrid
can work either connected to the network or as an isolated
system. The Hydrogen Path is composed of two subsystems:
one for producing and storing hydrogen and the other for
feeding the fuel cell with hydrogen and providing power
to the grid. The fuel cell and the electrolyzer are of a
Proton Exchange Membrane (PEM) type and the hydrogen is
stored as metal hydrides. The converters are used as power
interfaces that allow the energy transfer between different
devices. All units are connected via a DC bus that is regulated
by the battery bank.

A. Microgrid Linear Model and Constraints

Behind the experimental setup, there is a set of nonlinear
complex subsystems. The nonlinear model of the described
plant, its simulation and validation are presented in [23].
In order to apply linear MPC techniques, it is necessary to
take into account a linear model of the system. The linear
continuous system was discretized using Tustin’s method
with a sampling time of 30 s.

The linear model of the plant consists of two input
variables, PH2 and Pgrid, which are measured in kilowatts
(kW). PH2 represents the power of the electrolyzer and the
power of the fuel cells: when it is greater than zero, the
PEM fuel cell is working (Pfc) and when PH2 is negative,
it indicates that the electrolyzer is operating (Pez). Both the
electronic load and the electronic power source can either
deliver or absorb power from the General Power Grid (GPG).
Moreover, Pgrid represents the power of GPG, which is
positive when the power is supplied to the microgrid from
the GPG and it is less than zero when delivering power to the
GPG. The system is subject to disturbances (Pnet) resulting
from the difference between the power produced and the
power demanded. The states are given by the state of charge
of the batteries (SOC) and the metal hydrides level (MHL)
of the storage tank, both measured in percentage (%). The
linear model of the plant can be written as

x(k + 1) = Ax(k) +Bu(k) + Eω(k). (1)

In this model, u(k) = [PH2, Pgrid]
T represents the manip-

ulated variables; x = [SOC,MHL]T are the states of the
system and ω(k) = Pnet represents the system disturbance.

The identification process for obtaining the linear model
of the plant is developed in [8].

In order to avoid damage to the equipment, it is necessary
to consider limits for the Hydrogen Path operation, PH2,
constraints for Pgrid and their incremental signals ∆PH2 and
∆Pgrid, respectively, which correspond to physical limita-
tions of the connection, i.e.,

− 0.9 kW ≤ PH2 ≤ 0.9 kW, (2a)
− 2.5 kW ≤ Pgrid ≤ 2 kW, (2b)
− 0.9 kW ≤ ∆PH2 ≤ 0.9 kW, (2c)
− 2.5 kW ≤ ∆Pgrid ≤ 2 kW. (2d)

Both the battery bank and the metal hydrides storage tank
have limited capacity to prevent any plant damage, i.e.,

40% ≤ SOC ≤ 90%, (3a)
10% ≤ MHL ≤ 90%. (3b)

The input constraints given by (2) can be rewritten as

u(k) ∈ U , (4)

and the state constraints defined by (3) are expressed as

x(k) ∈ X . (5)

III. MPC IN MICROGRID HYDROGEN-BASED STORAGE

Due to the random behavior that compromises the energy
generation from renewable sources and the demand con-
sumers, the use of robust MPC techniques that account for
the uncertainty is a necessity in this context, in order to meet
the energy demand.

MPC is a strategy of control based on the explicit use of a
dynamical model to predict the state/output of the process in
future instants of time along a prediction horizon N . The set



of future control signals is calculated by the optimization of
an objective function. Only the control signal calculated for
the time instant k ∈ Z+ is applied to the process, whereas
the others are discarded.

The optimization problem to solve at each time instant k
is

min
u[k : k+N−1]

k+N−1∑
i=k

J(x(i), u(i)), (6)

subject to

x(i+ 1) = Ax(i) +Bu(i) + E,ω(i), (7a)
x(i+ 1) ∈ X , (7b)

u(i) ∈ U , ∀i ∈ ZN−1
0 . (7c)

The cost function that is minimized is given by

J(x(k), u(k)) = (x(k)−xref)
TQ(x(k)−xref)+uT (k)Ru(k),

with Q = 1 and R = [500, 600]T , which are weighting
factors obtained after application of economic and technical
criteria, given by [1]. In order to keep appropriate levels in
the states of charge of the battery and the hydrogen tank, the
references given are xref = [60%, 45%]T , respectively.

The controller is designed so that the batteries are the
first way of energy storage. If there exists a big difference
between the demanded energy and the produced energy
by the renewable sources, it proceeds to the production of
hydrogen.

A. Multi-scenarios MPC approach (MS-MPC)

The optimization based on scenarios provides an intuitive
way to approximate the solution to the stochastic optimiza-
tion problem. To design the MS-MPC, it is enough to know
several scenarios with potential evolutions of the energy
demand and generation. A common control sequence that
optimizes all the considered scenarios is calculated, obtaining
in this way a certain robustness against the different possible
evolutions of the disturbances. The scenario-based approach
is computationally efficient since its solution is based on a
deterministic convex optimization, even when the original
problem is not [24].

The main idea for optimization considering a finite number
of scenarios is to rewrite the same system for each one of
known disturbances. The problem to be solved consists of

min
u[k : k+N−1]

K∑
j=1

(

k+N−1∑
i=k

J(xj(i), u(i))), (8)

subject to

xj(i+ 1) = Axj(i) +Bu(i) + Eωj(i), (9a)

xj(i+ 1) ∈ X , ∀i ∈ ZN−1
0 , ∀j ∈ ZK

1 , (9b)
u(i) ∈ U , (9c)

where K is the number of scenarios considered.
A control sequence is optimized for the augmented system

given by (9a), which includes different possible evolutions
of the original one. The calculation of the controller will

result in a unique robust control action that satisfies all the
potential disturbances of this extended system.

B. Tree-based MPC (TB-MPC)

This technique consists in transforming the different possi-
ble evolutions of disturbances into a rooted tree that, through
its evolution, diverges and generates a reduced number of
scenarios. The points of divergence are called bifurcations
and they represent moments in time in which the evolution
of the disturbances is big enough to consider more than one
trajectory. The formulation of the control problem involves
making tree-based optimization scenarios where only the
most relevant disturbance patterns are modeled. It should be
noticed that the number of scenarios used to build the tree
should be in consonance with the computational capability of
the controller and the probability of risk1 in the development
of the tree.

Unlike the MS-MPC problem, each scenario in the tree has
its own control signal, which means that more optimization
variables are needed. However, given that the control signal
cannot anticipate events beyond the next bifurcation point,
control sequences for different scenarios have to be equal as
long as the scenarios do not branch out. As a consequence,
the solution of this control problem is a rooted-tree of control
actions. Notice that only the first component of this tree,
which is equal for all the scenarios, is actually applied. For
the design of this controller, the bifurcation points of the tree
are checked: if they are equal then the control actions are the
same, so that the number of variables and the calculation time
can be reduced significantly.

The TB-MPC problem formulation to be solved at each
time instant is represented by

min
uj [k : k+N−1]

R∑
j=1

(
k+N−1∑

i=k

J(xj(i), uj(i))), (10)

subject to

xj(i+ 1) = Axj(i) +Buj(i) + Eωj(i), (11a)

xj(i+ 1) ∈ X , ∀i ∈ ZN−1
0 , (11b)

uj(i) ∈ U , ∀j ∈ ZR
1 , (11c)

where R is the number of reduced scenarios from the initial
K scenarios. In addition, it is necessary to introduce non-
anticipative constraints to force the controller not to actuate
before the uncertainty associated to the bifurcation points is
solved. These constraints are given by

ui(k) = uj(k) if ωi(k) = ωj(k); ∀ i ̸= j. (11d)

As said before, a control sequence is optimized for the
extended system with a disturbance tree, and only the first
component of the input tree is actually applied to the system.
The problem is repeated at each time instant k ∈ Z+.

1It is the risk acceptability level of constraint violation for the states.



C. Chance-Constrained MPC (CC-MPC)

Given that disturbances have stochastic behavior, one way
of addressing this problem is using CC-MPC.

The CC-MPC problem formulation is stated as

min
u[k : k+N−1]

k+N−1∑
i=k

E[J(x(i), u(i))], (12)

subject to

x(i+ 1) = Ax(i) +Bu(i) + Eω(i), (13a)
P[xmin ≤ x(i+ 1) ≤ xmax] > 1− δx, (13b)

u(i) ∈ U , ∀i ∈ ZN−1
0 , (13c)

where δx ∈ (0, 1) is the risk of violating this constraint,
xmin is the lower limit and xmax is the upper limit of the
constrained state. Moreover, E denotes the expected value of
the cost function and P, the probability operator.

The application of (13b) along N is necessary to im-
plement the controller. To this end, we assume that the
disturbances behave as Gaussian random variables, hence the
state x is a normal variable too, with mean x̄ and standard
deviation σx(k), i.e., x(k) = N (x̄, σx(k)). The deterministic
equivalent of these chance constraints can be formulated as
follows:

P(x(i+ 1) ≥ xmin) ≥ 1− δx.

Using the change of variable, in order to standardize the
normal variable

Z =
x(i+ 1)− x̄(i+ 1)

σx(i+1)
,

it is possible to write

P(Z ≥ xmin − x̄(i+ 1)

σx(i+1)
) ≥ 1− δx,

P(Z ≤ xmin − x̄(i+ 1)

σx(i+1)
) ≤ δx,

φ

(
xmin − x̄(i+ 1)

σx(i+1)

)
≤ δx,

where φ(·) is the probability distribution function. Therefore,

xmin − x̄(i+ 1)

σx(i+1)
≤ φ−1(δx).

The deterministic equivalent can be written as

x̄(i+ 1) ≥ xmin − φ−1(δx)σx(i+1). (14)

In a similar way, the upper bound of the constrained state
along N can be written as

x̄(i+ 1) ≤ xmax + φ−1(δx)σx(i+1). (15)

The expressions (14) and (15) have been formulated as the
deterministic equivalent of the chance constraints.

Remark 1: The presence of the additive stochastic distur-
bance may lead to infeasibility when the constraints on the
states and inputs, and the risk of violation of constraints are
not suitably chosen. Hence, from a practical point of view,
in this application the disturbance is small enough to ensure
feasibility of (8), (10), and (12).

IV. RESULTS

The simulations were performed using the nonlinear model
as plant replacement, see [23]. The prediction horizon was
N = 5, the sampling time was 30 s, and the simulation period
36 hours. The linear model of the HyLab microgrid described
in the Section II was used as internal model for the controller.
The selected disturbance for verifying the performance of the
system was the real demand registered on May 23, 2014,
which is shown in Figure 2.

Fig. 2: Energy generated by solar panels, demand of energy
and disturbance corresponding to May 23, 2014

Both, MS-MPC and TB-MPC simulations were performed
by using the peninsular electricity demand and the solar
generation registered by the Spanish National Electricity Net-
work2. These disturbance scenarios were the result from the
difference between the electric demand and energy generated
from solar-based sources at each time instant, for the months
August 2013, January and April 2014. These months were
chosen to have significant differences on the scenarios and
all the data were scaled for the microgrid allowable values.

The MS-MPC simulations were performed considering 90
scenarios. For this number of scenarios, we expected the risk
of violation of constraints according to the bound given by
[24], i.e., δx < 2.2%. In Figure 3(a), the control signals
and the disturbance are presented. In Figure 3(b), the system
states are shown: the state of battery charge (SOC) and the
metallic hydrides level (MHL). It can be seen in Figures 3(a)
and 3(b) that the control actions drove the system towards the
desired reference for each of the aforementioned states. The
average tracking error of the reference to the level of battery
charge (SOC) was 7.8% and metal hydride level (MHL),
2.9%. The final cumulative cost according to (8) was 1.6×
107.

The TB-MPC simulations were performed by using an
original number of 90 scenarios, which were reduced to 5

2https://demanda.ree.es/movil/peninsula/demanda/total
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(a) Control signals applying MS-MPC.
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(b) States using MS-MPC.
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(c) Control signals applying TB-MPC.

0 5 10 15 20 25 30 35
44

46

48

50

52

54

56

58

60

62

Time (hours)
S

ta
te

s
 (

%
)

SOC

MHL

(d) States using TB-MPC.
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(e) Control signals applying CC-MPC.
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(f) States using CC-MPC.

Fig. 3: Signals applying the proposed robust MPC approaches and disturbances.

scenarios forming a tree using GAMS [25] with δx < 12%.
This reduction tried to replicate the main dynamics of all
original disturbances considered in a small disturbance tree.
The results are shown in Figures 3(c) and 3(d), where the
control actions and system states are respectively presented.

As shown in Figures 3(c) and 3(d), the control actions
satisfied the constraints of the system, driving the outputs
(SOC, MHL) to the given reference. The average tracking
error of the reference to the level of battery charge (SOC)
was 7.72% and to the level of metallic hydrogen was 2.97%.
The final cumulative cost according to (8) was 1.59× 107.

Simulations for CC-MPC were performed considering the
failure probability δx < 1%. The disturbances were modeled
as a normal function with µ = 0.3020 and σ = 0.5245,
which were obtained from the historical data registered at
May 23, 2013, that is, one year ago since the simulation day.
Figures 3(e) and 3(f) show that the control actions drove the

system towards the desired reference of each of the states.
The final cumulative cost was according to (8) 1.96×107.

The average tracking error of the reference to the level of
battery charge (SOC) was 6.88% and to the level of metallic
hydrogen was 2.2%.

Table I shows the average percentage error tracking the
reference states, final cumulative costs, and computational
times for the proposed strategies referred to the single day
operation.

Figures 3(a), 3(b), referred to MS-MPC, and Figures 3(e),
3(f), carried out by CC-MPC, look very similar but the
corresponding performances in Table I are quite different.
On the contrary, Figures 3(c), 3(d), corresponding to TB-
MPC, show a slightly different input and state behavior
but the performance is similar to the one of MS-MPC.
The difference between MS-MPC and CC-MPC was the
computational time: the former technique worked with an



extended system while the latter only required to rewrite
the constraints considering the probabilistic nature of the
disturbances affecting the system. For this reason, the MS-
MPC controller needed to operate with bigger matrices,
which justifies its bigger computational time. The results
obtained by modeling the disturbance as a tree had the
minimum cost in comparison with the others but using more
computational time due to it represented the disturbance sce-
narios into a disturbance tree at each time instant. In addition,
the performance was tested with a traditional MPC, which
expected a disturbance corresponding with the difference
between the generation power and the demand at May 23,
2013. The robust MPC controllers provided better results
with respect to the cumulative final cost, compared with a
traditional MPC.

TABLE I: Cumulate final costs and average tracking errors

Approach Final cost SOC (%) MHL (%) Time (s)
MS-MPC 1.60× 107 7.80 2.90 0.16± 0.01
TB-MPC 1.59× 107 7.72 2.97 0.39± 0.12
CC-MPC 1.96× 107 6.88 2.20 0.03± 0.01
MPC 1.90× 108 1.50 3.60 0.16± 0.02

V. CONCLUSIONS

We have applied three robust MPC schemes to a microgrid
based on hydrogen storage. Acting on the power of the fuel
cell, electrolyzer and grid, the controllers were able to reg-
ulate the metallic hydride level and charge the battery bank
to desired values. In addition, the controllers considerate
constraints in both the manipulated variables and the system
states for optimal performance and high functionality. As it
has been seen, the system can deliver hydrogen energy once
it has been stored in the form of metal hydrides to further
contribute to the grid to satisfy the energy demand under the
influence of uncertainties in the demand for electricity and
generation.

The results obtained with the three presented versions of
MPC were similar. The choice of the technique to be used
will depend on the one hand if it exists a sufficient number of
scenarios for considering the MS-MPC or TB-MPC, and on
the other hand, if it is possible to model the disturbances as
a probability distribution function for applying the CC-MPC.

REFERENCES

[1] L. Valverde, F. Rosa, and C. Bordons. Design, planning and manage-
ment of a hydrogen-based microgrid. IEEE Transactions on Industrial
Informatics, 9(3):1398–1404, 2013.

[2] D. Recio, C. Ocampo-Martinez, and M. Serra. Design of linear
predictive controllers applied to ethanol steam reformers for hydrogen
production. International Journal of Hydrogen Energy, 37(15):11141–
11156, 2012.

[3] T. Dragicevic, J.M. Guerrero, and J.C. Vasquez. A distributed control
strategy for coordination of an autonomous LVDC microgrid based
on power-line signaling. IEEE Transactions on Industrial Electronics,
61(7):3313–3326, 2014.

[4] E. F. Camacho and C. Bordons. Model Predictive Control. Second
Edition. Springer-Verlag, London, England, 2004.

[5] P. O. Kriett and M. Salani. Optimal control of a residential microgrid.
Energy, 42(1):321–330, 2012.

[6] A. Parisio, E. Rikos, G. Tzamalis, and L. Glielmo. Use of model
predictive control for experimental microgrid optimization. Applied
Energy, 115:37–46, 2014.

[7] G. Bruni, S. Cordiner, V. Mulone, V. Rocco, and F. Spagnolo. A study
on the energy management in domestic micro-grids based on model
predictive control strategies. Energy Conversion and Management,
102:50–58, 2015.

[8] M. Pereira, D. Limón, D. Muñoz de la Peña, L. Valverde, and
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