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Abstract

Natural and intuitive human interaction with robotic systems is a key point
to develop robots assisting people in an easy and effective way. In this paper,
a Human Robot Interaction (HRI) system able to recognize gestures usually
employed in human non-verbal communication is introduced, and an in-depth
study of its usability is performed. The system deals with dynamic gestures
such as waving or nodding which are recognized using a Dynamic Time Warping
approach based on gesture specific features computed from depth maps. A static
gesture consisting in pointing at an object is also recognized. The pointed
location is then estimated in order to detect candidate objects the user may
refer to. When the pointed object is unclear for the robot, a disambiguation
procedure by means of either a verbal or gestural dialogue is performed. This
skill would lead to the robot picking an object in behalf of the user, which could
present difficulties to do it by itself. The overall system —which is composed by
a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops— is firstly
evaluated in a structured lab setup. Then, a broad set of user tests has been
completed, which allows to assess correct performance in terms of recognition
rates, easiness of use and response times.
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1. Introduction

Autonomous robots are making their way into human inhabited environ-
ments such as homes and workplaces: for entertainment, helping users in their
domestic activities of daily living, or helping disabled people in personal care or
basic activities, which would improve their autonomy and quality of life.

In order to deploy such robotic systems inhabiting unstructured social spaces,
robots should be endowed with some communication skills so that users can in-
teract with them just as they would intuitively do, eventually considering a
minimal training. Besides, given that a great part of the human communication
is carried out by means of non-verbal channels [1, 2], skills like gesture recogni-
tion and human behavior analysis reveal to be very useful for this kind of robotic
systems, which would include viewing and understanding their surroundings and
the humans that inhabit them.

Gesture recognition is an active field of research in Computer Vision that
benefits from many machine learning algorithms, such as temporal warping
[3, 4, 5], Hidden Markov Models (HMMs), Support Vector Machines (SVMs)
[6], random forest classifiers [7] and deep learning [8], just to mention a few of
them. Moreover, gesture recognition personalization techniques have also been
proposed in [9] to adapt the system to a given user. Studies in Human Computer
Interaction (HCI) and more specifically Human Robot Interaction (HRI) take
advantage of this field. Hence, many recent contributions [10, 11, 12, 13, 14]
consider KinectTM-like sensors to recognize gestures given the discriminative
information provided by multi-modal RGB-Depth data. A KinectTM based ap-
plication is introduced in [15] for taking order service of an elderly care robot.
Static body posture is analyzed by an assistive robot in [16] to detect whether the
user is open towards the robot interaction or not. Communicative gestures are
contrasted from daily living activities in [17] for an intuitive human robot inter-
action. A novice user can generate his/her gesture library in a semi-supervised
way in [18], which are then recognized using a non-parametric stochastic seg-
mentation algorithm. In [19], the user can define specific gestures that mean
some message in a human-robot dialogue, and in [20] a framework to define
user gestures to control a robot is presented. Deep neural networks are used
in [21] to recognize gestures in real time by considering only RGB information.
Pointing gestures, similar to the one we propose in this paper, have been stud-
ied mostly focusing in hand gestures [22], using the hand orientation and face
pose [23]. The pointing direction is estimated in [24, 25] using gaze and finger
orientation, and deictic gesture interactions that people use to refer to objects
in the environment are studied in [26]. Related pointing interactions have also
been used for robot guidance [27].

In this work we introduce a real time Human Robot Interaction (HRI) system
whose objective is to allow user communication with the robot in an easy, natural
and intuitive gesture-based fashion. The experimental setup is composed by a
humanoid robot (Aldebaran’s NAO) and a wheeled platform (Wifibot) that
carries the NAO humanoid and a KinectTM sensor. In this set-up, the multi-
robot system is able to recognize static and dynamic gestures from humans
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based on geometric features extracted from biometric information and dynamic
programming techniques. From the gesture understanding of a deictic visual
indication of the user, robots can assist him/her in tasks such as picking up
an object from the floor and bringing it to the user. In order to validate the
system and extract robust conclusions of the interactive behavior, the proposed
system has been tested in offline experiments, reporting high recognition rates,
as well as with an extensive set of user tests in which 67 people assessed its
performance.

The remainder of the paper is organized as follows: Section 2 introduces the
methods used for gesture recognition and Human Robot Interaction. Section 3
presents the experimental results including the offline and user tests and, finally,
Section 4 concludes the paper.

2. Gesture based Human Robot Interaction

With the aim to study gestural communication for HRI, a robotic system
has been developed able to understand four different gestures so a human user
can interact with it: wave (hand is raised and moved left and right), pointing at
(with an outstretched arm), head shake (for expressing disagreement) and nod
(head gesture for agreement).

The overall robotic system involves several elements: an Aldebaran’s NAO
robot, a small size humanoid robot which is very suitable to interact with hu-
man users; a Microsoft’s KinectTM v2 sensor to get RGB-Depth visual data
from the environment and track the user; and, given that the vision sensor ex-
ceeds NAO’s robot capabilities (in size and computing performance), a Nexter
Robotics’ Wifibot wheeled platform is used to carry the sensor as well as the
NAO, easing its navigation and precision at long ranges.

In fact, the proposed robotic system takes inspiration from the DARPA
Robotics Challenge 20151 in which a humanoid robot should drive a car towards
an interest place and exit the car in order to finish its work by foot. In a similar
way, the wheeled robot was added to the system in order to carry the sensor
along with the little humanoid, which should also exit it to complete its task by
walking. This multi-robot setup allows the NAO to use the information from
the Kinect’sTM v2 sensor and eases its navigation. And for its side, the NAO is
the one in charge of directly interacting with the user, also being able to act on
the environment, for instance, by grasping objects. The overall setup is shown
in Figure 1, with the NAO seated on the Wifibot. The setup also includes a
laptop with an Intel i5 processor to deal with KinectTM’s data and another
Intel Core 2 Duo laptop, which sends commands to the robots using the Robot
Operating System (ROS)2 [28]. The depth maps are processed using the Point
Clouds Library (PCL)3 [29], and body tracking information is obtained using

1theroboticschallenge.org
2ros.org
3pointclouds.org
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the KinectTM v2 SDK.

Figure 1: The robotic system designed for this work.

The system has been programmed as an interactive application, and tested
with several users of different ages and not related with the robotics world (see
Section 3.2).

2.1. Real Time Gesture Recognition: Interaction with a robot

This section explains the methods used to perform the gesture recognition
and image understanding. Given that the application of the system is to enhance
the interaction between a human user and a robot, the defined gestures should
be as natural for the user as possible, avoiding user training or learning of a
specific set of gestures. Instead, the robot should understand gestures as a
human would understand another human’s gestures, and should reply to that
visual stimulus in real time.

The considered set of human gestures has been divided into two categories,
depending on the amount of movement involved in their execution:

• Static gestures are those in which the user places his/her limbs in a specific
position and stands for a while, without any dynamics or movement in-
volved. In this case, the transmitted information is obtained through the
static pose configuration. Pointing at an object is an example of static
gesture.

• Dynamic gestures are, in contrast, those in which the movement is the
main gesture’s feature. The transmitted information comes from the type
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of movement as well as its execution velocity. It may also contain a partic-
ular pose for a limb during the movement. Examples of dynamic gestures
are a wave to salute someone or a gesture with the hand to ask someone
to approach to the user’s location.

Four different gestures have been included in the designed system to interact
with the robot, being three of them dynamic and the remaining one static. The
dynamic gestures are the wave, the nod and a facial negation gesture. The static
one is the pointing at an object. Both categories are tackled using different
approaches. Next we describe the extracted features, the gesture recognition
methods and how the gesture’s semantic information is extracted.

2.1.1. Definition of gesture specific features

Gesture recognition is performed based on some features extracted from the
user body information obtained from depth maps. For the included arm gestures
or any possible new gestures involving more body parts, skeletal data is obtained
from depth images of the KinectTM sensor using the KinectTM SDK v2.0.

Given that a limb gesture such as the wave does not depend on the position
of other parts of the body such as the legs, the rest of the body is not taken
into consideration when the recognition is performed. So, rather than directly
using the joint coordinates of the whole body, as in [4, 30], our proposed method
only takes into account the involved limbs from which some distinctive features
are extracted. This approach allows the system to recognize gestures any time
the skeletal data is properly tracked from the sensor, including situations such
as sitting (for instance a person in a wheelchair), as well as standing up or
crouching.

The application is able to recognize four gestures: the pointing at, the wave,
the nod and the head negation. The point at gesture’s features on the skeleton
are displayed in Figure 2a. They can be described as:

• δp, the Euclidean distance between the hand and hip joints of the same
body part. This feature discriminates between the pointing position and
the resting one in which the arms may be outstretched at the sides of the
body but not pointing at a place.

• θp, the elbow joint angle, defined as the angle between the vector from
the elbow joint to the shoulder one and the vector from the elbow to the
hand joint. It defines when the arm is outstretched.

• ρp, the position of the hand joint.

Given the presented setup and the overall structure of the robotic system, the
above features only accounts for large pointing gestures (with the full arm ex-
tended), as the ones one would use to point at something laying on the ground.

The features and dynamics for the wave gesture are shown in Figure 2b.
They are defined as:
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• δw, the Euclidean distance between neck and hand joints. Although it
was not necessary in order to perform the tests with the current set of
gestures, this measure could be normalized by dividing it by the longitude
of the arm to have a standardized value in the range [0, 1] to handle body
variations.

• θw, the elbow joint angle, as defined in the point at gesture.

The elbow angle used in the features above does not require from normal-
ization as it is not affected by different body heights.

(a) Point at gesture fea-
tures.

(b) Wave gesture features and
dynamics.

Figure 2: Skeletal gesture features.

The orientation of the face provided by the sensor is used to describe the
nod gesture (vertical movement of the head) and the negation one (horizontal
movement of the head). The three usual angular axes — pitch, roll and yaw —
are used but instead of taking the absolute values, its derivatives are employed
as frame features, ∆Oi,a = Oi,a−Oi−1,a, where Oi,a is the orientation in degrees
of the face in the frame i according to the a axis. Moreover, one out of F frames
is used to compute the features to filter noisy orientation estimations, and the
values are thresholded to a given value D in order to end up with a sequence of
directional changes. More formally, the feature of a frame i for the axis a, fi,a,
is computed as:

fi,a = (|∆Oi,a| ≥ D) · sign(∆Oi,a). (1)

Figure 3 depicts the facial gestures.

2.1.2. Dynamic gesture recognition

A Dynamic Time Warping (DTW) [31] approach is used to detect the dy-
namic gestures. The DTW algorithm matches two temporal sequences finding
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Figure 3: Facial gesture features and dynamics. The vertical arrows represent the nod gesture
and the horizontal ones the negation.

the minimum alignment cost between them. One sequence is the reference
gesture model of the gesture g, Rg = {r1, . . . , rm}, and the other is the in-
put stream S = {s1, . . . , s∞}, where ri and si are feature vectors. Features
will depend on the gesture to be recognized: for the wave, ri = {δwi , θwi } and
ri = {fi,pitch, fi,roll, fi,yaw} for the facial gestures. Both sequences are aligned
by means of the computation of a m× n dynamic programming matrix M,
where n is the length of the temporal window being used to discretize the infi-
nite time, as data keeps entering the system while no gesture has been identified.
Provided that gesture spotting is not needed, the minimum value for n is two.

Each element mi,j ∈ M represents the distance between the subsequences
{r1, . . . , ri} and {s1, . . . , sj}, so it is computed as:

mi,j = d(ri, sj) +min(mi,j−1,mi−1,j ,mi−1,j−1), (2)

where d(·, ·) is a distance metric of choice. Different distance metrics can be
used in our implementation. For instance, the Hamming distance:

dH(ri, sj) =

o∑
k=0

{rki 6= skj }, (3)

with o being the number of features of the gesture, is used for the facial gestures
case. The weighted L1 distance is employed for the case of the wave gesture,
computed as:

dL1(ri, sj) =

o∑
k=0

αk|rki − skj |, (4)

with αk a positive weighting constant.
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A gesture g will be considered as recognized if a subsequence of the input
data stream S is similar enough to the reference sequence Rg:

mm,k ≤ µg, ∀k, (5)

where µg is obtained using a training method for each gesture g, detailed in
Section 3.1.1.

In order to assure the fulfillment of the real time constraint, the DTW is
executed in a multi-threaded way in which the different gestures are spread be-
tween different threads that run the gesture recognition method simultaneously,
stopping in case one of the methods finds a gesture in the input sequence.

In case of the need of properly segmenting the gesture in a begin-end manner,
such as for validation purposes, the warping path can be found to locate the
beginning of a gestural sequence. This warping path:

W = {w1, . . . ,wT }, (6)

with max(m,n) ≤ T < m+ n+ 1, is a matrix of pairs of indexes of contiguous
elements in the matrix M that define a mapping between the reference ges-
ture Rg and a subsequence of the input sequence S, subject to the following
constraints:

• w1 = (1, j) and wt = (m, j′).

• for wt−1 = (a′, b′) and wt = (a, b) then a− a′ ≤ 1 and b− b′ ≤ 1.

The warping path W that minimizes the warping cost:

Cw(M) = min
w∈W

 1

T

√√√√ T∑
t=1

Mwt

 , (7)

can be found for the matrix M by backtracking of the minimum path from
mm,j , to m1,k, being k the starting point of the segmented gesture and j the
ending of it.

2.1.3. Static gesture recognition

A static approach has been selected for static gesture recognition, in the
sense that a gesture is considered as recognized when features are within certain
values for a given number of contiguous frames and small movement is involved.
The number of frames and the feature thresholds are obtained through a similar
training method as for the dynamic case.

In our case, the pointing gesture is recognized when, for a certain number
of frames F , the elbow angle is greater than a threshold Tea indicating the
arm is outstretched and the distance between the hand and the hip is greater
than a certain distance Td meaning that the arm is not in the resting position.
Moreover, the hand coordinates are used in order to check the constraint that
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the position is hold still and not moving. That is, a gesture is recognized if the
following constraints are held during Fp frames:

δpi > Td, θ
p
i > Tea, dE(ρpi , ρ

p
i−1) ≈ 0, (8)

where dE represents the Euclidean distance.
The system runs the static gesture recognition in parallel with the dynamic

one, in a multi-threaded way.

2.1.4. Pointed location estimation

Once a pointing gesture has been recognized, some information needs to be
extracted from it in order to perform its associated task and help the user. The
main information that this deictic gesture gives is the pointed location, which
is the region of the surrounding space that has some elements of interest for the
user. To estimate it, a floor plane description, the pointing direction and some
coordinates belonging to the ground are needed.

First of all, the arm position has to be obtained in order to know the pointing
direction. To do so, the arm joints of the last ten frames of the gesture are
averaged to obtain the mean direction and avoid tracking errors. Then, the
coordinates of the hand joint H and the elbow joint E are used to get the

pointing direction as the
−−→
EH = H − E vector. Even though the KinectTM v2

sensor provides information about the hand tip joint, the direction provided by
the elbow to hand vector proved to be more precise than the hand to hand tip
one in preliminary tests.

The ground plane is extracted using the plane estimation method of the PCL
library [32]. A depth image of the KinectTM is obtained and converted to a point
cloud, the planes of which are segmented using a Random Sample Consensus
(RANSAC) method [33]. Those planes that have a similar orthogonal vector
to a reference calibrated plane are used as floor planes. The reference plane is
automatically obtained at system start up by segmenting all the planes in the
depth image and keeping the parameters of the plane whose orthogonal vector
is the same as the vertical axis (y axis) of the sensor. In case the camera is
not in a parallel position with the ground or no plane is found which fulfills
this condition, the reference plane is obtained from the user who has to click
three points of the ground in the graphical interface, from which the plane is
estimated. Then, the ground point coordinates are obtained by picking one
element from the floor cloud.

Therefore, let Pf be the ground point and ~Nf = (A,B,C) the orthogonal
vector of the floor plane πf = Ax+By+Cz+D = 0, the pointed point Pp can
be obtained by:

Pp = H +
(Pf −H) · ~Nf
−−→
EH · ~Nf

·
−−→
EH. (9)

An example of the pointing location estimation is shown in Figure 4a.
After some tests with users, we observed that the bones were correctly

tracked by the KinectTM sensor but not precisely enough to get an accurate
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(a) Pointing location esti-
mation.

(b) Example of user pointing deviation.

Figure 4: Examples of the point at gesture.

pointing direction. This was more clear when the pointing gesture was per-
formed with the hand in front of the body. Also, the users tended to actually
point farther than the objects’ location, and the real pointed line did not inter-
sect with the objects, as it can be observed in Figure 4b. In order to deal with
this imprecision, we corrected the pointing position just by slightly translating
the pointed location backwards.

2.1.5. Near point object segmentation and disambiguation

Similar to what humans do as a response to a pointing gesture, we want that
the robots look at the surroundings of the estimated pointed location to detect
possible objects that the user is referring to. Notice that in our case we do not
care about recognizing the actual objects but rather detecting their presence.

This is performed by first extracting the set of points X from the scene point
cloud in which each xi ∈ X is selected such that its Euclidean distance dE to
the pointed point is smaller than a certain value r, dE(xi, Pp) ≤ r, being X a
spherical point cloud of radius r and centered in the pointed point Pp. After
the extraction of the floor plane, Z = X \ {xi | xi ∈ πf}, all the objects should
be isolated and a clustering algorithm is applied to the sub point cloud Z in
order to join all the points of the same objects in a smaller point cloud per each
object. The clustering algorithm that has been used is the Euclidean Cluster
Extraction method [32], which starts the clustering by picking a point zi ∈ Z
and joining to it all its neighbors zj ∈ Z such that dE(zi, zj) < dth, being dth a
user defined threshold. The process is repeated for all of these neighbors until
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no more points are found, in which case a cluster Ci is obtained. The remaining
points of the cloud Z are processed in the same way to get the other object
clusters. Once the objects are found, its centroid point is computed as the
mean coordinates of all the points of the cluster, 1

|Ci|
∑

z∈Ci
z, and then each

cluster’s convex hull is reconstructed in order to compute its area. This allows
the system to get a notion of its position in the space and size (see Figure 4a).

However, it may be the case in which the pointed location is not clearly
near a single object, so there is a doubt on which was the referred one. When
this situation arises, a spoken disambiguation process is started in which the
robot asks the user about the object. To do so, the robot may ask if the person
was pointing at the biggest object if the objects are clearly of different sizes,
otherwise it asks about its relative position, for instance asking a question like“is
it the object at your right?”. The user can respond to the question with a yes
or no utterance, recognized using NAO’s built in speech recognition software,
or by performing the equivalent facial gestures, and the robot will know which
was the referred object if there were only two of them, or it may ask another
question in case there were three dubious objects in sight. A flowchart of the
disambiguation process is included in the supplementary material.

2.2. Robotics interaction with the human

The gesture recognition makes the robotic system able to understand some
human gestures. But, the human user must be able to recognize what is the
robot doing for the interaction to be successful and pleasant. In our case, this
means that the robots must work together in order to fulfill the task and respond
to the user in an appropriate way. For instance, the Wifibot is able to perform
a more precise navigation, whereas the NAO is ideal to interact and speak to
the user as well as to act on the environment. This means that the answer of
the system to a visual stimuli made by the person has to be expected for them,
thus being a natural response to the gesture. Figure 5 shows the flow of the
application in a normal use case. The application has been programmed using
a state machine paradigm to control the workflow. Details of the implemented
state machines are shown in the supplementary material.

For the wave gesture, the expected response would be waving back to the
user, performing a similar gesture to the one made by him/her and maybe
performing some utterance. In the case of the pointing gesture, the robot has
to approach the pointed location and analyze which objects are present, trying
to deduce which object was the user referring to. Notice that there is no need
that the user points to a place which is in the field of view of the sensor, being
it possible to point at some objects which are farther away which will also make
the robot go to the pointed location to check for objects.

Once the object is known and has been disambiguated in case of doubt, the
NAO goes down the Wifibot (Figure 6) and approaches the object, which is
then shown to the user performing a gesture with the hand and the head to
expose that it understood the object correctly, as it can be seen in Figure 7.
Note that this could be extended to grasp the object and bring it to the user.
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Figure 5: Example of application’s use case.

3. Experimental results

In order to evaluate the designed system, several experiments were carried
out, including offline evaluation of the methods and online evaluation of the
whole system with an extensive set of user tests.

3.1. Offline evaluation

The gesture recognition methods were evaluated in an offline setting in order
to validate the performance of the methods and tune a set of parameter values.
Hence, a small data set “HuPBA sequences” was generated and labeled. It
includes 30 sequences of 6 different users (5 sequences per user) in which each
of them performs the four gestures that the system is able to recognize, as
well as another arbitrary gesture of their choice; all of them performed in a
random order. The gesture models used in the dynamic gesture recognition
module were specifically recorded for this purpose from one user performing the
gesture in an ideal way. This ideal way was taken from the observations of the
recorded sequences, and also taking into account observation of other gesture
based systems and quotidian interaction with people. This model subject is not
part of the subjects in the data set.

In order to evaluate the system, two metrics usually used in this domain
have been adopted: the Jaccard index (also known as overlap) and defined as

J(A,B) = |A∩B|
|A∪B| , and the F1 score, which is computed as F1score = 2TP

2TP+FP+FN .
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Figure 6: NAO’s going down of the Wifibot to approach the object.

Figure 7: NAO showing the pointed object.

3.1.1. Parameters and evaluation results

In order to compute the performance measure, a Leave-One-Subject-Out
cross validation (LOSOCV) technique has been used. In it, a subject of the
data set is left out and a grid search is performed in order to tune the best
parameters for the different methods and gestures of the system. Then, those
parameters are used with the sequences of the left out user and the performance
metrics are obtained. This procedure is repeated with all the subjects and their
results are averaged for every subject and sequence in order to obtain the final
score.

To carry out the parameters tuning, an interval of values for each of them
is tested against the set of recordings, keeping those which perform better.
The interval of parameters that has been used and tested includes the DTW
thresholds µwave ∈ [6.75, 9.5], considering equally distributed values with step
0.25, µnod = µnegate ∈ [4.5, 20] with step 0.5. The distance weights for the
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wave gesture were α ∈ [0.1, 0.55] with step 0.05. The facial gesture’s parameters
tested were orientation derivative threshold D ∈ [5, 30] with step 5 and number
of frames between samples F ∈ [1, 20] with increments of 1 unit. For the static
gestures, the thresholds and number of frames were Td ∈ [0.1, 0.45] with step
0.5 and Tea ∈ [2.0, 2.55] with a stepping of 0.05. Those ranges were chosen
empirically by performing some initial tests using some sequences which included
variations in the gestures, recorded for this purpose.

Figure 8 shows the obtained results with the standard deviation of the differ-
ent users. Figure 8a plots the results for the F1 measure with different overlap
thresholds to decide which amount of overlapping is enough to be considered a
TP . Meanwhile, Figure 8b shows the results using the Jaccard index measure
with different number of “Do not care” frames.

As it can be observed, the wave and the point at gestures are the ones which
have better recognition rates, being the point at slightly better according to
the Jaccard index. As for the facial gestures, the nodding presents a better
performance than the negation in both measures. The facial gestures present a
worse performance due to the fact that many users perform the gestures very
subtly and with different lengths that vary in a considerable way in terms of
orientation. It also gets hampered by the distance from the user to the camera
as the orientation values are more subtle the farther the user is. Even though,
we get a LOSOCV F1 score of 0.6 ± 0.61 (mean ± standard deviation of the
LOSO subjects) for the nod gesture and 0.61±0.15 for the negation one with an
overlap threshold of 0.4, which have resulted to be acceptable to get a natural
interaction in the real time system.

Focusing on the Jaccard index plot from Figure 8b, it can be observed that
the best mean performance is obtained when 7 “Do Not Care” frames are used,
reaching a 0.65± 0.07 of overlap. The use of “Do Not Care” frames to compute
the Jaccard index makes sense in natural interaction applications because the
goal is not to segment the gesture at frame level but to detect the gesture itself,
despite which frame the detection started or ended. The use of 7 frames (the
three previous to the beginning, the beginning frame and the three after it) is
enough to solve any temporal difference between the detection and the labeled
data.

3.2. User tests evaluation

In order to evaluate the system’s performance, it was tested with different
users in a real scenario. Their opinion was collected and use easiness was con-
sidered according to the need of external intervention from our part for the
communication.

The test users were selected from different age groups and education back-
grounds, who might have never seen a humanoid robot before, to analyze their
behavior and check the task fulfillment. The tests took place in different envi-
ronments, trying to keep users in known and comfortable scenarios, including
two high schools, a community center and an elderly social association. A total
of 67 users participated in the experiments.
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Figure 8: Offline performance evaluation results.
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The screenplay for the tests is as follows: the user stands in front of the
robotic system and two or three objects are placed on the ground, around three
meters far. The user first waves to the robot, then points at an object of
their election, answering with a facial gesture if the robot asks a question to
disambiguate. Otherwise, the users were asked to perform some facial gestures
at the end of the test. The procedure was usually repeated twice by each user,
and they had to fill in a questionnaire about the experience at the end. A
video showing an execution example of the system is included as supplementary
material.

The objects were two milk bottles and a cookie box, and the gesture recog-
nition parameters were obtained by using the training mechanism previously
explained, but this time all the “HuPBA sequences” were used for the tuning of
the parameters. As for the object cluster extraction, a radius of 55 centimeters
around the pointed location was used, which was a suitable value for the used
objects. Figure 9 shows some of the users performing the tests in the different
environments.

3.2.1. User’s survey analysis

This section highlights some interesting results which were obtained from
users’ questionnaire after the test. Results are analyzed in three age groups.
Figure 10 shows some bar plots of the most relevant questions, aggregated by
age group. Table 1 includes some of the answers to numerical questions in the
questionnaires.

Mean ± SD
Question Min Max 9-34 years 35-60 years 61-86 years

Wave’s response speed 1 5 3.79± 0.74 3.89± 0.90 4.00± 1.05
Point at’s response speed 1 5 3.66± 0.91 3.88± 1.02 4.00± 1.41
Figured out the pointed object 1 5 4.00± 1.16 3.76± 1.09 3.55± 1.75
NAO clearly showed its guess 1 5 4.32± 0.97 4.12± 0.99 3.82± 1.72
Naturalness of the interaction 2 5 3.57± 0.63 3.53± 1.00 4.14± 0.90

Table 1: Numerical user’s answers to the survey (to answer with a number from 1 to 5).

In summary, users aged from 9 to 86 years, average being 34.8±23.98. They
have been divided into three groups: 9 to 34, 35 to 60 and 61 to 86 years, being
the youngest user of the last group aged 71. The gender was quite balanced,
being 55% of the users males, as seen in Figure 10a. Moreover, they had zero
or very small previous contact with any kind of robots.

The wave gesture was agreed to be natural by most of the users, in all the
age groups, even though some users had problems to reproduce it and needed
some explanation as they would have waved in another way. The response they
obtained from the robot was the one they would expect and was considered
quick enough, which means that the robot acted in a natural way and they did
not need help to understand the response it gave, as seen in Figures 10b, 10c
and in Table 1. The results for the point at gesture are quite similar, being it
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(a) A user in a high school. (b) A user in another high school.

(c) A user in the community center. (d) A user in the elderly social association.

Figure 9: Examples of users performing the tests.
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natural and quite fast with equivalent results in the different age groups, even
though some users expected the robot to do something with the objects such
as grasping or opening a bottle (Figures 10d, 10e). Moreover, most of the users
thought the pointing time was enough but a 35% of the users felt it was too
much time (although some of them kept pointing at the object once the robot
said the gesture was already recognized), as shown in Figure 10f. As for NAO’s
response, the robot missed the right object in a very few cases, but they thought
it clearly showed which object the robot understood without ambiguities, as seen
in Table 1.

The facial gestures were not performed by all the users, but again most of
them felt comfortable doing them, being the nod too exaggerated for some of
them. In fact, 46% of the people from the youngest group that made the nod
gesture felt it was unnatural or too exaggerated, as shown in Figure 10g. The
negate gesture had similar response (see Figure 10h). In general, facial gestures
presented a disadvantage with long haired people in which the hair covered the
face while performing them (specially in the negation case), which implied that
the face tracker lost the face and the gesture was not recognized. The 88% of
the users thought that it was easy to answer the yes/no questions to the system.

Finally, the overall interaction was felt quite natural, as seen in Table 1,
and not too much users felt frustration due to the system misunderstanding of
gestures, as it can be seen in Figure 10i. Some users did not know what was the
robot doing at some moment of the test as shown in Figure 10j, but most of these
cases were due to the language difficulty, as the robot spoke in English4. Hence,
the 36% of the users did not speak English and they needed external support and
translation. The 92% the users stated that they enjoyed the test (100% of the
elderly group did), and a vast majority of the users thought that applications of
this kind can be useful to assist people in household environments, specially the
elder ones or those with reduced mobility, as depicted in Figure 10l. Moreover,
almost all of them thought it was easy to communicate a task in a gesture
manner, as Figure 10k shows. In the last question they were asked about possible
gesture additions to the system. The most interesting responses include gestures
to call it to come back, start, stop or indicate the NAO to sit again on the
Wifibot.

3.3. System times and recognition rates

In order to obtain objective evaluation metrics, 30 additional tests performed
by six users (five gestures per user) were conducted. The response times of the
different gestures along with recognition rates, as well as the execution times
of the object detection module were extracted from them. Table 2 and Table 3
show the obtained results.

As it can be seen, the response times in Table 2, which span from the end
of the gesture to the start of the robot response, are quite suitable for a natural
interaction, being all the gestures answered in less than two seconds in average.

4Most of the user’s mother tongue was either Spanish or Catalan.
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Item
Time (seconds)

Mean ± SD
Recognition rate

Wave gesture 1.72 ± 0.62 83.33%
Point At gesture 1.91 ± 0.67 96.67%
Nod gesture 1.99 ± 0.49 73.33%
Negate gesture 1.47 ± 0.47 33.33%
Object detection 0.53 ± 0.29 63.33%

Table 2: Response and execution times and recognition rates for the different gestures and
the object detection in 30 tests. The dynamic gesture recognition times span from the end of
the gesture to the system response, and the static ones from the start of the gesture to the
object response. The gesture times were measured using a standard chronometer operated by
the test controller.

As for the object detection, comprising the time between the order from the
robot to segment objects and the response from the Wifibot’s laptop, which is
computed in less than a second.

Looking at the recognition rates, the best recognized gesture was the point
at one. The negation gesture was the one with the lowest recognition rates,
as it was the case of the offline results, mainly because the face not being well
tracked when the face is sidewards the camera.

The system also shows high recognition rates for the object detection even
though there were some errors, which are detailed in Table 3.

Cause Rate

Wrong pointing location estimation 3.33%
Object not detected or wrong object detected 16.67%
Disambiguation failure 3.33%
Navigation error (did not reach the place) 13.33%

Table 3: Error rates by cause in the object detection step for 30 tests.

4. Conclusions

In this work, we presented a multi-robot system designed to interact with
human users in a real time gesture based manner. The system is a proof of
concept that shows how important is the interaction phase in order to be able
to assist users with special needs, such as elderly or handicapped people. Con-
sequently, they could interact with the robot in the way they are used to do
with other human beings, and the robot can use the information provided by
the users to help them. For instance, the robot could pick something up from
the floor without the need of actually recognizing the object but just knowing
that the person referred it with a deictic gesture.
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We included a gesture recognition method based on the KinectTM v2 sensor
which takes into account dynamic gestures, recognized by a DTW using specific
features from the face and the body, and static gestures such as deictic ones to
refer to something present in the environment.

The multi-robot system is shown as an effective way of combining efforts
with specialized robots, one to carry the weight of the sensor and the computing
power with a precise navigation, and the other able to speak and interact in a
natural way with the user. Their collaboration in performing the tasks leads to
the success of the system and the interaction.

Furthermore, an extensive set of user tests was carried out with 67 users
who had little contact with robots and that were able to perform the tests
with minimal external indications, resulting in a natural interaction for them in
most of the cases. Offline tests also showed high recognition rates performing
real time gesture detection and spotting in a specifically recorded data set.

Nevertheless, different elements of the system such as the detection of the
pointing direction could be improved as future work. For instance, the use of a
more accurate hand pose estimator like the ones proposed in [34, 35, 36] may
allow the direction of the finger to be used to obtain the pointing direction,
probably resulting in a more precise location estimation. The facial gestures
are another element which could be highly improved, first by trying to use a
better facial tracker which can properly handle side views (which clearly affect
the detection of the negation gesture), but also by exploring or adding other
kind of features.
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