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Abstract— In this paper, an Economic Model Predictive
Control (EMPC) strategy with periodic terminal constraints is
addressed for nonlinear differential-algebraic-equation systems
with an application to Drinking Water Networks (DWNs).
DWNs have some periodic behaviours because of the daily
seasonality of water demands and electrical energy price. The
periodic terminal constraint and economic terminal cost are
implemented in the EMPC controller design for the purpose of
achieving convergence. The feasibility of the proposed EMPC
strategy when disturbances are considered is guaranteed by
means of soft constraints implemented by using slack variables.
Finally, the comparison results in a case study of the D-Town
water network is provided by applying the EMPC strategy with
or without periodic terminal constraints.

I. INTRODUCTION

Nowadays, Economic Model Predictive Control (EMPC)
is one of the hot topics in the academic domain of Model
Predictive Control (MPC). Recent developments have been
reported in [1]. Reported results have proved that MPC is
a powerful control strategy in many process industries in
comparison with other available methods of multi-variable
control. Unlike the classic MPC, the stage cost of the EMPC
strategy may be non-convex and not directly related with the
system states or outputs. Hence, the convergence and stability
of the EMPC strategy may not be easy to achieve, since there
is no reference trajectory for tracking.

For the operational management of Drinking Water Net-
works (DWNs), MPC has been discussed and adopted as a
standard approach since it is able to maintain multi-objective
operational goals and find optimal setpoints for the actuators
(see [2], [3], [4], [5], [6] and [7]). In these references, the
flow-based model that involves linear differential-algebraic
equations has been considered as the control-oriented model
and the EMPC strategy for DWNs has been applied by
solving a finite-horizon optimization problem.

In [8] and [9], analysis of the asymptotic stability and
average performance have been discussed for the EMPC
strategy by adding terminal state constraints and results
show that the average performance of the EMPC strategy
is never worse than the optimal steady-state operation. The
use of the terminal state constraints aims to force the system
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convergence and subsequently to achieve the stability. In
[10] and [11], the EMPC strategy with periodic operation
is introduced for the flow-based model of DWN. With the
periodic terminal constraints, the asymptotic stability, as well
as the average performance, can be achieved.

In many DWNs, the inclusion of pressure/head model is
important in order to consider nonlinear constraints between
flows and pressures/heads at some given nodes of the DWN
as for example in demand sectors. The static relations of the
head at each element in the DWN can be formulated with
some algebraic variables by means of a relationship formula,
for example the Hazen-Williams formula. As other process
models, the resultant optimization problem involves complex
systems of nonlinear differential-algebraic equations as pre-
sented in [12]. From the control point of view, the control-
oriented model of the DWN can be formulated as nonlin-
ear differential-algebraic equations including pressure/head
equations.

This paper proposes an EMPC strategy with periodic
terminal state constraints for the nonlinear differential-
algebraic-equation model of the DWNs. The usual choice of
the MPC prediction horizon for DWNs is 24 hours. However,
periodic terminal state constraints need to be verified by
using longer prediction horizons. Furthermore, the system
disturbances have significant influences on the performance
of the control system. Therefore, the periodic terminal con-
straints are designed considering the uncertain case. The
idea to deal with the system disturbances in this paper
is to use soft constraints to reconfigure periodic terminal
state constraints. The proposed EMPC strategy has been
tested in a case study based on the D-Town water network,
using the EPANET hydraulic simulator. Comparison results
of applied EMPC strategy with or without terminal constraint
are shown.

The remainder of this paper is organized as follows. In
Section II, the problem statement of the EMPC strategy with
periodic terminal constraint is described and the strategy for
dealing with uncertainty is discussed. In Section III, the
EMPC strategy with periodic terminal constraints for the
DWN is introduced. The case study of the D-Town water
network is applied in order to test and compare the EMPC
strategy with or without periodic terminal constraint and
simulation results are shown in Section IV. Finally, some
conclusions are drawn in Section V.



II. PROBLEM STATEMENT

The generalized discrete-time differential-algebraic equa-
tions of a complex nonlinear system can be formulated as

xk+1 = f (xk, zk, uk, vk, ωk) , (1a)
g (xk, zk, uk, vk, ωk) = 0, (1b)

where xk ∈ Rnx and zk ∈ Rnz denote the differential and
algebraic system states at time instant k ∈ N, respectively.
uk ∈ Rnu and vk ∈ Rnv denote manipulated and non-
manipulated inputs at time instant k, respectively. f(·) and
g(·) are linear or nonlinear mapping functions describing
system dynamics and static relations, respectively. Moreover,
ωk ∈ Rnw represents the measured system disturbances at
time instant k, which is assumed to be composed of two
parts: deterministic disturbance ωd

k and stochastic disturbance
ωs
k, and can be formulated as

ωk = ωdk + ωsk. (2)

Assumption 1: The deterministic disturbance ωd
k is as-

sumed as known (typically predicted using a forecasting
model) and bounded input for the system (1) while the
stochastic disturbance ωs

k represents the noise with zero-
mean and small-variance σ2

s characteristics that can be
described by means of a Gaussian model as ωs

k ∼ N (0, ωs
k).

Considering Assumption 1, the differential-algebraic equa-
tions in (1) can be reformulated as

xk+1 = f
(
xk, zk, uk, vk, ω

d
k

)
+ ε (ωsk) , (3a)

g
(
xk, zk, uk, vk, ω

d
k

)
+ η (ωsk) = 0, (3b)

where ε(·) and η(·) are disturbance-transfer functions for
system dynamics and static relations, respectively.

Definition 1: The described system in (3) is called T-
periodic system if there exists a minimal non-zero T ∈ N so
that the following conditions hold

f
(
xk, zk, uk, vk, ω

d
k

)
= f

(
xk+nT , zk+nT , uk+nT , vk+nT , ω

d
k+nT

)
g
(
xk, zk, uk, vk, ω

d
k

)
= g

(
xk+nT , zk+nT , uk+nT , vk+nT , ω

d
k+nT

)
and T is called the period of the system (3).

Generally speaking, the system states including differential
and algebraic variables, manipulated and non-manipulated
control inputs in (3) are required to satisfy equality and
inequality constraints in the form of a polyhedral set defined
as

(xk, zk, uk, vk) ∈ Ck, ∀ k ∈ N≥1 (5)

with

Ck , {(x, z, u, v) | ak,ix+ bk,iz + ck,iu+ dk,iv ≤ γk,r} , (6)

where r ∈ N≥1 is the number of hyperplanes and ∀i ∈ N[1,r].
ak,i ∈ R1×nx , bk,i ∈ R1×nz , ck,i ∈ R1×nu and dk,i ∈
R1×nv are the constraint vectors.

The non-convex cost function taking multiple control-
oriented objectives into account is given by∑

k

`
(
xk, zk, uk, vk, ω

d
k

)
. (7)

Usually, MPC solves a finite optimization problem. How-
ever, the MPC prediction horizon can be ideally selected as
infinite. For the T -periodic system in (3), a sufficiently long
prediction horizon can be chosen including several periods.
Therefore, as proposed in [8], Equation (7) can be formulated
in average form as follows

VnT (xk,u) ,
nT−1∑
i=0

`
(
xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω

d
k+i|k

)
nT

, (8)

where u = [u0, u1, . . . , unT−1]T and n ∈ N≥1.
The EMPC strategy for the periodic system can be im-

plicitly formulated by solving the following optimization
problem:

min
u∗

VnT (xk,u) , (9a)

subject to

xk+i+1|k = f
(
xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω

d
k+i|k

)
, (9b)

g
(
xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω

d
k+i|k

)
= 0, (9c)(

xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω
d
k+i|k

)
∈ Ck+i|k, (9d)

xk+nT |k = xk|k, (9e)(
xk|k, ω

d
k|k

)
= (xk, ωk) , (9f)

where the predicted system states can be calculated in
(9b) by means of the nominal part of (3) assuming that
deterministic disturbances ωd

k can be forecasted along the
MPC prediction horizon. (9e) denotes the terminal constraint
for the periodic system. (9f) denotes the measurements of last
system states and disturbances as the initial condition of the
MPC controller. If the aforementioned problem is feasible,
the admissible set for the pair of (xk,u) can be defined as
YnT such that the set of admissible states XnT can be defined
by the projection of YnT to X as follows:

XnT = {xk ∈ X | ∀u, (xk,u) ∈ YnT } . (10)

The terminal state constraint has been set in (9e), which
enforces the terminal states to be equal to the initial state.
If the system is following the mathematical model (3), the
initial state is affected by the stochastic disturbance ωs and
differ from the nominal system model in a narrow interval
so that the optimization problem could be infeasible at a
certain time instant. In order to avoid the infeasibility and
maintain the terminal state constraint, the terminal region Xf

is adopted, which can be denoted by means of a closed circle
of radius defined by a slack variable δk ∈ R+ and centered
at the initial state xk:

XnT ⊇ Xf (xk, δk) , {x | ‖xk+nT − xk‖ ≤ δk, δk ≥ 0} , (11)

where ‖·‖ denotes the 2-norm operator. The terminal cost
aims to minimize the radius δ that is a vector of slack
variables for each system state. Therefore, the terminal cost
function can be written as

Vf
(
xk+nT |k, δk

)
= ‖δk‖2. (12)

The economic cost stage function can be implemented as
follows:

ṼnT (xk,u) , VnT (xk,u) + Vf
(
xk+nT |k, δk

)
. (13)



Thus, the optimization problem can be reformulated as

min
u∗,δ∗

ṼnT (xk,u, δk) , (14a)

subject to

xk+i+1|k = f
(
xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω

d
k+i|k

)
+ ε
(
ωsk+i|k

)
, (14b)

g
(
xk+i|k, zk+i|k, uk+i|k, vk+i|k, ω

d
k+i|k

)
+ η

(
ωsk+i|k

)
= 0, (14c)(

xk+i|k, uk+i|k, ω
d
k+i|k

)
∈ Ck+i|k, (14d)

xk+nT |k ∈ Xf
(
xk|k, δk

)
, (14e)(

xk|k, ω
d
k|k

)
= (xk, ωk) . (14f)

III. ECONOMIC MODEL PREDICTIVE CONTROL FOR
DRINKING WATER NETWORKS

A. The Control-oriented Model of DWNs
The control-oriented model of DWNs is built by using

discrete-time differential-algebraic equations (1) that can be
written in the following form at the time instant k ∈ N [13]:

xk+1 = Axk +Buuk +Bvvk +Bddk, (15a)
Euuk + Evvk + Eddk = 0, (15b)
Pxxk + Pzzk = ψ (uk, vk) , (15c)

where xk ∈ Rnx denotes the heads at the storage nodes
(tanks) corresponding to the differential state vector. zk ∈
Rnz denotes the heads at the non-storage nodes, which
which corresponds to the algebraic state vector. uk ∈ Rnu

denotes manipulated flow rates of the actuators (pumps
and valves). vk ∈ Rnv denotes non-manipulated flow rates
through pipes. dk ∈ Rnd denotes the water demands, which
are regarded as the measured system disturbances. (15a)
describes the system dynamics, (15b) describes the physical
and static relations in the water network by means of mass
balance at non-storage nodes and (15c) describes head-flow
relationship by means of the Hazen-Williams formula. Fur-
thermore, A,Bu, Bv, Bd, Eu, Ev, Ed, Px and Pz are time-
invariant matrices with suitable dimensions decided by the
network topology while ψ is a vector of the nonlinear
mapping functions.

Assumption 2: The water demand dk is considered as
the system disturbance ωk, which is described in (2). The
deterministic water demand d̄k follows a cyclic pattern with
a period T . The stochastic demand Σdk

is assumed as a
noise signal with respect to zero-mean Gaussian distribu-
tion. Hence, the nominal water demand presents a periodic
property (typically daily), where d̄k = d̄k+T and then
dk ≈ dk+T . The stochastic demands are assumed to be
predicted along the MPC prediction horizon by means of a
suitable forecasting algorithm, for instance Gaussian process
algorithm described in [14].

According to Assumption 2, Equation (15a) and (15b) can
be adapted as follows:

xk+1 = Axk +Buuk +Bvvk +Bdd̂k, (16a)

Euuk + Evvk + Edd̂k = 0, (16b)

where
d̂k = d̄k + Σdk . (17)

B. Constraint Settings
The system states and some control inputs including

the manipulated and non-manipulated variables described
in (15) are subject to physical limitations, which can be
characterized for all k ∈ N+ as

xmin ≤ xk ≤ xmax, (18a)
zmin ≤ zk ≤ zmax, (18b)
umin ≤ uk ≤ umax, (18c)
vmin ≤ vk ≤ vmax, (18d)

where xmin, xmax ∈ Rnx represents the maximal and mini-
mal head at the storage tanks that is subject to the physical
capacity of the tanks, respectively. zmin, zmax represents
the minimal and maximal required heads for some non-
storage nodes. umin, umax ∈ Rnu represents the minimal
and maximal flow rates for actuators, respectively. vmin, vmax

represents the minimal and maximal required flow rates
through certain interconnected pipes.

Remark 1: In terms of the demand sectors, zmax is not
mandatory and zmin is required to guarantee the adequate
level of service to the customers. In terms of interconnected
pipes, vmin and vmax are alternative and not mandatory.

Taking the system safety and reliability into account, the
system states xk must be guaranteed to be above reserved
safety heads for all k ∈ N by using the following soft
constraint:

xk ≥ π − ζk, (19a)
ζk ≥ 0, (19b)

where π ∈ Rnx denotes a vector of the minimal heads of
the storage tanks for the sake of satisfying the underlying
demanded water from tanks and maintaining the safety heads
and ζk ∈ Rnx represents a vector of slack variables to be
minimized, which is used for relaxing the stored water below
the safety head as a soft constraint.

Besides, the terminal region mentioned in (11) is adopted
as an additional constraint for management of the DWN.
The radius δk is a vector of slack variable only related to
the terminal state at time instant k to be minimized.

C. DWN Management Criteria
The common management criteria for the DWN can be

found in [4], [6] and [5], which include economic, safety
and smoothness terms. The cost functions corresponding to
these control-oriented objectives are formulated with stan-
dard quadratic forms as follows:

`ek , α
′
kΦeuk, (20a)

`mk , ζ
′
kΦmζk, (20b)

`rk , ∆u
′
kΦr∆uk, (20c)

`t , δ
′
kΦpδk, (20d)

with

αk , α1 + α2,k, (21a)

∆uk , uk − uk−1, (21b)

where (20a) denotes the economic costs of operating the
whole network relying on assumed periodic energy price
given by (21a), α1 ∈ Rnu is the fixed water production cost



depending on the selected water source and α2 ∈ Rnu is
the energy price depending on the dynamic electricity tariff.
It is assumed that αk has the same periodic characteristic
as the system state, αk = αk+T . `mk represents the safety
cost by means of penalizing the slack variable found in
(19). `rk describes the smoothness cost that guarantees a
smooth operation to maximize the lifetime of actuators in
the network. `t draws the terminal cost that penalizes radius
δk of the terminal region to find minimum, ideally equal to
zero. Moreover, Φe, Φm and Φr are weighting matrices for
selecting corresponding variables with suitable dimensions.

Then, the multi-objective stage cost function and terminal
cost function can be defined in a weighted form, respectively:

Vs ,
1

nT

nT−1∑
i=0

{
λ1`

e
k+i|k + λ2`

m
k+i|k + λ3`

r
k+i|k

}
, (22a)

Vf (δk) , λ4`
t, (22b)

where λ1, λ2, λ3, λ4 are prioritization weights that establish
the importance of each related objective. Hence, the proposed
EMPC strategy can be realized along nT prediction horizon
(n ∈ N) by solving the following optimization problem:

min
u∗,ζ∗,δ∗

Vs + Vf (δk), (23a)

subject to

xk+i+1|k = Axk+i|k +Buuk+i|k +Bvvk+i|k +Bdd̂k+i|k, (23b)

Euuk+i|k + Evvk+i|k + Edd̂k+i|k = 0, (23c)

Pxxk+i|k + Pzzk+i|k = ψ
(
uk+i|k, vk+i|k

)
, (23d)

xmin ≤ xk+i|k ≤ xmax, (23e)
zmin ≤ zk+i|k ≤ zmax, (23f)
umin ≤ uk+i|k ≤ umax, (23g)
vmin ≤ vk+i|k ≤ vmax, (23h)
xk+i|k ≥ π − ζk+i, (23i)
‖xk+nT |k − xk|k‖ ≤ δk, (23j)(
xk|k, d̂k|k

)
= (xk, dk) . (23k)

After the above-referred optimization problem is solved, a
series of optimal control actions along the MPC prediction
horizon can be obtained. Then, by means of the receding
horizon approach, the first control action is applied to the
real system at current time instant.

IV. CASE STUDY: D-TOWN WATER NETWORK

In order to illustrate and assess the proposed EMPC
strategy, the D-Town water network is chosen as the case
study. The benchmark of D-Town water network is composed
of 388 nodes, 405 links, 7 tanks, and contains multiple
unidirectional and bidirectional links. The aggregated model
of the D-Town network shown in Fig. 1 is obtained by
removing all the terminal links connecting to single demands
and assigning the demands of the removed nodes to the
appropriate root node. Similarly, a pressure constraint is
added at the root node to guarantee that the head is sufficient
to supply the demand with the maximum head required at
the removed nodes. Therefore, the control-oriented model
of the D-Town water network contains 7 states, 6 control

inputs, 85 water demands, several hydraulic heads at non-
storage nodes and several non-manipulated flows through the
interconnected pipes [13].

Fig. 1. Aggregated Topology of the D-Town Network

A. Simulation Results

The simulation with different EMPC settings have been
executed in a PC of Intel Core i7-5500U CPU and 12GB
RAM with MATLAB R2015a. The EMPC controller has
been using GAMS (General Algebraic Modeling System)
optimization modeling language, which is widely used for
modeling large-scale and complex nonlinear optimization
problem. The resultant nonlinear optimization problem is
solved using the nonlinear solver CONOPT [15]. Fig. 2
shows the online simulation platform that is used in this
case study, where MATLAB is used as the communication
tool between the optimizer and EPANET simulator and a
pump scheduling approach (see [13]) is implemented in
the MATLAB. Besides, the data of predicted demands and
electricity price are stored in the database.

Fig. 3 shows the collected data of water demands in 7
days, where it can be noticed that there exists a potential
daily pattern with the assumption of two parts (deterministic
and stochastic demands) that corresponds with the period of
the system (15).

The sampling time is selected as 1 hour. The period of the
D-Town network is chosen to be 24 hours. Hence, the MPC
prediction horizon Hp of 24 and 48 (hours) are chosen. The
simulation results in 4 days are computed for the EMPC
strategy with periodic terminal constraint in Problem (23).
For comparison, the conventional EMPC strategy are used.
The weights for the prioritization of the cost functions have
been selected λ1 = 100, λ2 = 10, λ3 = 1 and λ4 = 10.

In order to compare the performance of the proposed
EMPC strategy with different settings, the following key
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Fig. 3. The Water Demand Data sampled from the D-Town Network

performance indicators (KPIs) are used [6]:

KPIE ,
1

ns

ns∑
k=1

α
′
kuk, (24a)

KPIS ,
ns∑
k=1

nx∑
i=1

max
{

0,
(
π(i),k − x(i),k

)}
, (24b)

KPIM ,
1

ns

ns∑
k=1

nx∑
i=1

(
x(i),k − π(i),k

)
, (24c)

KPI∆U ,
1

ns

ns∑
k=1

nu∑
i=1

(
∆u(i),k

)2
, (24d)

KPIT ,
1

ns

ns∑
k=1

nx∑
i=1

(
δ(i),k

)2
, (24e)

where KPIE denotes the economic KPI that evaluates the
costs of the DWN management, KPIS considers safety KPI,
which should be always 0 if the system is running safely.
KPIM presents the measured safety KPI that accumulates
average volume of remaining water in each storage tank,
together with KPIS estimating the safety levels under
different settings, and KPI∆U addresses smoothness KPI
that computes the collected slew rates. KPIT denotes the
terminal constraint KPI which computes the section of termi-
nal region by means of the radius δ. Moreover, ns represents
the number of hours considered in the assessment.

The comparative simulation results of the D-Town water
network are shown in Fig. 4 and Fig. 5. Fig. 4 shows the
comparisons of heads at two selected storage tanks with the
four conditions which corresponds to the following cases:
the EMPC without terminal state constraint with the 24-hour
prediction horizon, the EMPC with terminal state constraint
with the 24-hour prediction horizon, the EMPC without
terminal state constraint with the 48-hour prediction horizon

Time [h]
10 20 30 40 50 60 70 80 90

H
ea

d 
[m

]

73

74

75

76

77

78

EMPC-Hp24 EMPC-TSC-Hp24 EMPC-Hp48 EMPC-TSC-Hp48
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Fig. 4. Comparisons of Heads at the Storage Tank: T1 and T7

and the EMPC with terminal state constraint with the 48-
hour prediction horizon. For the tank T7 in Fig. 4(b), the
state (blue line) with 24-hour horizon case is far away from
the other cases while the other cases are approximately
equivalent, which implies the less horizon case is not closed
to be stable. When the prediction horizon is enlarged up to
48 hours, the head evolutions in all the tanks are changed
because the satisfaction of the water demands in the extended
horizon has been taken into account. Ideally, an infinite
prediction horizon will bring the best performance of the
considered control system. But an extended horizon increases
the computation time of solving optimization problem in-
cluding demand forecasting and the computation time of
one step should be lower than the sampling time. Hence, a
suitable prediction horizon is necessary taking all mentioned
points into consideration. Besides, the simulation results of
the EMPC with terminal state constraint are also shown.
From Fig. 4(b), it is obvious that the head evolution with
terminal constraint is close to the case with extended horizon.
Comparison results of the water flows through pumping
station and valve are shown in Fig. 5 and Fig. 6, respectively.
The flows through pumping station S2 are selected when the
electricity price is low. Hence, the EMPC strategy is effective
to control the operating costs associated to of the DWN.

Assessment results provided by KPIs are shown in Table I.
From the results in KPIE , it may be observed that enlarging
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Fig. 5. Comparisons of Pumping Flow in Pumping Station: S2
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Fig. 6. Comparisons of Water Flow in Valve: V2

the prediction horizon Hp brings more operational costs for
the purpose of approaching convergence situation in terms
of the system states. In terms of KPI∆U , the performances
of the cases with enlarged prediction horizon and periodic
terminal constraints are better than the one with only 24-hour
horizon and without terminal constraints. Besides, KPIS ,
KPIM and KPIT have been omitted for all the different
controllers in Table I since they are never below their safety
levels and the optimal terminal cost can be zero when the
optimization problem of the EMPC is solved by the selected
nonlinear optimization solver.

V. CONCLUSIONS

In this paper, the EMPC strategy with periodic termi-
nal state constraints has been investigated when applied
to nonlinear differential-algebraic equation systems and an
additional strategy for dealing with uncertainty has also been
proposed. The EMPC strategy with periodic terminal state
constraints has been subsequently applied to the complex
D-Town water network and the online simulation results and
comparisons with cases of enlarging MPC prediction horizon
and ignoring the periodic terminal state constraints have
shown its effectiveness. All the tests show similar results
in terms of performance indexes, but the approach with
terminal constraint is a step towards guaranteeing stability.
Slightly larger values of the economic KPI when using longer
prediction horizon are to be expected due to the handling of

TABLE I
COMPARISONS OF DIFFERENT EMPC CONTROLLER PEFORMANCES

Controller KPIE KPI∆U

EMPC-Hp24 23.5067 0.1195
EMPC-Hp48 26.0587 0.0807

EMPC-TSC-Hp24 25.0330 0.0962
EMPC-TSC-Hp48 26.0783 0.0811

uncertainty along the prediction horizon. As further research,
the proof of recursive feasibility and stability of the proposed
approach will be addressed in a formal way.
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