
MatSWMM - An Open-Source Toolbox for Designing
Real-Time Control of Urban Drainage Systems

G. Riaño-Briceñoa,b,∗, J. Barreiro-Gomeza,c, A. Ramirez-Jaimea, N. Quijanoa,
C. Ocampo-Martinezc

aDepartamento de Ingenieŕıa Eléctrica y Electrónica, Universidad de los Andes, Carrera
1ANo 18A-10, Bogotá, Colombia

bDepartamento de Ingenieŕıa Civil, Universidad de los Andes, Carrera 1ANo 18A-10,
Bogotá, Colombia

cAutomatic Control Department, Universitat Politècnica de Catalunya, Institut de Robòtica
i Informàtica Industrial (CSIC-UPC), Llorens i Artigas, 4-6, 08028 Barcelona, Spain

Abstract

This manuscript describes the MatSWMM toolbox, an open-source Matlab,
Python, and LabVIEW-based software package for the analysis and design of
real-time control (RTC) strategies in urban drainage systems (UDS). MatSWMM
includes control-oriented models of UDS, and the storm water management
model (SWMM) of the US Environmental Protection Agency (EPA), as well
as systematic-system edition functionalities. Furthermore, MatSWMM is also
provided with a population-dynamics-based controller for UDS with three of the
fundamental dynamics, i.e., the Smith, projection, and replicator dynamics. The
simulation algorithm, and a detailed description of the features of MatSWMM
are presented in this manuscript in order to illustrate the capabilities that the
tool has for educational and research purposes.

Keywords: Open-Source Toolbox, Urban Drainage System Integrated Model,
Real-Time Control, Matlab, Python, LabVIEW

Software availability

Name of software: MatSWMM.
Contact address: Gerardo Riaño-Briceño, School of Engineering, Universidad
de los Andes, Carrera 1E 19A - 40; ga.riano949@uniandes.edu.co.
Year first available: 2015.

∗Corresponding author: Tel.: +57 3016687553
Email addresses: ga.riano949@uniandes.edu.co (G. Riaño-Briceño),

j.barreiro135@uniandes.edu.co - jbarreiro@iri.upc.edu (J. Barreiro-Gomez),
af.ramirez236@uniandes.edu.co (A. Ramirez-Jaime), nquijano@uniandes.edu.co (N.
Quijano), cocampo@iri.upc.edu (C. Ocampo-Martinez)

Software requirements: Windows x86 and x64 environments with Matlab 2008
(or higher), Python (2.5), and/or LabVIEW 2012 (or higher).
Program size: 1̃5 Mb.
Availability: Open-source repository, licensed under the GNU General Public
License v3.0 (https://github.com/water-systems/MatSWMM).

1. Introduction

Software packages for urban drainage systems (UDS) can be categorized
into two classes of tools: commercial and open source. The former ones are
popular among industry and utilities because of their all-in-one capabilities and
their efficiency. Some of the commercial packages available in the market are
CivilStorm, InfoWorks CS, MOUSE, MIKE, SewerCAD, SOBEK-Urban, Mi-
croDrainage, and SIMBA [1]. Most of these are holistic [2], i.e., these packages
allow to model not only flow-routing through a drainage network, but also real-
time control (RTC), rainfall, runoff, water quality, street flooding (1D and 2D),
and many other features. Despite of the completeness of commercial packages,
these tools can be inappropriate for educational and research purposes, since
they are closed, i.e., they do not allow modifications over the source code or the
addition of new algorithms, a feature that is crucial when testing new theories,
specially new RTC strategies. Additionally, commercial tools can be expensive
despite allowing integration with coding tools.

On the other hand, there are open-source tools aimed to give flexibility to the
simulation algorithm, allowing the integration of several features related to UDS,
like the ones stated before [3]. Some tools of this type are CITY DRAIN© [4]
and SWMM [5]. CITY DRAIN© has been developed to operate with Simulink
and Matlab in order to enhance its functionality with already developed control
systems blocks and toolboxes for Matlab. CITY DRAIN© includes simplified
flow-routing models like the Muskingum model [6]. SWMM is the storm water
management model of the US Environmental Protection Agency (EPA). It is
oriented to model with high level of precision, using the one-dimensional Saint
Venant equations (SVE), runoff processes that take place in UDS. Additionally,
SWMM can be useful for rule-based RTC modeling. However, open-source tools
can be also limited, since extending and/or modifying SWMM for RTC purposes
requires programming skills with a low-level programming language such as C,
and adding a more complex model to the CITY DRAIN © framework (like
the SVE-based model) can be difficult in some cases. Additionally, Pathirana
[7] developed a Python-based toolbox to extract easily results from SWMM,
attempting to satisfy this need. However, it is not possible to design RTC
with it, since that tool only simplifies the extraction of simulation results from
SWMM.

For this reason, in order to facilitate the design and testing processes of real-
time controllers for UDS, MatSWMM, an open source tool has been created.
MatSWMM is a flexible tool, i.e., a software package that gives the user the
possibility to manipulate the simulation results easily for data analysis and/or
system edition functionalities, since it has been structured for three high-level

2

https://github.com/water-systems/MatSWMM

programming languages (i.e., Matlab, Python, and LabVIEW), guaranteeing
the possibility of implementing easily interfaces, and physical applications, tak-
ing advantage of matrix-oriented programming, plotting capabilities, optimiza-
tion and control toolboxes. The toolbox works as a co-simulation engine, which
is based on SWMM and it has been developed as a collection of functions in
order to facilitate the expansion of the framework.

An important but often missed issue is that both Matlab and LabVIEW en-
vironments are commercial and closed products, thus their kernel and libraries
cannot be neither modified nor freely distributed. To allow exchanging ideas
effectively improving scientific research, both the toolbox and the platform on
which MatSWMM runs should be free [8]. At this aim, MatSWMM can run on
Python, which is open source and has a great variety of optimization, data anal-
ysis, control and numerical analysis libraries, e.g., NumPy, SciPy and python-
control. It is also possible to work with ArcPy, which is a GIS library that can
be used to enhance the functionality of MatSWMM in the future, in order to
offer the same geographical positioning capabilities of commercial packages such
as InfoWorks CS or MIKE.

In this manuscript, a detailed description of the toolbox functionalities is
presented and some applications for it are suggested, emphasizing on the RTC
design and modeling applications. The remainder of the manuscript is organized
as follows. Section 2 introduces some preliminaries related to the simulation
algorithm and the MatSWMM environment. Section 3 gives a detailed descrip-
tion of all the functionalities of MatSWMM, which is complemented in Section 4
with the description of the population-dynamics-based controller for UDS that
is included into the toolbox. Section 5 gives a brief description of the models
that are adapted to MatSWMM in order to implement model-based controllers.
Section 6 presents an application example and some realizable applications with
the toolbox. Finally, in Section 7, some conclusions are drawn and a discussion
is made about further applications of the co-simulation by using this novel tool.

2. Preliminaries

In this section, important aspects for hydraulics computation and RTC with
MatSWMM are presented. First, a brief explanation of the SWMM model is
given, highlighting the modifications that are done to the SWMM flow-routing
algorithm, and how several enhanced functionalities have been adapted to it.
Then, it is emphasized how RTC can be designed with MatSWMM, and how
it can be scalable for large-scale systems. It is important to consider that
MatSWMM can be only executed through command-line instructions when us-
ing Matlab and Python. In contrast, if LabVIEW is preferred, functions are
called like typical LabVIEW blocks with their corresponding inputs and out-
puts.

2.1. The SWMM Model

SWMM is a dynamic rainfall-runoff simulation model that is used for plan-
ning, analysis, and design of infrastructure related to stormwater runoff, com-

3

bined and sanitary sewers, and other drainage systems in urban areas [5]. The
platform consists of an interface where a drainage network can be created by
using elements such as pipes, canals, storage units, sub-catchments, among oth-
ers. Additionally, it has a calculation module that uses the one-dimensional
SVE to simulate runoff throughout the network [6].

SWMM has been also equipped with dynamic and static control elements.
Static elements such as weirs and outlets, whose purpose is to limit water levels
along the system, work as barriers that reduce the energy of the flow. Dynamic
control elements, such as orifices and gates, can be programmed to operate with
either logical or rule-based control. Additionally, local PID controllers can be
implemented to set operation points for valves and gates settings in order to
manage water levels, cumulative volumes, and flow directions.

The RTC default functionalities of SWMM have become limited for large-
scale control of UDS, as the ones developed in [9] [10], and [11]. However, it
has a big potential as an open-source software since it is possible to enhance
its functionality in order to include new methods that allow users to simulate
complex RTC strategies, and to edit systematically any UDS implemented on
it.

2.2. Structure of the MatSWMM Toolbox

A special structure of folders and work-files, presented in Figure 1, has been
designed for MatSWMM in order to maintain an organized environment while
working with the toolbox. The structure of MatSWMM can be categorized in
three main parts: the SWMM files, the MatSWMM files, and the simulation
results. The SWMM files (i.e., the input, report, and output files), are stored
in a single folder called “swmm files”. In order to run a simulation, it is only
required to store the input file created with SWMM, and the path to the input
file must be described through code.

The simulation results are stored in four different folders that are related to
the simulation time and the three main types of elements in UDS (i.e., links,
nodes, and subcatchments). The results of the simulation are stored in “.csv”
files that contain information of different attributes depending on the type of
object as exposed in Figure 1.

Moreover, the MatSWMM files that are required to compute a simulation
vary depending on the programming language. Since Matlab and Python can
be used for object-oriented programming (OOP), the MatSWMM environment
has been conceived as a class file with several methods. In contrast, MatSWMM
for LabVIEW is composed by a set of “.vi” files related to the functionalities
of the toolbox. There are basic functions and enhanced functions that can be
used to reproduce the simulation algorithm (these are highlighted in Figure 1),
extract information, and modify the state of actuators from the simulation. It is
important to notice that a dynamic link library (DLL) with a modified version of
SWMM has to be saved at the workspace regardless the programming language
used.

4

SIMULATION

RESULTS

Time step & number of simulation
 steps

Information of:
FLOW | DEPTH | VOLUME | CAPACITY

Information of:
INFLOW | FLOODING | DEPTH | VOLUME

Information of:
FLOW | DEPTH | VOLUME | CAPACITY

LabVIEW module

Matlab module

MATSWMM

FILES

SWMM

FILES

Links

Nodes

Subcatchments

Time

swmm_files

.csv files

.txt file

Output file (.out)
Input file (.inp)
Report file (.rpt)

Python module

Basic functions
swmm_end.vi

swmm_get_mass_bal_error.vi

swmm_start.vi

swmm_step.vi

swmm_report.vi

swmm.dll
SWMM.m

swmm.h

swmm_open.vi

swmm_initialize.vi swmm_get_running.vi swmm_modify_setting.vi

swmm_stop.vi swmm_close.vi

SWMM_Toolkit.lvproj swmm.dll

SWMM.py

swmm.dll

Figure 1: Corresponding folders and files of the MatSWMM toolbox. Basic functionalities
inherited from SWMM are highlighted in blue.

2.3. Computational Aspects for Hydraulics

It is emphasized that SWMM is a physically-based discrete-time simulation
model that uses principles of conservation of mass, energy and momentum [5].
As a discrete-time tool, its algorithm finds iteratively solutions for the flow-
routing problem described by the SVE, using a fifth-order accurate Runge-Kutta
method (RK) with adaptative step size control [12]. This RK algorithm is based
on the embedded Runge-Kutta formulas, originally formulated by Fehlberg [13].

Hydraulics in SWMM are computed through several models of subsystems
related to physical processes taking place in the UDS, such as, surface runoff,
groundwater, flow routing, water quality routing, infiltration, snowmelt, and
surface ponding [5]. Since the purpose of the toolbox is to facilitate the design
of control strategies for UDS composed of actuators (e.g., weirs, valves, gates)
within conduits and storage structures, emphasis is placed on the flow routing
calculation module.

MatSWMM offers the possibility to manipulate the SWMM flow routing
calculation module, whose algorithm can be decomposed into three parts as

5

Start

Input: .inp SWMM
file path

Initialize SWMM
variables

Run simulation step
Output: requested values

of model variables

Excecute enhanced
functionalities
(MatSWMM)

Simulation
over

No

Yes

End subprocesses
Calculate mass
balance error

Write report, free
memory and close

Stop

S
ta

rt
 M

at
S

W
M

M
M

at
S

W
M

M
 m

ai
n

 lo
o

p
F

in
is

h
 M

at
S

W
M

M

System
(Approaches)

Controller
(Tools)

H U

a) b)

Figure 2: a) The MatSWMM algorithm composed of three main parts; and b) closed-loop
scheme with co-simulation.

presented in Figure 2a). First, an initialization process is carried out, and
memory is allocated to store the computation results of the simulation as well
as IDs1, and other object attributes. Secondly, the RK algorithm is invoked
and a loop is created in order to calculate runoff results for a time interval; this
is denominated as the main loop of the simulation. Finally, the algorithm finds
solutions for the flow routing problem and two files are generated, i.e., a report
file and an output file whose extensions are “.rpt” and “.out” respectively.
The first file gives a summary of the main simulation results in plain text, while
the second one is a binary file that stores the values of the results, in order to
make the data storage and retrieving processes efficiently when large data-sets
are generated.

In order to solve the flow routing problem, it is necessary to compute the
lateral inflow at each node (manhole). This estimation is provided by a rainfall-
runoff model that is embedded into the subcathment object of SWMM. Even
though, it is also possible to provide the direct runoff information as a parameter.
On the one hand, if a subcatchment model is used to compute the lateral inflow
at each manhole, then SWMM uses an non-linear reservoir model based on
one out of the three posible infiltration models provided by SWMM, i.e., the

1Identification names for the UDS components.

6

Figure 3: Flow routing scheme adopted by SWMM. The lateral inflow QL is computed for
each manhole of the network, and then, it is summed up with the inflow Qin, in order to
compute Qout using the Saint Venant equations (SVE).

Horton equation, the Green-Ampt method, and the curve number method. Each
infiltration model has its own parameters that need to be defined by the user,
as explained in [5]. Likewise, if the user decides to specify the lateral inflows
at each node, it is necessary to create a time series representing the pattern of
direct runoff that goes into the node [5].

Once the lateral inflow is computed, it is possible to use the well-known
SVE [6] to estimate the flows throughout the drainage network (see Figure 3).
The SWMM user has a choice of the level of sophistication used to solve these
equations, i.e., the steady–flow routing, the kinematic–wave routing, and the
dynamic–wave routing [5].

MatSWMM has been thought to be portable, therefore, the modified version
of the SWMM model has been compiled as a C-language-based DLL, which can
be used from any C-based programming language such as Matlab, Python,
or LabVIEW. Because of this, MatSWMM can be easily extended for other
programming languages using the base code2.

MatSWMM can be considered as a co-simulation engine that retrieves in-
formation of hydraulic variables from SWMM, and allows to modify attributes
in order to perform data analysis efficiently with the libraries provided for its
base languages (Matlab, Python, and LabVIEW). With that fact in mind, the
main loop of the algorithm presented in Figure 2 can be adapted for for RTC
modeling, and the initialization process for systematic system edition, i.e., us-
ing the functionalities of the toolbox to modify attributes of the UDS model
programmatically and/or automatically.

2The source code can be downloaded from: https://github.com/water-systems/MatSWMM

and the documentation of the developed functionalities is available at https://github.com/

water-systems/MatSWMM/wiki.

7

QL

Subcatchment

Qin
Qout

Drainage network

https://github.com/water-systems/MatSWMM
https://github.com/water-systems/MatSWMM/wiki
https://github.com/water-systems/MatSWMM/wiki

2.4. Computational Aspects for Real-Time Control

Taking into consideration the MatSWMM algorithm shown in Figure 2a), it
is possible to explain how the toolbox can be used for RTC design. After the
computation of each flow-routing step, the enhanced functionality is executed,
i.e., it is possible to retrieve a set of state variables H and modify parameters
during the simulation, through the set of control actions U , as shown in Figure
2b).

It is important to notice that for RTC design, a control strategy can be
implemented and tested for one of the base languages of MatSMWM under
the assumption of instantaneous execution. Since the loop is stopped until
the setting points are changed as desired, the setting of actuators is changed
as it would be an instantaneous action, which is not what happens in reality.
However, due to the flexibility of the coding scheme, if a hydraulic structure
requires a large amount of time (i.e., larger than the sampling time) to move
from one state to another, the delay can be modeled taking advantage of the
time resolution of the simulation, since the change of setting of gates and valves
in UDS tends to occur in minutes.

Another relevant issue is the time complexity of the MatSWMM algorithm,
and its computational burden when large-scale systems are required to be man-
aged. This issue is directly related to the time complexity of the proposed
functionality for controlling UDSs with a population-dynamics-based approach.
If the system has m partitions [9], the time complexity of the control algorithm
is O(m), i.e., it is executed in linear time [14].

Additionally, if information of the model is requested at each time step, the
computational burden of the simulation is going to be increased proportionally
to the number of variables k that are requested at each time step.

Thereby, the time complexity for the enhanced functionality is going to be
O(nm + nk), where n is the number of time steps required for the simulation.
With that fact in mind, the efficiency of a simulation with MatSWMM is going
to be mostly dominated by the simulation time (i.e., the time window for the
rain scenario and runoff modeling), and the size of the time step. This can be
proved if a performance test is carried out. For this test, several simulations of a
two hours rain-scenario are executed leaving the value of n fixed, and modifying
the values of m and k. The performance test is developed using a computer with
an Intel® Core i3 2.53GHz x64 processor, and four gigabytes of RAM memory.

It is shown in Figure 4 that both the population-dynamics-based control
algorithm, and the use of getters at each iteration, can be solved in linear time
independently, since a plane surface is formed. Additionally, the simulations
with the enhanced functionality takes between three and fifty seconds, depend-
ing on the magnitudes of m and k.

However, if either the cardinality of H or the number of actuators are larger
than the number of simulation steps, the time efficiency is going to be dominated
by the large-scale nature of the UDS network.

In order to improve the efficiency of the co-simulation algorithm, the use of
getters (see Section 3.1) for the main loop must be limited to RTC purposes.

8

Figure 4: Performance of the proposed enhanced functionality. The duration of several simu-
lations with a fixed number of steps is computed. At each iteration k variables are extracted
from the SWMM model, and m partitions of the system are controlled.

If information is required for data analysis, the use of special functions after
the simulation is encouraged. These functions are efficient, since they extract
information from the output file without using significant memory resources, and
have the capability to save the values of the main variables of all the objects in
the system (i.e., nodes, links, and catchments) in CSV files. The use of special
functions for data analysis is explained in Section 3.2.

3. MatSWMM Functionalities

In this section, a detailed explanation of the MatSWMM functionalities is
given. Emphasis is placed on basic functionalities, most of them inherited from
SWMM, e.g., systematic system edition, data management, and system model-
ing.

3.1. Basic functionalities

The default functionalities of MatSWMM are related to the computation
module of SWMM, which is in charge of executing the runoff model using the
SVE. The basic functionalities are also related to the systematic edition capa-
bilities of MatSWMM. The inherited functions from SWMM are: initializing
SWMM, running a step, ending sub-processes, calculating the mass balance er-
ror, writing a report file, and closing the application. However, as shown in
Figure 2, these functions can be grouped into three main processes that can

9

Table 1: MatSWMM basic functionalities.

Function Description

initialize It opens the files required to run a SWMM simula-
tion, and starts it.

run step It advances the simulation by one routing time step.

is over It determines whether or not the simulation is over.

finish It saves all the results of the simulation and closes
the program to run a new simulation.

run simulation It runs a SWMM simulation.

be executed through the functions presented in Table 1. Using these functions
the SWMM algorithm can be replicated with the advantage of having greater
control of the whole process.

With that in mind, getters and setters were developed to take advantage
of the partition of the SWMM algorithm (see Table 2). On the one hand,
getters are executed at each iteration to obtain properties of the model as if
they were measured by a sensor device, e.g., flow, velocity, volume, flooding,
Froude number, etc. On the other hand, setters are used to modify properties
of the model, either at each iteration or at each simulation scenario. One of
the setters that can be useful for RTC design is the one that allows to modify
the setting of actuators such as valves, gates, and orifices. It can be done using
the modify settings function. In addition, before the simulation is initialized,
properties of the model can be modified using the modify input function.

Table 2: Getters and setters included in MatSWMM.

Function Description

step get It retrieves the values of an specific property of mul-
tiple objects while running the simulation.

get from input It returns the value of the attribute in the “.inp”
file.

get all It returns all the objects IDs of a certain type (e.g.,
NODES, LINK, SUBCATCH, STORAGE, OUT-
FALL, JUNCTION) and the value of one of their
properties.

modify input It modifies a specific attribute from the “.inp” file.

modify settings It modifies the setting of several orifices during the
simulation.

3.2. Data Analysis

If the considered model is of large-scale nature, i.e., the number of nodes
and pipes is such that it is not possible to retrieve state variables or modify

10

Table 3: Data management functionalities.

Function Description

get incidence matrix It returns the graph representation of the network in
matrix form.

save results It saves all the results of the simulation in “.csv”
files, organized in four folders in the workspace di-
rectory. The folders are related to the type of objects
(Link, Node, Subcatch). A folder called Time with
information of the step size is also saved.

create graph It creates a graph data structure in Python that rep-
resents the network as a connection of nodes (man-
holes) and conduits (canals and pipes).

the setting of actuators easily. Hence, getters and setters become inefficient to
manage data, since they can only be executed during the main loop. Therefore,
there are special methods to handle large data sets and large groups of objects
(see Table 3).

For instance, it is required to extract all the results of the simulation, which
can be saved in a “.csv” file that is easily readable by using any of the base
programming languages. Additionally, special data structures were adapted to
the SWMM model in order to characterize any network with canals, tanks,
and actuators. Because of the structure of SWMM, graphs (modeled by the
SWMMGraph class) are used to fit the model properly. Additionally, when
convergence topologies prevail, the structure can be simplified as a tree (mod-
eled by the SWMMTree class). The enhanced functionality related to these
data structures is oriented to split the model into manageable pieces. Thus, the
process of extracting information and modifying parameters can be done effi-
ciently, through breath-first and deep-first search algorithms [14] (also included
in MatSWMM for Python). This can be useful when implementing decentral-
ized control, testing a fault-detection strategy [15], or simplifying the network
topology, using an equivalent one, as done in [11] and [16].

3.3. System Modeling

MatSWMM is useful to characterize UDS through a simplified control-oriented
model (COM) [3]. Nowadays, two COMs have been included in MatSWMM,
i.e., the virtual-tank (VT) based model [11], and the Muskingum model [6][17],
both explained in Section 5. In order to obtain a COM with MatSWMM, it is
necessary to have the real data of input and output flows of the structure that is
going to be characterized (e.g., canals or pipes). It is possible to use the SWMM
model included in MatSWMM to obtain accurate data that represents the be-
havior of the system, as it was a virtual reality (i.e., the physical behavior of the
system). Furthermore, a simulation can be run and data from the model can
be easily extracted with MatSWMM. Those data sets can be used to calibrate
a COM and then, it can be used for the design of model-based controllers.

11

a) b)

Figure 5: a) Convergence topology, i.e., m source reservoirs whose outflows converge to a
receptor reservoir; and b) divergence topology, i.e., a source reservoir (vs) whose outflow
diverges to m receptor reservoirs (vr).

4. Population-dynamics-based controllers

A detailed description of the distributed controllers based on population dy-
namics for MatSWMM is presented in this section. In order to introduce this
concept, first a mathematical framework of the population dynamics is pre-
sented, and then special emphasis on the distributed replicator dynamics, the
Smith dynamics, and the projection dynamics is made. Furthermore, a proof of
concept example by using the mentioned control module is shown. Finally,
the results exhibit the performance of the distributed real-time population-
dynamics-based controllers by using the developed toolbox funtionalities.

Notation

Column vectors are denoted by lower-case letters and bold style, e.g., p.
Scalars are denoted by non-bold style, e.g., n. Sets are denoted by calligraphic
style, e.g., S. The column vector of m unitary entries is denoted by 1m ∈ Rm,
i.e., 1m = [1 . . . 1]>. The cardinality of a set X is denoted by |X |. The
set of real numbers is denoted by R, the set of non-negative real numbers is
denoted by R+, and the set of strictly positive real numbers is denoted by R++.
Similarly, the set of positive integer numbers is denoted by Z+.

4.1. Population Dynamics

The population dynamics approach is presented by making an analogy with
either an UDS or with a drinking water network (DWN). In order to make the
analogy, it is also taken into account that the UDS is mainly associated to the
convergence topology shown in Figure 5a) as in [9], while the DWN is mainly
associated to the divergence topology shown in Figure 5b) as in [18].

First of all, the analogy between elements in the population dynamics ap-
proach with elements in either USD or DWN is presented in Table 4.

For instance, consider the system with the convergence topology shown in
Figure 5a) with m ∈ Z+ source reservoirs (strategies). The total flow through
the system (population mass) is denoted by Q(t) ∈ R+, which corresponds to

12

Table 4: Equivalence between population dynamics and UDS/DWN.

Population dynamics UDS DWN

Population System System
Strategy Source reservoirs Receptor reservoirs
Population mass Total inflow to receptor reser-

voir
Total outflow source reservoir

Agent Flow unit Flow unit
Proportion of agents Proportion of flow Proportion of flow
Strategic distribution Flow distribution in source

reservoirs
Flow distribution in receptor
reservoirs

Fitness of a strategy Current volume Available volume capacity

the inflow of the receptor reservoir in the convergence topology. Hence, Q(t) is
composed of a large and finite amount of flow units (agents). Each flow-unit is
assigned to an outflow of the source reservoirs, where the set of source reservoirs
is denoted by S = {1, ...,m}.

On the other hand, regarding the divergence topology shown in Figure 5b),
there are m ∈ Z+ receptor reservoirs (strategies). Similarly as in the con-
vergence topology case, Q(t) ∈ R+ corresponds to the outflow of the source
reservoir in the divergence topology. Each flow-unit is assigned to an inflow of
the receptor reservoirs, and then the set of receptor reservoirs is denoted by
S = {1, ...,m}.

In both the convergence and divergence topologies, the scalar pi(t) is the pro-
portion of flow units assigned to each flow associated to the reservoir i ∈ S as a
percentage, i.e., the outflow/inflow for the ith reservoir in the convergence/di-
vergence case is given by pi(t)Q(t). The vector p(t) ∈ Rm

+ is the flow proportion
distribution involving the m reservoirs according to the topology. The set of
the possible distributions of flow is given by a simplex

∆ =
{
p(t) ∈ Rm

+ : p(t)>1m = 1
}
,

and the interior of the set of the possible distributions of flow is given by the
set

int∆ =
{
p(t) ∈ Rm

++ : p(t)>1m = 1
}
.

Finally, the tangent space of the set of possible distributions of flow is defined
as

T∆ =
{
z(t) ∈ Rm : z(t)>1m = 0

}
.

For the convergence topology, each flow unit is assigned to each reservoir
i ∈ S depending on the current volume, which is described by a function denoted
by Fi(p(t)). Then, more outflow is assigned to those reservoirs close to be filled
up impeding overflows in them. In contrast, for the divergence topology, each
flow unit is assigned to each reservoir i ∈ S depending on the current volume
capacity, which is described by a function Fi(p(t)). Therefore, less inflow is
assigned to those reservoirs close to be filled up.

13

The design of the population-dynamics-based controllers are given by the
proper selection of the fitness functions that define the incentives for the pro-
portion of agents to choose a particular strategy. The proper selection of the
fitness functions is further discussed bellow and it depends on the type of topol-
ogy, i.e., an appropriate selection of the fitness function depends on if the system
has a convergence or divergence topology. Furthermore, it is necessary that the
fitness functions satisfy conditions to obtain a class of population game known
as stable game [19].

Definition 1. The game F(p) is stable if the Jacobian matrix J = DF(p) is
negative semi-definite with respect to the tangent space T∆ [19], i.e.,

z>J z ≤ 0, for all z ∈ T∆, p ∈ ∆.

Then, it implies that a game is stable if the fitness functions are decreasing with
respect to the proportion of agents. ♦

Notice that for the convergence topology (see Figure 5a)), the fitness func-
tions can be selected increasing with respect to the current volumes as in [9]
(see Figure 6a)). For the convergence topology, when a proportion of agents
is increased, it is expected that the corresponding volume decreases (see Fig-
ure 6b)). Consequently, due to the fact that the fitness function is increasing
with respect to the volume, the fitness function decreases with respect to the
proportion of agents (necessary condition for a stable game). Contrary, for the
divergence topology counterpart (see Figure 5b)), the fitness functions can be
selected decreasing with respect to the current volume, e.g., the error with re-
spect to the maximum capacity volume as in [18] (see Figure 6c)). When a
proportion of agents is increased it is expected that the corresponding volume
increases (see Figure 6d)). Consequently, due to the fact that fitness functions
are increasing with respect to the volume, the fitness function decreases with
respect to the proportion of agents (necessary condition for a stable game).

4.2. Particular distributed population dynamics

The traditional replicator dynamics, Smith dynamics, and projection dy-
namics equations are part of the six fundamental population dynamics [20],
which require full information (i.e., all strategies associated to reservoirs need
information about all other reservoir states in order to evolve). However, the dis-
tributed population dynamics are deduced in [21] from a local revision protocol
that only needs partial information. Due to the fact that only local information
is needed, then there is an undirected non-complete connected graph describ-
ing possible interaction denoted by G = (V, E), where V is the set of nodes,
which represents the reservoirs, and E ⊂ {(i, j) : i, j ∈ V} is the set of links
representing the information sharing within the system. Furthermore, the set
of neighbors of the node i ∈ V is given by Ni = {j : (i, j) ∈ E}. Notice that
i /∈ Ni, and that Ni 6= ∅, for all i ∈ V since G is connected.

14

Fi

via b

vi

pi

a

b

Fi

via b

vi

pi

a

b

a)

c)

b)

d)

Figure 6: Proper selection of fitness functions for convergence topology a) and b), and diver-
gence topology c) and d). Correspondance is as follows: a) increasing fitness function with
respect to volume; b) decreasing relation existing between proportion of agents and volume for
convergence topology; c) decreasing fitness function with respect to volume; and d) increasing
relation existing between proportion of agents and volume for divergence topology.

The distributed replicator dynamics are given by

dpi(t)

dt
= pi(t)

Fi(p(t))
∑
j∈Ni

pj(t)−
∑
j∈Ni

pj(t)Fj(p(t))

 , for all i ∈ S.

The distributed Smith dynamics are given by

dpi(t)

dt
=
∑
j∈Ni

pj(t) [Fi(p(t))− Fj(p(t))]+ − pi(t)
∑
j∈Ni

[Fj(p(t))− Fi(p(t))]+ ,

for all i ∈ S, and where [·]+ = max(·, 0). And finally, the distributed projection
dynamics are given by

dpi(t)

dt
= |Ni|Fi(p(t))−

∑
j∈Ni

Fj(p(t)), for all i ∈ S.

MatSWMM includes a function that can be used to implement a population-
dynamics-based controller for UDS with divergence and convergence topologies
(i.e., the pdyncontrol function). It includes the Smith, the projection, and the
replicator dynamics.

15

5. Models of UDS

It is possible to characterize any UDS as a composition of two topologies, i.e.,
convergence and divergence. As shown in Figure 5a), the convergence topology
is related to the case where the flow of several storage units or pipes is merged
in a single receptor structure. Furthermore, the divergence topology, shown in
Figure 5b), is formed when the flow of a single structure is distributed along
more than one receptor. The former one prevails in stormwater UDS while the
latter is commonly related to drinking water networks (DWN). However, both
topologies are used to build combined sewer networks where not only stormwater
is transported but also sanitary and wastewater flows.

MatSWMM has been designed to characterize both topologies easily, guar-
anteeing a proper modeling of the run-off phenomenon throughout large net-
works and allowing the user to handle the problem of flow assignation with an
optimization-based controller for each case, as the one described in [9].

5.1. Control-Oriented Models

The SVE used by SWMM to simulate the run-off throughout the network
describe in a quite high level of detail the behavior of the system. Usually, this
level of detail is not required in RTC applications and COMs are used instead.
As stated before, MatSWMM incorporates the so-called VT-based model, which
is a widely used COM for modeling UDS, and the Muskingum model, also used
for predictive control [22][23].

5.1.1. Virtual Tanks Model

In the virtual reservoir approach, the UDS is divided into a set of inter-
connected real and VTs. According to [11], a VT is a storage element that
represents the total volume of sewage inside the sewer mains associated with a
determined portion of a given network. The volume is computed through the
mass balance of the stored volume, the inflows (from both sewage mains and
stormwater), and the outflows (to both sewage mains and street) of the reservoir.
For the model developed in MatSWMM, the outflow of a given tank (virtual or
real) is assumed to be proportional to the volume of the tank. Therefore, the

model of a tank is given by dVi(t)
dt = qini (t) − KiVi(t), where Vi is the volume

stored in the i-th tank, qini is the total inflow to the i-th tank, and Ki is the
volume/flow conversion (VFC) coefficient. As SWMM provides measures for
both, the volume and the outflow of the reservoirs, the VFC coefficient for each
reservoir can be computed via a least-squares algorithm given by

Ki = arg min
Ki

∫ tf

0

(
qouti (t)−KiVi(t)

)2

dt, (1)

where tf is the total simulation time, and qouti is the total outflow of the i-th
reservoir. Finally, the maximum capacity volume of the i-th tank is denoted by
V max
i .

16

In order to solve the least–squares algorithm to calibrate the linear reservoir
model using MatSWMM, a discretized variant of (1) can be proposed as follows:

Ki = arg min
Ki

‖qout
i −Kivi‖2. (2)

In this way, the parameterKi for the ith reservoir can be computed regardless
of either the form of the outflow or the volume.

5.1.2. Muskingum Model

The Muskingum model describes the water flow through UDSs based on the
conservation mass principle. The mass balance for the ith reservoir in the UDS
is given by

dVi(t)

dt
= qini (t)− qouti (t),

and the relation between its inflows and outflows [6] is given by

Vi(t) = Aqini (t) +Bqouti (t),

where A and B are parameters for the model calibration. Similarly to the case
of the linear reservoir, the estimation of parameters A and B for the discretized
Muskingum model is done by solving (2). This problem has been solved ana-
lytically in [24], then, both A and B can be computed in terms of the inflow,
outflow, and stored volume by using the following expressions:

Ai =
(qout

i)Tqout
i vT

i qin
i − (qout

i)Tqin
i vT

i qout
i

(qin
i)Tqin

i (qout
i)Tqout

i − ((qout
i)Tqin

i)2
, (3)

Bi =
(qin

i)Tqin
i vT

i qout
i − (qout

i)Tqin
i vT

i qin
i

(qin
i)Tqin

i (qout
i)Tqout

i − ((qout
i)Tqin

i)2
. (4)

By expressing the outflows as function of Vi(t), q
in
i (t), A, and B, it is ob-

tained that dVi(t)/dt = qini (t) (1 +A/B)− Vi(t)/B, then

dVi(t)

dt
= γqini (t)−Kivi(t),

where γ = (1 +A/B), and Ki = 1/B. Furthermore, Ki > 0 scales the outflow,
and it can be seen as the discharge coefficient of the reservoir. However, for
some particular cases Ki < 0, and the considered system output can show a
non-minimum phase behavior [17].

17

WWTP

Multi-compartment storm tank

On-line reservoirs

WaterbodyQin
T2

T1

T3

T4 T5 T6

T8

T7

a)

C1

C2

C4

C5

C6

C7

C8

C9

C3

C10

C16

C12

C13 C18

C14 C19

C15

C-18

C17

G1
G2

G3

G4

G5

G6

G7

G8

N1

N2

N3
N4

N6

N5

N7

N8

N9

N10

N11

N12

N13

N14

DES-4

DES-1

DES-2

DES-3

DES-5

DES-6

T1

T2

T3

T4

T5

T6

T7

T8

SWMM 5.1 Page 1

b)

Figure 7: Divergence case study a) conceptual scheme and input direct runoff hydrograph;
and b) system implementation in SWMM.

5.2. Simulation-Oriented Models

MatSWMM includes the SWMM model as its simulation-oriented model
[3]. SWMM is known as an accurate physically-based model that describes the
propagation of a wave in an open channel through the SVE. It is based on the
conservation of mass and momentum principles [6]. One of the best features of
SWMM consists on representing the UDS as a composition of nodes and links,
which facilitates the modeling in discrete time of the physical prototype and the
mathematical solution of the non-uniform flow SVE.

The main variable in the links is the flow rate, and the solution to the flow-
routing problem is for the average flow in each link, which is assumed to be
constant over a time step. For each step of the simulation, the velocity of the
flow, and the depth of each link is calculated. In the case of the nodes, the
main variable is the pressure head, which is assumed to be changing in time but
constant over a time step [25].

The continuity and the momentum SVE are reported in [6]. The numerical
integration of the two SVE is accomplished with a RK algorithm [12]. It has
been shown in [25] and [5] that the SWMM model and its algorithm is stable
and accurate through the calculation of three types of mass-balance errors, i.e.,
runoff, flow-routing, and water quality errors. This fact guarantees that the
SWMM model is appropriate to model UDS with a high level of precision, i.e.,
better than the one obtained with the COMs.

18

6. Examples of application

This section illustrates some features of MatSWMM for RTC by means of a
divergent UDS case study (see Figure 7). The system is composed by four sub-
catchments that are affected by a precipitation event, the precipitation becomes
runoff, and then, it is transported through a system of pipes that is divided
into three branches. After the bifurcation, typical on-line storage units, like
the ones described [26], are used to handle and retain the rise of flow. The
storage units have different dimensions and are located at different elevations.
These differences are common in UDS because of the unavailability of land for
infrastructure [26]. Finally, as it is shown in Figure 7, the first division carries
water to a tank with three different bodies, the second division meets an outfall
and the third division is splitted in two branches, carrying water to a waste
water treatment plant (WWTP) with two storage units.

The control objective in this model is to spread efficiently flows at each bi-
furcation, handling the differences between reservoirs, i.e., differences between
their location, elevation, and dimensions. To this end, a partition of the sys-
tem is done as proposed in [9] and the distributed control based on population
dynamics included into MatSWMM is used.

Because of the nature of the system, the fitness function that will be used
by the controller to solve the optimal assignment problem is related to the oc-
cupancy rate or the capacity of each tank, which is equivalent to the normalized
volume, as presented in Table 4.

An example of the code that can be used in Matlab with MatSWMM to
implement the control strategy in the first divergence zone is outlined below:

>> input file = 'example.inp'; settings = [1/3 1/3 1/3];
>> tanks = {'T1', 'T2', 'T3'}; max depths = [5 4 4.5];
>> gates = {'G1', 'G2', 'G3'};
>> SWMM.initialize(inp); % MatSWMM initialization
>> while (~SWMM.is over) % MatSWMM main loop

SWMM.run step;
normalized volumes = SWMM.step get(tanks, SWMM.VOLUME, SWMM.SI) ...
./ max depths;
settings = SWMM.pdyncontrol('smith', 'divergence', ...
normalized volumes, 0.02);
SWMM.modify settings(gates, settings/max(settings));

end
>> [errors, duration] = SWMM.finish; % MatSWMM closing
>> [time, volumes] = SWMM.read results(tanks, SWMM.NODE, SWMM.VOLUME);

First of all, some variables are declared, such as the SWMM input file path,
initial conditions for the setting of gates, and the IDs of tanks and gates. Then,
the three parts of the MatSWMM algorithm are invoked, i.e., the initializa-
tion, the main-loop, and the closing of the program. Within the main-loop the
population dynamics-based controller is used to manage the flows of one of the
partitions of the system, which is composed of three on-line reservoirs, i.e., T1,
T2, and T3. Finally, information of the volumes at each reservoir is extracted
for data analysis.

19

The same procedure is applicable to implement RTC on the remaining di-
visions. However, the controller should be tuned depending on the speed of
the dynamics, and the type of dynamics (i.e., Smith, projection, or replicator).
The results of a scenario where no-control strategy is implemented are shown in
Figure 8. The distribution of water volumes is not efficient, since reservoirs T2,
T3, and T4 are overused, i.e., they are operating at its maximum capacity, while
the others are underused, i.e., their used capacity is less than 100%. Addition-
ally, 6.99× 103m3 of flooding appear, due to the excess of water that flows out
from the overused tanks. This problem may occur when designing hydraulic
infrastructure based on a static design storm, i.e., the climate variations due to
the heat island effect were not considered [27].

When the distributed population-dynamics-based controller is implemented
at each of the nodes where the flow diverges, flooding is prevented and the water
is better distributed. The results when RTC is implemented are obtained for
the projection, the replicator, and the Smith dynamics (see Figure 9).

The simulation with MatSWMM allows to indentify the main advantage of
implementing RTC, which is to distribute efficiently flows in divergent and con-
vergent sections of the UDS to minimize the total flooding throughout the net-
work. Throughout this approach, it is possible to handle dynamic-rain scenarios,
different to the static ones used for design, with the already built infrastructure.

Additionally, tunning the controller can be easily done for a physical im-
plementation (even empirically), because of the advantage of programming the
SWMM model, which is accurate [25], through MatSWMM, in order to obtain
the results of several simulations systematically.

Other applications

Because of the capability that MatSWMM brings to its users for editing
systematically any UDS implemented with the SWMM framework, it is possible
to extend the scope of MatSWMM to optimal design of UDS, since most of
the optimization problems proposed for UDS can be solved with heuristics, but
require values of variables from an efficient simulation-oriented model (e.g., total
flooding, volumes, etc.) [28][29][30].

C
ap

ac
it

y
[%

]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
1

T
2

T
3

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
4

T
5

T
6

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
7

T
8

Time [hours] Time [hours] Time [hours]
a) b) c)

Figure 8: Occupancy rate, or capacity of storage tanks when no control strategy is applied,
a) Capacity of reservoirs T1, T2, and T3; b) capacity of reservoirs T3, T4, and T5; c) capacity
of reservoirs T7, and T8.

20

C
a
p

ac
it

y
[%

]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
1

T
2

T
3

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
4

T
5

T
6

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
7

T
8

a) b) c)

C
a
p

ac
it

y
[%

]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
1

T
2

T
3

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
4

T
5

T
6

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
7

T
8

d) e) f)

C
a
p

ac
it

y
[%

]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
1

T
2

T
3

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
4

T
5

T
6

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T
7

T
8

Time [hours] Time [hours] Time [hours]
g) h) i)

Figure 9: (a, b, c) capacity of tanks when the RTC strategy with the projection dynamics is
applied; (d, e, f) capacity of tanks when the RTC strategy with the replicator dynamics is
applied; and (g, h, i) capacity of tanks when the RTC strategy with the Smith dynamics is
applied.

Figure 10: LabVIEW interface based on MatSWMM.

21

Also, interfaces such as the one presented in Figure 10, can be implemented
easily with the MatSWMM basic functionalities for LabVIEW, to characterize a
physical UDS. Additionally, the ArcPy library for Python can be used in parallel
with the MatSWMM library in order to extract GIS data and solve the problem
of optimal positioning of UDS structures, specifically, on-line and off-line storm
tanks [26].

With that in mind, the capabilities of MatSWMM can be useful for optimal
design of infrastructures, considering not only the typical rain-scenario and a
critical service operation condition, but also taking into consideration the possi-
bility of including sensors and actuators before the commissioning of the system,
and to analyze how these elements an their proper management can significantly
improve the performance of UDS.

7. Conclusions and Further Work

This manuscript has presented a new open-source toolbox for the design of
RTC in UDS, i.e., MatSWMM, which runs on Matlab, LabVIEW, and Python.
MatSWMM includes a variety of functionalities to edit systematically any UDS
implemented on the SWMM framework, during and after a rainfall simula-
tion. These features make MatSWMM suited for both educational and research
purposes, specially for the design of RTC applied to UDS. xAdditionally, it is
possible to test heuristic algorithms for optimal design and positioning of re-
tention structures in UDS, since the only requirements for these tests are the
results from the simulation, and a function to edit the properties of the sys-
tem elements. As a matter of fact, MatSWMM is currently used by several
masters, and Ph.D. students, and has an active Github repository3. Among
future projects, there are supporting Linux-based OSs, adding parallel comput-
ing techniques for optimal design of UDS, and extending the toolbox including
more control strategies, such as optimization-based controllers (e.g., MPC, LQR,
evolutionary-based controllers), and heuristic algorithms (e.g., rule-based, fuzzy
control). The toolbox is going to be enhanced for realizable applications such as
optimal positioning of UDS elements (e.g., sensors, actuators, retention struc-
tures), based geographical information provided by new GIS capabilities. Also,
as more features are developed, more case studies are going to be included into
the repository. Any suggestion and/or bug report are very welcome.

Acknowledgments

Authors would like to thank Mexichem (Colombia) for supporting this re-
search through the project Drenaje Urbano y Cambio Climático: hacia los sis-
temas de alcantarillado del futuro. Fase II. COLCIENCIAS 633/2013. Also,

3The link to the repository is: https://github.com/water-systems/MatSWMM.git.

22

https://github.com/water-systems/MatSWMM.git.

this work has been partially supported by the project ECOCIS (Ref. DPI2013-
48243-C2-1-R). J. Barreiro-Gomez is partially supported by COLCIENCIAS-
COLFUTURO and Agencia de Gestio d’Ajust Universitaris i de Recerca AGAUR.

References

[1] R. K. Price, Z. Vojinović, Urban hydroinformatics: data, models, and de-
cision support for integrated urban water management, IWA publishing,
2011.

[2] D. Butler, M. Schütze, Integrating simulation models with a view to op-
timal control of urban wastewater systems, Environmental Modelling &
Software 20 (4) (2005) 415–426.

[3] L. Garćıa, J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano,
C. Ocampo-Martinez, Modeling and real-time control of urban drainage
systems: A review, Advances in Water Resources 85 (2015) 120–132.

[4] S. Achleitner, M. Möderl, W. Rauch, City drain©–an open source ap-
proach for simulation of integrated urban drainage systems, Environmental
Modelling & Software 22 (8) (2007) 1184–1195.

[5] W. C. Huber, L. A. Rossman, R. Dickinson, EPA storm water management
model SWMM 5.0, National Risk Management Research Laboratory, Office
of Research and Development, US Environmental Protection Agency, 2010.

[6] V. Te Chow, Open channel hydraulics, McGraw-Hill Book Company, Inc;
New York, 1959.

[7] A. Pathirana, SWMM5 1.1.0.3 : Python package (2015).
URL https://pypi.python.org/pypi/SWMM5

[8] R. Stallman, Free software, free society: Selected essays of Richard M.
Stallman, Lulu, 2002.

[9] J. Barreiro-Gomez, G. Obando, G. Riaño Briceño, N. Quijano,
C. Ocampo Martinez, Decentralized control for urban drainage systems
via population dynamics: Bogotá case study, in: Proceedings of the 14th
European Control Conference, Linz, Austria, 2015, pp. 2431–2436.

[10] A. Martin, Mathematical optimization of water networks, Springer Basel
AG, 2012.

[11] C. Ocampo-Martinez, Model Predictive Control of Wastewater Systems,
Springer Verlag, 2010.

[12] S. Eslamian, Handbook of Engineering Hydrology: Fundamentals and Ap-
plications, CRC Press, 2014.

23

https://pypi.python.org/pypi/SWMM5
https://pypi.python.org/pypi/SWMM5

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
recipes in C, Vol. 2, Citeseer, 1996.

[14] T. H. Cormen, L. E. Leiserson, R. Rivest, C. Stein, Introduction to algo-
rithms, MIT press, 2009.

[15] S. Tornil-Sin, C. Ocampo-Martinez, V. Puig, T. Escobet, Robust fault de-
tection of non-linear systems using set-membership state estimation based
on constraint satisfaction, Engineering Applications of Artificial Intelli-
gence 25 (1) (2012) 1–10.

[16] G. Riaño Briceño, A. Ramirez-Jaime, J. Barreiro-Gomez, N. Quijano,
C. Ocampo Martinez, Co-simulation for the design of controllers in ur-
ban drainage systems, in: Proceedings of the 2nd Colombian Conference
on Automatic Control, Manizales, Colombia, 2015, pp. 1–6.

[17] Y. Bolea, V. Puig, J. Blesa, On the use of the Muskingum model in real-
time sewer network control, in: Proceedings of the 6th European Control
Conference, Kos, Greece, 2007, pp. 3717–3723.

[18] E. Ramirez-Llanos, N. Quijano, A population dynamics approach for the
water distribution problem, International Journal of Control 83 (9) (2010)
1947–1964.

[19] J. Hofbauer, W. H. Sandholm, Stable games and their dynamics, Journal
of Economic Theory 144 (4) (2009) 1665–1693.

[20] W. H. Sandholm, Population games and evolutionary dynamics, Economic
learning and social evolution, Cambridge, Mass. MIT Press, 2010.

[21] J. Barreiro-Gomez, G. Obando, N. Quijano, Distributed population dynam-
ics: Optimization and control applications, IEEE Transactions on Systems,
Man, and Cybernetics: Systems PP (99) (2016) 1–11.

[22] M. Gómez, J. Rodellar, J. A. Mantecón, Predictive control method for de-
centralized operation of irrigation canals, Applied Mathematical Modelling
26 (11) (2002) 1039–1056.

[23] J. A. Mantecón, M. Gómez, J. Rodellar, A Simulink-based scheme for simu-
lation of irrigation canal control systems, Simulation 78 (8) (2002) 485–493.

[24] A. A. Aldama, Least-squares parameter estimation for muskingum flood
routing, Journal of Hydraulic Engineering 116 (4) (1990) 580–586.

[25] G. Freni, G. B. Ferreri, P. Tomaselli, Ability of software SWMM to simulate
transient sewer smooth pressurization, NOVATECH Report.

[26] J. Barro, P. Comas, P. Malgrat, D. Sunyer, Manual nacional de recomen-
daciones para el diseño de tanques de tormentas (2014) 32–33.

24

[27] P. Moonen, T. Defraeye, V. Dorer, B. Blocken, J. Carmeliet, Urban physics:
Effect of the micro-climate on comfort, health and energy demand, Fron-
tiers of Architectural Research 1 (3) (2012) 197–228.

[28] H. R. Maier, Z. Kapelan, J. Kasprzyk, J. Kollat, L. S. Matott, M. C.
Cunha, G. C. Dandy, M. S. Gibbs, E. Keedwell, A. Marchi, Evolution-
ary algorithms and other metaheuristics in water resources: current status,
research challenges and future directions, Environmental Modelling & Soft-
ware 62 (2014) 271–299.

[29] J. Marques, M. Cunha, D. A. Savić, Multi-objective optimization of wa-
ter distribution systems based on a real options approach, Environmental
Modelling & Software 63 (2015) 1–13.

[30] A. Palumbo, L. Cimorelli, C. Covelli, L. Cozzolino, C. Mucherino, D. Pi-
anese, Optimal design of urban drainage networks, Civil Engineering and
Environmental Systems 31 (1) (2014) 79–96.

25

	Introduction
	Preliminaries
	The SWMM Model
	Structure of the MatSWMM Toolbox
	Computational Aspects for Hydraulics
	Computational Aspects for Real-Time Control

	MatSWMM Functionalities
	Basic functionalities
	Data Analysis
	System Modeling

	Population-dynamics-based controllers
	Population Dynamics
	Particular distributed population dynamics

	Models of UDS
	Control-Oriented Models
	Virtual Tanks Model
	Muskingum Model

	Simulation-Oriented Models

	Examples of application
	Conclusions and Further Work

