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Abstract— This paper presents a set-membership approach
based on zonotopes for differential-algebraic-equation (DAE)
systems with unknown-but-bounded disturbances and noise,
which can be subsequently used for guaranteed state estimation
and fault detection. Complex systems are usually modeled
by differential and algebraic equations, where differential
equations describe system dynamics and additionally, algebraic
equations represent the static relations. The proposed algorithm
provides a way to propagate a zonotopic set that contains the
system states not only consistent with the measurement outputs
but also constrained with their static relations. Finally, a real
application has been presented to verify the proposed approach.

I. INTRODUCTION

Complex systems in many engineering applications are
sometimes mathematically modeled by means of differential
and algebraic equations. The control-oriented model of the
differential-algebraic-equation (DAE) system, for instance
[1], contains differential equations that describe system dy-
namics (system state evolutions) and algebraic equations
that represent static relations between some certain system
variables.

The general set-membership approach is established by
propagating a polytopic inclusion of system states with the
assumptions of an uncertain parametric model and unknown-
but-bounded description of noise that is not assumed
to follow a particular probabilistic distribution [2]. The
set-membership approach for ordinary-differential-equation
(ODE) systems can be used for state estimation and fault
detection by means of checking the consistency of system
states and measurement outputs [3], [4], [5], [6]. A zonotopic
set is a convex symmetric polytope including all the possible
system states. Compared to the other polytopes (i.e. ellip-
soids), zonotopes are widely used to represent uncertainties
(disturbances and noise) due to their flexibility, reduced
complexity and computational load in a series of linear
operators, for instance the Minkowski sum.

Guaranteed state estimation for ODE systems without
static relations has been presented in [4]. All possible system
states that are consistent with measurement at the same
sampling time are characterized as a compact set that is
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found from a posterior intersection between a prior zonotope
and a strip for single-output measurement or a polytope for
multiple-output measurement. The intersection may be over-
approximated by using a zonotope as well. The size of this
zonotope can be minimized by a number of optimization-
based methods, such as the minimization of the segment,
volume and P-radius of the zonotope as proposed in [4],
[5], [7]. Besides, fault detection based on a consistency-
based state estimation test is presented in [6], [8]. When
the corresponding system state set from a measurement is
found to be inconsistent with the possible system state set,
a fault is detected.

The paper proposes a set-membership approach for DAE
systems with the assumption of known algebraic vari-
ables. The DAE systems can be also formulated in a
linear time/parameter-varying (LTI/LPV) form with known
scheduling parameters. The system states following the sys-
tem dynamics are included into a compact zonotopic set
while system states constrained by the static relations are
inside a compact polytopic set. First of all, the consistency
of system states in feasible dynamic state set is guaranteed
by the output measurements. The measurement state set is
characterized by a strip (for single-output case) or a polytope
assembled by several strips (for multiple-output case). The
intersection between the two sets is over-approximated as a
zonotopic set for the purpose of simplicity. Then, another
intersection between the constrained state set and previous
intersection can be found. Furthermore, fault detection can
be achieved by checking system consistency with the mea-
surement outputs.

This paper starts with preliminaries in Section II and
the problem formulation in Section III. The set-membership
approach based on zonotopes for DAE systems is discussed
in Section IV. Guaranteed state estimation and fault detection
for DAE systems are introduced by using the proposed algo-
rithm in Section V and VI, respectively. A real application
of a portion of the Riera Blanca catchment in the Barcelona
sewer network is presented in Section VII. Conclusions are
addressed in Section VIII.

II. PRELIMINARIES

Before presenting the approach in this paper, some pre-
liminary set definitions and properties are briefly introduced
as follows:

Definition 1: An interval [a, b] is defined as the set
{x | a ≤ x ≤ b}. Moreover, the unitary interval B1 is defined
as B1 = [−1, 1].
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Fig. 1. Some specific zonohedrons

Definition 2: A unitary box Bn ∈ Rn is a box composed
of n unitary intervals.

Definition 3: The Minkowski sum of two sets X and Y
is defined by X ⊕ Y = {x+ y | x ∈ X , y ∈ Y}.

Definition 4: A polyhedron set P ∈ Rn is defined as an
intersection of a finite number of half-spaces in a form P =
{x ∈ Rn | Qx ≤ b} with Q ∈ Rm×n and b ∈ Rm. If P is
bounded, then P is a polytope.

A zonohedron is a convex polyhedron, where every surface
is a polygon with point symmetry as some zonohedrons
shown in Figure 1. In general, a zonotope can be defined
by means of the Minkowski sum of a matrix including line
segments with a center.

Definition 5: An m-zonotope Z ∈ Rn (m ≥ n) is defined
by hypercube affine projection with the center p ∈ Rn and
a matrix H ∈ Rn×m as Z = p⊕HBm.

Definition 6: A strip S is defined as S =
{x ∈ Rn | |Cx− d| ≤ σ}.

Property 1: The Minkowski sum of two zonotopes Z1 =
p1 ⊕ H1B

n1 and Z2 = p2 ⊕ H2B
n2 is still a zonotope as

Z = Z1 ⊕Z2 = (p1 + p2)⊕ [H1 H2]Bn1+n2 .
Property 2: The image of a zonotope Z = p ⊕ HBm

by a linear mapping matrix K can be calculated as KZ =
Kp⊕KHBm.

Property 3: Consider a zonotope Z = p ⊕ HBm, the
smallest box (Interval Hull) containing the zonotope is given
by �Z = p⊕ rs(H)Bm, where rs(H) is a diagonal matrix
such that rs(H)i,j =

∑m
j=1 |Hi,j |.

Property 4 (Intersection between zonotope and strip [4]):
Given a zonotope Z = p ⊕ HBr and a strip
S = {x ∈ Rn | |Cx− d| ≤ σ}, there exist a vector
λ ∈ Rn, the zonotopic over-approximation Z̃ of the
intersection is defined as Z̃ = p̃(λ) ⊕ H̃(λ)Br+1, where
p̃(λ) = p+ λ (d− Cp) and H̃(λ) = [(I − λC)H σλ].

Property 5 (Intersection between zonotope and polytope [9]):
Given a zonotope Z = p ⊕ HBr and a polytope
P = {x ∈ Rn | |Qx− d| ≤ b} where Q ∈ Rm×n and
b = [b1, b2, . . . , bm]T with bi ∈ R+, i = 1, 2, . . . ,m
, there exists a matrix Λ ∈ Rn×m, the zonotopic
over-approximation Z̃ of the intersection is defined as
Z̃ = p̃(Λ)⊕ H̃(Λ)Br+1, where p̃(Λ) = p+ λ (d−Qp) and

H̃(Λ) = [(I − ΛQ)H ΛΣ] with Σ =




b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bm


.

III. PROBLEM FORMULATION

The generalized uncertain discrete-time control system can
be formulated by using a DAE as follows:

xk+1 = f (xk, uk, zk, ωk) , (1a)
0 = g (xk, uk, zk, σk) , (1b)
yk = h (xk, uk, zk, υk) , (1c)

where xk ∈ Rnx denotes the vector of system states that
are differential variables, zk ∈ Rnz denotes the vector of
algebraic variables and yk ∈ Rny denotes the measurement
output vector at time instant k ∈ N. uk ∈ Rnu represents
the vector of control inputs at time instant k. f(·) and
g(·) are linear or nonlinear mapping functions describing
system dynamics and static relations, respectively. h(·) is
system measurement mapping function. Moreover, ωk ∈ Rp,
σk ∈ Rq and υk ∈ Rr represent the system disturbances,
static disturbances and measurement noise at time instant k,
respectively.

Assumption 1: The vector of algebraic variables z is as-
sumed to be known at each time instant. In fact, the DAE
system in (1) is equivalent to the dynamic system described
in (1b) subject to a static constraint (1c).

Assumption 2: All the uncertainties including ωk, σk and
υk are unknown but bounded in compact sets: ωk ∈W,σk ∈
Φ, υk ∈ V . The initial state is also bounded in a compact
set: x0 ∈ X0.

A LPV model is a linear representation of a given non-
linear or parameter dependent system. Therefore, a practical
nonlinear DAE system can be reformulated as a LPV model
by means of the automated generation method [10].

Therefore, a nonlinear DAE system can be transformed as

xk+1 = A (θk)xk +B (θk)uk +Bz (θk) zk + Fωk, (2a)
0 = Ex (θk)xk + Eu (θk)uk + Ez (θk) zk + Eσk, (2b)
yk = C (θk)xk +D (θk)uk + Cz (θk) zk +Gυk, (2c)

where A (θk), B (θk), Bz (θk), Ex (θk), Eu (θk), Ez (θk),
C (θk), D (θk) and Cz (θk) are continuous mapping cor-
responding to the time-dependent parameter vector θk. E,
F and G are linear time-invariant disturbance and noise
transition matrices with suitable dimensions.

Before introducing the set-membership approaches, some
sets are defined as follows:

Definition 7 (Constrained Uncertain State Set): Given a
DAE system (1) containing system dynamics (1b) and static
relations (1c), the constrained uncertain state set X̄k at time
instant k is defined as X̄k = X̂k ∩X̂ s

k , where X̂k denotes the
system dynamics set and X̂ s

k denotes the static relations set.
Definition 8 (Consistent State Set [4]): Given a DAE

system (1) and a measurement output yk, the consistent
state set at time instant k is defined as

Xyk
= {x ∈ Rnx | yk ∈ h (x, u, V )} . (3)



Definition 9 (Exact Uncertain State Set [4]): Consider a
DAE system (1), the exact uncertain state set X̂k is equal to
constrained system states that are consistent with measure-
ment outputs y1, y2, . . . , yn with n ∈ Z+ and initial state set
X0, which is defined by

X̃k = X̄k ∩ Xyk
= X̂k ∩ Xyk

∩ X̂ s
k , k ≥ 1. (4)

Note that the order of intersections among three state sets
is forced to be followed since occurrence time of the three
sets are different.

IV. SET-MEMBERSHIP APPROACH FOR DAE SYSTEMS

Considering the LPV representation of the DAE system
in (2), the set-membership approach leads to a recursive
calculation of a set including all the possible values of system
states xk under unknown-but-bounded perturbations at each
sampling time k. The set-membership approach for DAE sys-
tems has the following four steps: Prediction, Measurement,
Consistency Correction and Constrained steps. As shown in
Figure 2, the general set-membership for DAE systems is
geometrical presented. For the sake of stating the algorithm,
the following assumptions are considered at time instant k.
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Fig. 2. Set-membership approach for DAE systems

Assumption 3: xk−1 is assumed as known in a zonotopic
set Xk−1 = X c

k−1 ⊕ HXk−1
Br0 as initial condition and a

sampled output measurement yk is available at time instant
k. Moreover, disturbances and noise are bounded by geomet-
rical sets as follows:

ωk = ωc ⊕HωB
nω ,

|σk| ≤ σ > 0,

|vk| ≤ v > 0.
where ωc and Hω are the center and segment matrix of
the zonotope for system disturbances. σ and v are vectors
of bounds of static disturbances and measurement noise,
respectively. All of these parameters for describing bounds
of disturbances and noise are assumed as known.

Set-membership Approach for DAE systems:
• Prediction step: Given DAE system in (2), compute a

predicted zonotope of system states at the time instant
k as a propagated zonotope X̂k = X̂ c

k ⊕HX̂k
Br1 with

X̂ c
k = A (θk)X c

k−1 +B (θk)uk +Bz (θk) zk + Fωc,

ĤXk
=
[
A (θk)HXk−1

FHω

]
.

• Measurement step: Compute the measurement consis-
tent state set Xyk

by means of the measurement output
yk, which is a strip for single output and a polytope
clustering by a group of strips for multiple outputs.

• Consistency Correction step: Test whether there exists
an intersection between X̂k and Xyk

. If it exists, and
then compute an outer approximation X̌k = X̌ c

k ⊕
HX̌k

Br2 .
• Constrained step: Find the constrained state set X̂ s

k that
might correspond to the control input uk and compute
an outer approximation X̃k = X̃ c

k ⊕ HX̃k
Br3 of the

intersection between X̌k and X̂ s
k .

V. GUARANTEED STATE ESTIMATION FOR DAE
SYSTEMS

Based on the set-membership approach presented in the
previous section, the trajectory and its bounds of DAE
systems can be estimated by finding the zonotopic outer
approximation of the exact uncertain state set.

First of all, the intersection between X̂k and Xyk
can be

approximated by the zonotope inclusion X̄k as presented in
Property 4 (for single output) and Property 5 (for multiple
outputs). The optimal vectors λ and Λ can be computed
by minimizing the volume of the zonotope inclusion whose
performance has been proved better than the method by
minimizing segment matrix [7].

Definition 10: The volume of a zonotope Z = p ⊕
HBm ∈ Rn is given by

Vol(Z) = 2n
N(n,m)∑

i=1

∣∣det
[
Hs1(i) Hs2(i) · · · Hsn(i)

]∣∣ ,

where N(n,m) denotes the total number of different se-
lections of choosing n elements from m. Hi denotes i-th
column of H . Integers sj(i) denote each one of different
ways of choosing n elements from m, where satisfy 1 ≤
s1(i) < s2(i) < · · · < sn(i) ≤ m.

The optimal vectors λ̄ and Λ̄ can be found by minimizing
the volume formulas of X̄k(λ̄) and X̄k(Λ̄) as follows [4],
[9]:

Vol(X̄k(λ̄)) =2n
N(n,r)∑

i=1

∣∣1− C (θk) λ̄
∣∣ |det(Mi)|

+ 2n
N(n−1,r)∑

i=1

σ |det[Ni qi]|
∣∣qTi λ̄

∣∣ , (7)

and

Vol(X̄k(Λ̄)) =2n
N(n,r)∑

i=1

∣∣I − C (θk) Λ̄
∣∣ |det(Mi)|

+ 2n
N(n−1,r)∑

i=1

Σ |det[Ni qi]|
∣∣qTi Λ̄

∣∣ , (8)

where Mi is each of the different matrices of choosing n
columns of HX̄k

, Ni is each of the different matrices of
choosing n− 1 columns of HX̄k

and qi is the image of Ni

with the properties of qTi qi = 1 and qTi Ni = 0.



Then, the outer approximation X̃k in the Constrained step
is computed in a similar way. The optimal vectors λ̃ and Λ̃
can be found by minimizing the following convex formulas:

Vol(X̃k(λ̃)) =2n
N(n,r)∑

i=1

∣∣1− Ex (θk) λ̄
∣∣ |det(Mi)|

+ 2n
N(n−1,r)∑

i=1

σ |det[Ni qi]|
∣∣∣qTi λ̃

∣∣∣ , (9)

and

Vol(X̃k(Λ̃)) =2n
N(n,r)∑

i=1

∣∣∣I − Ex (θk) Λ̃
∣∣∣ |det(Mi)|

+ 2n
N(n−1,r)∑

i=1

Σ |det[Ni qi]|
∣∣∣qTi Λ̃

∣∣∣ . (10)

Finally, the zonotope inclusion of X̃k = X̃ c
k ⊕HX̃k

Br3 is
found as follows:

X̃ c
k (λ̃) = X̄ c

k − λ̃(Pk + Ex (θk) X̄ c
k ), (11a)

HX̃k
(λ̃) =

[
(I − λ̃Ex (θk))HX̄k

σλ̃
]
, (11b)

or

X̃ c
k (Λ̃) = X̄ c

k − Λ̃(Pk + Ex (θk) X̄ c
k ), (12a)

HX̃k
(Λ̃) =

[
(I − Λ̃Ex (θk))HX̄k

ΣΛ̃
]
, (12b)

with Pk = Eu (θk)uk + Ez (θk) zk.
Therefore, the trajectory of estimated states in DAE sys-

tems are the center X̃ c
k of the zonotope inclusion and bounds

of its orbits can be found by using interval hull method
presented in Property 3.

Example

In order to illustrate the guaranteed state estimation algo-
rithm, a numerical example is considered with the following
description:

xk+1 =

[
0.8 −0.3
0.01 1

]
xk +

[
1 0 0.1
0 0.01 1

]
uk

+

[
−1 0
0 −1

]
zk + ωk,

(13a)

[
0.05 0.1

]
xk +

[
1 1 1

]
uk +

[
−1 −1

]
zk + σk = 0,

(13b)

yk =
[
0.5 0.3

]
xk + υk (13c)

The control inputs may be found by means of a simple
controller based on Model Predictive Control (MPC). As
shown in Figure 3, the measurement state set is presented as
a strip in the dotted dashed line and static relation in (13c) is
shown as another strip in dashed line. The zonotopic outer
approximation of the intersection can be found by means
of the aforementioned volume-based optimization method
shown as the red real line in Figure 3. The smallest box of
this zonotope is found by interval hull method to compute
the bounds of the state estimation.
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2.4
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3.2

3.3

x1

x 2

Fig. 3. Intersection between zonotope and two strips: the red zonotope is
X̃ c

k and a smallest box is in blue.

VI. FAULT DETECTION FOR DAE SYSTEMS

The use of the set-membership approach for DAE systems
in fault detection is straightforward. Assume that a DAE
system is operated in non-faulty conditions. The initial
conditions are given in the set X0 including all the admissible
system states. The existing faults can be detected based
on the aforementioned set-membership approach for DAE
systems. A fault is said to have occurred if the intersection
set is empty.

X̌k = X̂k ∩ Xyk
= ∅. (14)

As defined in [8], there exists a support hyperplane of X̂k,
which is defined as

Sk , C (θk) · X̂k

=
{
xk ∈ Rnx | q

j
(θk) ≤ cj (θk)xk ≤ qj (θk) , j = 1, . . . , ny

}
,

where cj (θk) denotes the j-th row of matrix C (θk). q
j

(θk)

and qj (θk) can be computed by the following equations:

q
j

(θk) = cj (θk) X̂ c
k −

∥∥∥HT
X̂k
cj (θk)

T
∥∥∥

1
, (15a)

qj (θk) = cj (θk) X̂ c
k +

∥∥∥HT
X̂k
cj (θk)

T
∥∥∥

1
, (15b)

where ‖·‖ denotes the 1-norm of a vector.
Similarly, the measurement set Xyk

can be transformed
into a support hyperplane defined as

Fk , C (θk) · Xyk

= {xk ∈ Rnx | −υ ≤ yk,j − cj (θk)xk ≤ υ, j = 1, . . . , ny},

where yk,j denotes the j-th element of the vector of the
measurement output signals yk. The general fault detection
algorithm for DAE systems are proposed in Algorithm 1.



Algorithm 1 Fault Detection for DAE Systems
1: Xk−1 ⇐= X0

2: for k := 1 to N do
3: Compute the Prediction State set X̂k

4: Compute the Measurement State set Xyk

5: if Sk ∩ Fk = ∅ then
6: faultk = 1 (Fault Detected)
7: else
8: faultk = 0
9: end if

10: Compute the Constrained State set X̄k = X̂k ∩ X̂ s
k

11: end for

VII. APPLICATION: RIERA BLANCA SEWER NETWORK

A. System Description

The Riera Blanca pilot catchment in the Barcelona sewer
network is presented in Figure 4. A portion of the Ri-
era Blanca catchment network including three virtual tanks
(V 8, V 9 and V 10) and one node are selected as the case
study in this paper in order to demonstrate the proposed
set-membership approach. According to [11] and [12], the
discrete-time control-oriented model of the Riera Blanca
catchment network can be built by means of a sequence of
nonlinear DAEs, which can be subsequently reformulated in
a LPV form as follows:

xk+1 = A (θk)xk +Buk +Bddk + ωk, (16a)
Ex (θk)xk + Euuk + Eddk + σk = 0, (16b)
yk = C (θk)xk + υk, (16c)

where xk represents the vector of water volumes in virtual
tanks V 8, V 9 and V 10 at time instant k, uk denotes the
vector of control inputs found by MPC as presented in [11],
dk denotes the vector of rain intensity associated to the vir-
tual tanks with the relationship of the absorption coefficient
εi and surface of catchment Si, which are given in Table I.
ωk, σk, υk are system disturbances and measurement noise.
Furthermore, A (θk), Ex (θk) and C (θk) are parameter-
varying matrices with respect to the parameter θk. B, Bd,
Eu and Ed are linear time-invariant matrices of appropriate
dimensions.

The configurations of the LPV model are presented in the
following:

A (θk) =




1− θ1k
0 0

0 1− θ2k
0

0 0 1− θ3k


 ,

B =




0 0
1 0
0 1


∆t, Bd =



ε8S8 0 0

0 ε9S9 0
0 ε10S10 1


∆t,

Ex (θk) =
[
θ1k

θ2k
0
]
, Eu =

[
0 1

]
, Ed =

[
0 0 −1

]
,

C (θk) =
[
θ1k

0 0
]
.

The parameter θk is defined by

θk = [θ1k
θ2k

θ3k
]
T

= [cvc8k
cvc9k

cvc10k
]
T
, (17)

where cvc8k
, cvc9k

and cvc10k
are varying along the time

horizon as shown in Figure 5.
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Fig. 4. Riera Blanca catchment conceptual model

TABLE I
PARAMETERS OF RIERA BLANCA PILOT CATCHMENT

i 8 9 10

εi 0.584383 0.048593 0.9855
Si 769800 722500 149000
ci 0.000546 0.00052 0.0003

The initial conditions for applying the proposed set-
membership approach are written in the following:

x0 =
[
100 100 100

]T
, ωc =

[
0 0 0

]T
,

Hω =
[
70.9590 164.7320 270.6517

]T
,

σ̄ = 0.1, ῡ = 0.1.

B. Results of Guaranteed State Estimation

Control inputs found by an MPC controller presented in
[11], measured disturbances (rainfall) and a measurement
output are shown in Figure 6. By applying the proposed
set-membership approach to the LPV model of the Riera
Blanca pilot catchment, state estimation results are shown in
Figure 7. The star points are sampled uncertain system states
with the assumed description of bounded disturbances. It is
obvious that all the sampled uncertain states are inside the
sets (blue lines) obtained by the set-membership approach.
The magenta dashed lines denote the nominal estimated
states.

On the other hand, bounds for all the states are varying and
all the testing states are located inside the estimated bounds
by using the proposed set-membership approach.
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Fig. 6. Control inputs and measured disturbances of Riera Blanca pilot catchment
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Fig. 7. State estimation results of Riera Blanca pilot catchment
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Fig. 5. Parameter values of the LPV model of Riera Blanca pilot catchment

C. Results of Fault Detection

The measurement output of x1 is plotted in Fig. 8(a). With
this measurement output data, Algorithm 1 is implemented.
The fault detection result is shown in Fig. 8(b), where
fault = 1 means a fault is detected. Through this result,
a fault has been detected at time step 60.

It is noted that when the fault detection algorithm is

applying. A suitable fault isolation result is assumed to be
available. Hence, after a fault is detected. The intersection
set is reconfigured and the procedure of fault detection can
continue running.

VIII. CONCLUSION

This paper presents a set-membership approach of state
estimation and fault detection for DAE systems. The pro-
posed approach is suitable for not only linear DAE system
but also nonlinear DAE system that can be reformulated as a
LPV form. It is assumed that the DAE system have bounded
description of parametric disturbances and measurement
noise. Moreover, the algebraic variables in DAE system are
assumed to be known. All the possible system states found
by the set-membership approach are not only consistent with
measurement outputs but also constrained with the system
static relations. The zonotope is selected for applying the
set-membership approach because its calculation complexity
is acceptable. The outer approximation of the intersection
is also based on zonotopes and the reduction of the size
of zonotope is obtained by solving a convex optimization
problem to minimize the volume of the zonotope inclusion.
Besides, faults in the DAE system can be detected by means
of the proposed fault detection algorithm based on set-
membership approach for DAE systems.

As the future work, the set-membership approach for the
DAE system with unknown algebraic variables will be deeply
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Fig. 8. Fault detection results of Riera Blanca pilot catchment

investigated. The set-membership state estimation will be
used for observing the algebraic variables and checking the
consistency between algebraic variables and measurement
outputs.
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