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Abstract— Localization is the key perceptual process closing
the loop of autonomous navigation, allowing self-driving vehi-
cles to operate in a deliberate way. To ensure robust localization,
autonomous vehicles have to implement redundant estimation
processes, ideally independent in terms of the underlying
physics behind sensing principles. This paper presents a stereo
radar odometry system, which can be used as such a redundant
system, complementary to other odometry estimation processes,
providing robustness for long-term operability. The presented
work is novel with respect to previously published methods in
that it contains: (i) a detailed formulation of the Doppler error
and its associated uncertainty; (ii) an observability analysis that
gives the minimal conditions to infer a 2D twist from radar
readings; and (iii) a numerical analysis for optimal vehicle
sensor placement. Experimental results are also detailed that
validate the theoretical insights.

I. INTRODUCTION

Intelligent transportation systems are getting special at-
tention from the mobile robotics community and automotive
companies due to safety improvements and potential savings
in costs. Beyond self-driving cars, there is a huge amount
of applications where autonomous ground vehicles are being
developed. Within these applications, transportation of goods
and logistics are among the ones offering more economical
benefits. The Cargo-ANTs project1 aims at developing au-
tonomous ground vehicles (AGV) and autonomous trucks
(AT) to operate in a harbor terminal area, 365 days per year,
24 hours per day, loading, unloading and moving shipping
containers, being robustness and redundancy two key features
to address during developing and engineering phases. In
such applications, autonomous navigation is the most critical
layer, and localization is the key perceptual process closing
the loop, allowing deliberate path following and autonomous
operability.

To ensure robust localization, autonomous ground vehi-
cles and trucks have to implement redundant estimation
processes, ideally independent in terms of the underlying
physics behind sensing principles [7]. Therefore, research
on alternative odometry sources beyond the classic wheel
encoders is of great importance. Visual based odometry
approaches [12], or IMU-visual fusion approaches [3], [10]
are not well suited in such scenarios, due to adverse weather
and night conditions imposed by full time operations. Lidar-
based solutions [5], [11] behave better in night conditions,
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Fig. 1. Stereo radar. Each sensor mounted on a different side of a vehicle.

but still suffer from intense rain or fog. Moreover, lidar
devices are often delicate and they could be damaged after
several days of intense mechanical vibrations caused by 40-
tones-container loading operations. In such context, radar
approaches seem to fill the required gap created by these
demanding applications.

In autonomous vehicle navigation, radar-based percep-
tion systems have been used for collision avoidance [1],
mapping [9] and terrain classification [6]. In addition,
some authors started to investigate how to compute vehicle
ego-motion from the Doppler measurements of the radar
echoes [8], [13]. They have recently published promising
results using radar devices for odometry estimation in car-
like vehicles, using at least a pair of sensors.

Inspired by this recently proposed stereo radar odometry
approach (see Figure 1), this paper aims at contributing to
the following items:

• Presenting a detailed formulation of the Doppler error
and its associated uncertainty.

• Theoretical observability analysis to estimate the 2D
twist of a vehicle.

• Numerical analysis for optimal sensor placement on-
board the vehicle.

• Providing experimental results validating the theoretical
insights presented.

The paper is organized as follows: Section II introduces
the problem and the notation used through the paper. Sec-
tion III is a detailed formulation of the Doppler error and its
variance improving the detail given by [8], [13]. Section IV
analyses the minimal sensor configuration that observes
the full 2D twist (linear velocities and rotation rate), and
section V studies the effects of the radar mounting pose on a
platform, while following a criteria of minmum covariance in
the output estimate. Finally Section VI presents experimental
results, while Section VII concludes the work highlighting
the main contributions.



II. PROBLEM STATEMENT

The goal of the presented stereo radar odometry system
is to estimate the twist of a vehicle. The twist comprises
the linear velocity and the rotation rate with respect to the
current vehicle frame, called base frame, B. Assuming the
vehicle moves in a flat area, corresponding to the 2D case,
this twist state is reduced to:

x =
[
vT

ω
]T

= [vx vy ω]T (1)

To estimate this twist from radar measurements, the only
sensor readings available are the detections provided by each
radar, specifically the azimuth angle, αi j, and the Doppler
velocity, ui j, both for the i− th device and j− th detection.
Radar devices are mounted on-board the vehicle, each one on
a diferent calibrated pose. That is, the i−th device is located
at frame Si with respect to the base frame, i.e, at the mounting
point mi = (mix,miy), with orientation βi with respect to the
vehicle frontal axis. Figure 2 shows the involved frames and
vectors used through the paper.

Let us define the Doppler error

ei j = ui j− ûi j (2)

as the difference between measured Doppler velocity for
sensor i and detection j, ui j, and the expected one, ûi j, as
well the variance of such error σ2

ei j
. Then, the optimal twist

that best explains all measurements is given by minimizing
a non-linear least squares problem such as:

(v∗,ω∗) = argmin
(v,ω)

(
∑
i j

e2
i j

σ2
ei j

)
(3)

which we will show in the following to be an optimization
problem on the twist variables vx,vy,ω , since both terms e2

i j
and σ2

ei j
depend on the twist. The purpose of the next section

is to detail the computation of both ûi j and σ2
ei j

.

Fig. 2. In black, odometry (O), base (B) and sensor (Si) frames. Vectors
and angles of interest through the paper are also shown.

III. EXPECTED DOPPLER AND ERROR VARIANCE

A. Expected Doppler

The goal of this subsection is to express the expected
Doppler velocity, ûi j, for each sensor i and detection j,
with respect to the vehicle twist (vx,vy,ω), sensor mounting
parameters (mix,miy,βi) and the detection azimuth αi j. This
constitutes our odometry observer. It’s good to point out that
this observer does not require any data association neither
with previous measurements, nor with any landmark of a
map.

Relying on Figure 2, and assuming static objects, the
expected Doppler, ûi j, is the projection of the expected radar
device linear velocity, v̂i, into the direction given by the
azimuth αi j of the j− th detection from the i− th radar:

ûi j = v̂T
i

[
cosαi j
sinαi j

]
(4)

In the general 3D case, the term v̂i is related to the vehicle
twist (v,ω) as follows:

v̂i = RSi
B (v+ω×mi), (5)

which in 2D case reduces to:

v̂i =

[
cosβi −sinβi
sinβi cosβi

][
vx−ωmiy
vy +ωmix

]
(6)

Equation 5 mainly involves two addends, the first relates to
the vehicle’s linear velocity and the later to the vehicle’s
rotation rate. Moreover, a rotation matrix is involved, RSi

B , to
move the resulting velocity to each sensor frame where the
Doppler measurements are taken. After some math manipu-
lation of Equations 4 and 6, the expected Doppler is finally
expressed as:

ûi j = (vx−ωmiy)cos(βi +αi j) + (vy +ωmix)sin(βi +αi j)
(7)

which agrees with the expression published in [13].

B. Estimated Error Variance

The variance of the error factor ei j comes from two
sources: the Doppler measurement itself, ui j and the ex-
pression of the expected Doppler, ûi j, which also involves
the measurement αi j, being the azimuth of detection j from
radar i (see Equation 7). So the variance associated to ei j is
expressed as the sum of two terms:

σ
2
ei j

=

(
∂ei j

∂αi j

)2

σ
2
α +σ

2
u (8)

where the partial derivative of the error ei j with respect to
the azimuth measurement, αi j, is:

∂ei j

∂αi j
=−(vx−ωmiy)sin(βi+αi j)+(vy+ωmix)cos(βi+αi j)

(9)
and σα and σu are the standard deviations of azimuth and
Doppler respectively, as they are usually specified by the
radar device datasheet.



IV. OBSERVABILITY ANALYSIS

This section demonstrates which are the conditions to fully
observe a 2D twist with the proposed odometry approach.
The minimal set-up was already suggested by [8], without
showing explicitly the underlying maths behind it.

Equation 7 describes the observation model of the ex-
pected Doppler velocity. Given this expression, we compute
the Jacobian of the expected error (Equation 2) with respect
to the state (2D twist), and assume a minimal set of radar
detections. To solve for three degrees of freedom (vx,vy,ω)
we require, at least, three radar detections.

A. Single Radar Case

In case all three detections come from a single radar
device, the involved Jacobian [∂vx ∂vy ∂ω] is:

J1,3 =

 cosϕ11 sinϕ11 −m1y cosϕ11 +m1x sinϕ11
cosϕ12 sinϕ12 −m1y cosϕ12 +m1x sinϕ12
cosϕ13 sinϕ13 −m1y cosϕ13 +m1x sinϕ13

 ,
(10)

where ϕi j = βi+αi j, and J1,3 indicates Jacobian for one radar
and three detections case. This Jacobian is rank deficient
because the third column is a linear combination of the first
and second ones. Therefore, the 2D twist cannot be observed
with a single radar device. Moreover, it is obvious that adding
extra detections does not unlock the rank-deficient situation.

B. Stereo Radar Case

Therefore, we have to analyse the case with two devices
and three detections. In that case, it is useful to redefine
a new frame convention to better analyse this situation.
Figure 3 shows this useful convention with axis X ′ and Y ′,
and parameters b and ϕ ′i j. With this new frame convention,
the involved Jacobian leads to the following expression:

J2,3 =

 cosϕ ′11 sinϕ ′11 − b
2 cosϕ ′11

cosϕ ′12 sinϕ ′12 − b
2 cosϕ ′12

cosϕ ′21 sinϕ ′21
b
2 cosϕ ′21

 , (11)

which is a full rank matrix exceptuating some special con-
figurations, where the determinant is null, and the 2D twist
cannot be observed. These degenerate cases fulfill:

cosϕ
′
21 (cosϕ

′
11 sinϕ

′
12 − sinϕ

′
11 cosϕ

′
12 ) = 0 (12)

which result on the following cases:
• ϕ ′11 = ϕ ′12 + kπ, k ∈ Z.
• ϕ ′21 =

π

2 + kπ, k ∈ Z.

Fig. 3. Frame convention useful to analyse observability in stereo radar.

The first case appears when a single device i detects two
objects aligned along the same line of sight. The later case is
when the device reporting a single detection senses it aligned
with the baseline. In practical situations, due to large amount
of radar detections available, these two null-rank cases are
rare. They are single configurations among an infinite set of
other random situations that could occur in a vehicle moving
context. However, a more practical implication arises in
RANSAC-based outlier rejection approaches [8], since such
null-rank configurations have to be avoided when chosing a
minimal subset to solve the problem.

V. OPTIMAL SENSOR PLACEMENT

This section provides a numerical analysis to study the
optimal sensor placement for radar stereo odometry purpose.
The criteria used is to maximize the determinant of the infor-
mation matrix, while minimal assumptions are considered in
order to present a valid methodolgy and illustrative results.
This maximization implies a minimization of the estimated
uncertainty in the whole twist space [4]. The information
matrix over all measurements, Λ, is defined as:

Λ = ∑
i j

JT
i j

1
σ2

ei j

Ji j (13)

where, in our case, Ji j is the Jacobian of a single measure-
ment with respect to the vehicle twist (vx,vy,ω), σ2

ei j
is the

variance of the Doppler error (see Equation 8), and Λ is the
resulting 3×3 information matrix. Λ matrix is the inverse of
the covariance matrix. Therefore, Equation 13 acts basically
as a transformation of inverse uncertainties, from the Doppler
space to the twist one.

The determinant of Λ, |Λ|, is the quantity of interest
to be maximized, which indicates minimum volume of the
covariance ellipsoid in the twist space. This determinant
depends on the vehicle twist, the sensor mounting poses and
the azimuth of the Doppler detections, but we are specifically
interested in the sensor placement dependency. Assuming we
find detections equally distributed around the vehicle, we
compute |Λ| considering i j detections uniformly distributed
over all the azimuth aperture for each radar, so azimuth
dependence can be removed. This assumption could be also
derived according to some environment model, which could
reshape the final result. However, the presented methodolgy
herein remains valid. Given two radar devices, mounting
pose on-board a car-like vehicle requires 6 parameters. We
make a second assumption here, which is that sensors are
placed on the platform perimeter. In order to be able to plot
results in an illustrative way, so we remap mounting poses
alongside the vehicle perimeter to a single continuous value,
η ∈ [0,8), in the way drawn in Figure 4, being L, W and D
the vehicle length, width and distance from base frame to
rear side respectively. In that point, given a twist we are
able to numerically evaluate |Λ| for each pair of mounting
poses (η1,η2).

In this section, we provide results for our experimen-
tal Ackerman platform, with dimensions L = 212cm, W =
102cm and D = 32cm.



Fig. 5. Value of |Λ| for vx = 1.2m/s,vy = 0m/s and ω = 0.1rad/s (left), ω = 0rad/s (centre) and ω =−0.3rad/s (right).

Fig. 4. Mapping between sensor mounting pose on the vehicle’s perimeter
(small black arrows) and η value. This mapping is used in Figures 5 and 6.
Vehicle dimensions length, L, width, W , and distance D are also indicated.

Figure 5 shows three plots of |Λ| value (colormap) ac-
cording to the mounting pose of each radar (η1,η2). The
three figures were computed given three diferent motions
of the vehicle: soft turn left (vx = 1.2m/s,vy = 0m/s,ω =
0.1rad/s, left), straight line (vx = 1.2m/s,vy = 0m/s,ω =
0rad/s, center) and closer turn right (vx = 1.2m/s,vy =
0m/s,ω =−0.3rad/s, right). Due to the remapping used to
represent sensor mounting poses, the upper-left and lower-
right triangles of these plots show the same values, which
indicates that switching radar mounting poses between them
has no effects. Moreover, the diagonal of such plots means
that both sensors are placed at the same pose, so configu-
rations close to that region are poor in terms of odometry
estimate. The plot also shows how preferred configurations
pair one pose in the vehicle front with one pose in the
vehicle rear, so baseline between sensors is longer (upper-
left or lower right quarters). A standard configuration in au-
tomotive [13], usually conditioned by the collision avoidance
system, mounts both devices pointing forward in front of the
vehicle, η1 = 2, η2 = 3, which is far from being an optimal
placement for stereo radar odometry, even if it features a
slight local maxima in all three motion cases.

Figure 6 draws the minimum value of |Λ| over a set of
different motions that our vehicle is able to drive, according
to its Ackerman kinematics: vx = 1.2m/s, vy = 0m/s, ω ∈
[−0.3,0.3]rad/s. This plot shows that sensor configuration
indicated by η values (1,6) is the one featuring the maximum
minimum, so it indicates an optimal sensor placement to
minimize final twist covariance estimate. Configuration in η

pair of (4,7) reach the same maximum minimum, since it
indicates a symmetrical set-up on vehicle mounting poses
(in the XB axis). With respect to the vehicle Y B axis, sensor
placement is not symmetric due to the Ackerman kinematics,
since the rotation point is centered in the rear axis. Sensor
placement pair (5,2) is an instance of such asymmetry, since
the peak appearing in the plot is lower than the one in (1,6).

Even if the numerical results are provided for ideal Ack-
erman motion (vy = 0), it’s worth to recall that the proposed
approach observes the full 2D twist, since observability
conditions studied in section IV are still satisfied. Thus,
skidding situations of the platform will be observed.

VI. EXPERIMENTAL RESULTS

Experimental sessions were carried out with our electric
Ackerman car in the Barcelona Robot Lab, an university
campus outdoor environment. The vehicle run at linear
speeds around 1.2 m/s and rotation rates up to 0.3 rad/s. The
radar devices used were two Continental SRR20x, operating
at 24 GHz in cluster mode. For ground truth purposes,
the vehicle was also equipped with wheel encoders and an
industrial-grade IMU.

The implemented solution was coded in C++, using the
Ceres library [2] as the optimization engine to solve equa-
tion 3. A straightforward outlier rejection was implemented
based on the residuals obtained after a first optimization call,
as well as using a Cauchy loss function. The stereo radar
odometry estimate ouput was computed at 5 Hz, so each
iteration considered all detections read during the last 200 ms
interval, and used the previous solution as an initial guess.

Several datasets were recorded, and results are presented
in two subsections: VI-A, quantitative results in the twist
space, and VI-B, qualitative results in the integrated pose.
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Fig. 6. Minimum value of |Λ| over a set of different motions the vehicle
is able to drive: {vx = 1.2m/s,vy = 0m/s,ω = {−0.3 . . .0.3}rad/s}

A. Twist Space

A quantitative validation of the approach, as well as
the sensor placement relevance, is provided performing the
following experiment. We run with the car around a zero-
like path of around 70 m. For an optimal configuration
(CFG-A) η1 = 4,η2 = 7, we did 5 trials. This configuration
corresponds to one device mounted in the front-left corner,
pointing sideways, and the second one mounted on the rear-
right corner, pointing backwards. We then repeated these
5 trials for a non-optimal configuration (CFG-B) η1 =
3.5,η2 = 1.5, which corresponds to mounting both radars
in the front side, with angles β1 = 45o and β2 =−45o. For
the vx component of the twist we compare the stereo radar
estimate against wheel encoders forward velocity. For the vy
component, the ground truth is set to be zero, assuming that
the vehicle didn’t slip while running. For the ω component
of the estimated twist, results are compared with the vertical
component of the rotational rate sensed by IMU (substracting
a bias estimated from an initial stopped period of 5 seconds
for each trial). All results are presented in table I, where
error mean and covariance are provided, over the 5 trials.
The table also details these mean and covariance values for
the straight and turning parts of the zero-like trajectory.

Table I shows that for the vx component, both sensor
configurations perform similarly, in both terms of error
mean and error covariance. However, for lateral velocity
component, vy, CFG-A performs much better in terms of
covariance, while the mean error is higher than CFG-B,
probably due to some unmodelled bias, or due to the fact
that the actual ground truth was not vy = 0, specially when
turning. Is in the rotational rate component, ω , where CFG-
A outperforms cleraly CFG-B, in both the mean and the
covariance. This later result, specifically the lower error
covariance, is of major interest, since rotational rate is the

TABLE I
TWIST SPACE ERRORS FOR BOTH CONFIGURATIONS IN ZERO-LIKE

TRAJECTORIES

Error in vx; µ[m/s], σ2[m2/s2]
Total Straight Turning

µ σ2 µ σ2 µ σ2

CFG-A -0.0170 0.0005 -0.0142 0.0005 -0.0243 0.0002
CFG-B -0.0155 0.0004 -0.0139 0.0004 -0.0189 0.0002

Error in vy; µ[m/s], σ2[m2/s2]
Total Straight Turning

µ σ2 µ σ2 µ σ2

CFG-A -0.0190 0.0004 -0.0156 0.0004 -0.0275 0.0004
CFG-B -0.0050 0.0024 -0.0001 0.0022 -0.0153 0.0026

Error in ω; µ[rad/s], σ2[rad2/s2]
Total Straight Turning

µ σ2 µ σ2 µ σ2

CFG-A 0.0024 0.0002 0.0030 0.0001 0.0006 0.0003
CFG-B -0.0031 0.0009 -0.0033 0.0008 -0.0028 0.0011
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Fig. 7. Integrated pose for optimal sensor placement (CFG-A, red), and
non-optimal one (CFG-B, yellow), for the zero-like trajectories

critical component to be estimated by an odometry observer.
For instance, odometry based on wheel encoders usually
leads to inaccurate and noisy estimation of ω .

B. Integrated Pose

This subsection shows results in a more qualitative way.
Figure 7 plots the integrated poses of the zero-like trajec-
tories for the experiment presented in VI-A. Plots draw
integrated pose paths for CFG-A and CFG-B. These plots
show qualitatively how the optimal configuration reduces the
final error of the integrated pose, thanks to a more accurate
estimation of the twist, specially the ω component.

A second qualitative result was obtained after following
an eight-like path of more than 300 m. One trial was
done with the optimal configuration of the radars (CFG-A),
and a second one with the non-optimal placement (CFG-
B). Integrated pose trajectories of both trials have been
overprinted on a Goolge Maps snapshot of the experimental
area (see Figure 8).

In this long eight-like trajectory, the vehicle traversed two
short ramps, causing to pitch it, so leading to a rotational



Fig. 8. Integrated pose for optimal sensor placement (CFG-A, red), and non-optimal one (CFG-B, yellow, only partial). Black dots show the path followed
and black square departure point. Total length was about 350 m. All paths plotted on a Google Maps picture of the experimental area.

velocity not included in the 2D twist state, but, however,
adding a linear velocity component to the sensor devices,
hence a Doppler velocity to radar detections. This happened
in the middle of the third and fourth straight parts of the
path. The reader can appreciate how two respective slight
deviations on the vehicle’s heading occurred is these points
of the trajectory.

Such qualitative results illustrate that stereo radar odome-
try approach is a promising technique, providing accuracy at
the level of a wheel encoder system, but able to observe
the full 2D twist (lateral velocity also). Moreover, these
results also demonstrates the relevance of sensor placement
to achieve an accurate odometry estimate.

VII. CONCLUSIONS

Stereo radar odometry, based on azimuth and Doppler
data of radar detections, has been proposed recently by the
automotive research community [8], [13], showing promis-
ing results. Following that approach, this paper contributes
by providing a deep analysis on observability issues, as
well as on optimal sensor placement. Initially, the paper
presents a detailed formulation for the Doppler error function
and its associated variance model. Thereafter, the paper
analyses twist observability, showing theoretically why, at
least, two radar devices are required. In the stereo radar
case, degenerate situations are also identified, which impair
observation of the vehicle twist, even when two sensors
are used. The paper continues with a numerical analysis,
proposing a methodology to find out which mounting pose
configuration is the optimal one to estimate the twist. Finally,
the paper illustrates with real world experiments the validity
of such methodology, showing in a quantitative way that
optimal configurations estimate better the vehicle twist than
non-optimal ones. The paper also shows qualitative results
after a trajectory of several hundreds meters.

In conclusion, stereo radar arises as a promising comple-
mentary odometry system, able to compute the full 2D twist
of a vehicle, with accuracies at the level of other odometry
systems. To estimate the full 2D twist (vx,vy,ω) is also of

great interest for non-Ackerman platforms, as some industrial
AGV’s featuring lateral motion. Moreover, this approach
completely avoids any data association step, neither with
previous measurements, nor with any map landmark.

Outlier rejection techniques, sensor fusion with other
odometry modalities, as well as integration in a SLAM
framework, are among the future works we envisage.
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