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Abstract

Manipulating textile objects with a robot is a challenging task, especially be-
cause the garment perception is difficult due to the endless configurations it
can adopt, coupled with a large variety of colors and designs. Most current
approaches follow a multiple re-grasp strategy, in which clothes are sequentially
grasped from different points until one of them yields a recognizable configu-
ration. In this work we propose a method that combines 3D and appearance
information to directly select a suitable grasping point for the task at hand,
which in our case consists of hanging a shirt or a polo shirt from a hook. Our
method follows a coarse-to-fine approach in which, first, the collar of the gar-
ment is detected and, next, a grasping point on the lapel is chosen using a novel
3D descriptor.

In contrast to current 3D descriptors, ours can run in real time, even when
it needs to be densely computed over the input image. Our central idea is
to take advantage of the structured nature of range images that most depth
sensors provide and, by exploiting integral imaging, achieve speed-ups of two
orders of magnitude with respect to competing approaches, while maintaining
performance. This makes it especially adequate for robotic applications as we
thoroughly demonstrate in the experimental section.

Keywords: 3D descriptor, Recognition, Detection, Grasping, Manipulation,
Robotics

1. Introduction

Robotics research is increasingly addressing the challenges encountered by
robots in human environments such as homes or offices. In order to be useful
assistants, these robots need to be capable of recognizing and interacting with
countless objects. These challenges further multiply when the objects to rec-
ognize and manipulate are not rigid, as is the case for garments: the infinite
shape-state space of a garment is coupled with a wide variety of colors and
designs.
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Figure 1: Schema of the proposed approach. Input RGB-D data is initially used to detect a
certain garment part (the collar in this work) and then select a specific grasping point within
the located garment part (on the lapel in this work).

Despite this inherent difficulty, in recent years the task of developing per-
ception techniques that allow a robot to recognize and successfully manipulate
textile objects has attracted attention from the research community. Yet, one
drawback of most existing cloth manipulation methods is that they usually re-
quire a long series of re-grasps in order to bring the garment to the desired state,
which can make the process slow. In contrast, we propose a new algorithm that
uses state-of-the-art computer vision techniques to ensure a good initial grasp,
so that a minimum number of re-grasps is required.

For demonstration purposes, in this work we consider the task of hanging a
shirt from a hook with a single robotic arm equipped with a 2-finger gripper. In
order to successfully grasp the garment and hang it from a hook, it is paramount
to select a grasping point near the collar, preferably on the fold of the lapel in
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the rear part, though any point in the lapel would also help simplify the task.
Because of the relatively small support region of the local descriptors, those

using only appearance information suffer an important performance loss when
generalizing to garments with color patterns not seen in the training data. On
the contrary, descriptors based on 3D data are more robust and can more easily
generalize to novel garments. Unfortunately, existing 3D descriptors [1, 2, 3] are
not fast enough to accomplish this task in a reasonable time. To circumvent this
problem, we propose the Fast Integral Normal 3D descriptor (FINDDD), a novel
3D descriptor that takes advantage of some constraint relaxations that can be
made in a clothing manipulation scenario. In a series of experiments we show
FINDDD to be two orders of magnitude faster to compute than state-of-the-art
3D descriptor while maintaining a similar performance. Furthermore, by using
powerful and fast classification techniques, we can simultaneously accelerate the
computation of our descriptor and push part of the computational effort to an
offline classifier learning phase.

Another contribution of this paper is a complete perception system for se-
lecting a point on the lapel of a shirt with high reliability, which, when grasped,
will allow to hang it in a hook. Figure 1 shows the pipeline of the proposed
method.

This paper is an extension of Ramisa et al. [4, 5] where a preliminary version
of the part detection pipeline and the FINDDD descriptor were presented, re-
spectively. The current paper combines and extends both previous contributions
in a pipeline for garment manipulation, and it provides a more thorough mathe-
matical description of the methods used, as well as a more extensive set of eval-
uations (e.g. influence of vocabulary size, PCA compression, larger datasets).
Additionally, this work includes a grasping experiment that demonstrates the
applicability of the whole approach in real settings.

2. Related Work

In this section we will briefly review existing work related, first, to garment
manipulation and, next, to descriptors for 3D data.

2.1. Garment Manipulation

In recent years Maitin-Shepard et al. [6] and Cusumano-towner et al. [7]
demonstrated functional end-to-end systems for automatically handling clothes
(albeit in very controlled settings that simplify perception). The proposed sys-
tems are able to pick up a piece of laundry and manipulate it until a desired
configuration is reached. Other approaches are more focused on the perception
capabilities: Miller et al. [8] proposed a method based on parametrized shape
models for estimating the pose of a crudely spread cloth item; in [9] the sys-
tem is extended and combined with manipulation tools to complete the task of
folding a garment with an open-loop sequence of movements.

Hidayati et al. [10] and Yamazaki et al. [11] proposed appearance-based
garment identification systems, oriented to Internet shopping and to domestic
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robots, respectively. Willimon et al. [12] exploited the manipulation capabilities
of a robot to help in a perception task. Specifically, this work proposed a system
to pick up the topmost element of a pile of clothing, and subsequently classifying
it using interactive perception and four basic visual features. Later, Willimon
et al. [13] developed a method to classify garments into six categories using
a variety of appearance, depth, and mid-level features like “round neck” or
“front zipper”. These mid-level features allowed to significantly improve the
classification performance; however, they cannot be automatically computed
for a novel test image. Finally, very recently Doumanoglou et al. [14], proposed
a system for unfolding certain items of clothing that used Random Forests and
Hough Forests to determine a grasping point from a canonical view (i.e. the
“absolute lowest point” of a hanging garment) using a bimanual manipulator.

In contrast to the previous work, our proposed technique models characteris-
tic parts of garments, aiming at identifying a suitable grasping point prior to any
manipulation attempt, and generalizing beyond the clothes used for training.

2.2. 3D Descriptors

With the recent popularity of 3D cameras, a growing number of local 3D de-
scriptors that could be used for robotic manipulation tasks have been proposed.
However, they are mostly targeted to rigid objects and unstructured point clouds
(i.e. sets of 3D points with no a priori known neighborhood relations), which
makes them computationally expensive, especially when the descriptors need to
be densely computed.

Traditionally, 3D descriptors were applied to synthetic CAD models [15, 16]
and worked on unstructured point clouds. One of the earliest related approaches,
also evaluated on synthetic range images, was proposed in [17], where a his-
togram representation of a complete point cloud was built merging information
of the pixel depths, normal orientations and surface curvatures. More recently,
Flint et al. [18] defined a descriptor for Hessian-based interest points by accu-
mulating in a histogram the elevation difference of the normals estimated with
different sized planes for all points in a support region. Flitton et al. [19, 20]
extended the SIFT descriptor to 3D complex CT imagery and used it to perform
object detection in airport baggage control using a Bag of Visual Words model.

Given an unstructured point cloud, the Normal Aligned Radial Feature
(NARF) descriptor [21] first computes a normal aligned range image centered
on an interest point, where points on a local neighborhood are projected onto
a plane along the normal direction. The descriptor is then built according to
the variation occurring among a number of rays projecting into these images.
View-point independence is achieved by normalizing to a canonical orientation.

Following a similar philosophy as the SIFT descriptor for 2D images, Tombari
et al. [3] presented the Signature of Histograms of OrienTations (SHOT). Given
an interest point, its 3D neighborhood is split into a fixed number of regions, and
the descriptor is built based on histograms of differences between the normals
at the points within the region and the normal at the interest point.

Rusu et al. [22] introduced the Point Feature Histogram (PFH) descriptor.
It is based on four angle relations computed between every pair of points in a

4



Figure 2: Schema of the part detection method (collar in this figure). Steps b-d correspond to
the different layers of the approach as described in the text. In the image of step d, reddish
color of the bounding box indicates more confidence in the detection.

k-neighborhood. Each relation is accumulated in a 16-dimensional histogram,
yielding a descriptor which is shown to be invariant to position, orientation and
point cloud density. Yet, the cost of computing n descriptors on a point cloud is
O(n · k2). Later, the same authors proposed the Fast Point Feature Histograms
(FPFH) [1], which instead of computing the relation between every pair of points
in a neighborhood, it only considers the connection between the point of interest
and its neighbors, and re-weights the result with descriptor information from
the surrounding points. This reduces the cost to O(n · k). Despite being faster,
the cost to compute a single FPFH is still high for real-time applications, and it
is not applicable to very dense point clouds or situations where one might want
to compute descriptors covering a large area.

Zhang et al. [40] proposed the Histogram of 3D facets (H3DF) descriptor
for hand gesture recognition. To compute this descriptor, first the point cloud
of the hand is segmented from the whole scan and normalized according to the
dominant orientation of the depth gradient. Next, 3D facets are computed as
the normals of local regions, which are then coded by projecting the normals
onto three orthogonal planes. Finally, the final H3DF descriptor is constructed
by pooling all coded normals using a concentric schema that covers the entire
hand point cloud.

Sun et al. [39] used a high-quality stereo system to acquire a dense depth
map of a piece of clothing laying on a table. After fitting a B-Spline model to
the depth data, they construct a descriptor for every wrinkle in the cloth that
captures the width, height, length and volume, as well as the type of wrinkle,
and use this information to plan a dual-arm flattening strategy.

Summarizing, most of the previous descriptors are designed to work on un-
structured point clouds, thus a significant part of their computational cost is
associated to defining the neighborhood in which the descriptor has to be com-
puted and to establishing a reference frame to obtain invariance to viewpoint.
The consequence is that most of them are just computed for a few points of in-
terest. This is in contrast to the 3D descriptor we propose here, which exploits
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the spatial neighborhood relations of the 3D sensor plane, leading to very fast
computations even when the descriptors are densely computed.

3. Part Detection: Collar

This section describes the methodology to detect the collar of a shirt or polo
shirt, which corresponds to the first step in the pipeline outlined in Fig. 1. The
method follows a coarse-to-fine strategy, which starts by approximately locating
the relevant area of the garment to then refine the initial detection with a more
precise classifier. See the schematic in Fig. 2.

Concretely, in the first step of the part detection method (Figure 2b), the
appearance and/or depth local descriptors of choice are extracted at regular
positions over the image, and quantized into visual words using a vocabulary
of K centroids, previously computed using k-Means in a large collection of
training descriptors. The image is then described using “Bag of Visual Words”
(BoVW) [26] vectors computed in a collection of sub-windows, organized in a
grid over the image and filtered by a segmentation mask computed combining
color and depth data. More formally, let L = {l1, . . . , lN} be a set of sub-
windows of an RGB-D image I. We can then define the BoVW histogram of
sub-window lj as:

h∗

j = [ν(vi, lj); i = 1, . . . , K] (1)

where ν is the frequency function that returns how many times a certain visual
word vi appears inside the sub-window lj . Next, the histogram is normalized
and square-rooted:

hj =

√

h∗

j

||h∗

j ||1
(2)

This operation, also referred to as power normalization, has been shown to
better approximate more realistic non-independent and identically distributed
models of visual words in natural images [27]. Multiple descriptors, for example
computed using appearance and depth information, can be straightforwardly
combined by simply concatenating the respective bag of visual words (BoVW)
vectors hj.

Next, a logistic regression model with parameters w is learned by minimizing
the following expression on a training dataset of image sub-windows:

min
w

(

1

2
w⊺w + C

T
∑

i=1

log(1 + e−yiw
⊺hi)

)

(3)

where C is the regularization parameter (adjusted by cross-validation), hi stands
for the ith BoVW vector coming from the set of T training vectors, and yi is
+1 or -1 indicating if hi comes from a positive (i.e. contains the desired part)
or negative sub-window. The learned logistic regressor is then used to obtain
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the posterior probability of the part presence in each sub-window. The part
presence probability (class C+) for sub-window lj is computed as:

p(C+|hj) =
1

1 + ew
⊺hj

(4)

Probability map:. To reduce noise and aggregate local information, instead of
directly selecting the highest scored windows, an initial set of locations Θ is
selected as all the local maxima of the average per-pixel probability based on
the overlapping sub-windows (Figure 2c):

M(x) =

∑N
j=1

δ(x ∈ lj)P (C+|hj)
∑N

j=1
δ(x ∈ lj)

; ∀x ∈ I (5)

Θ = {x | M(x) > M(N (x, I)); ∀x ∈ I} (6)

where x is a pixel position in the input RGB-D image I, δ(.) is the indicator
function and N (x, I) is the 8-neighborhood of a point x in I.

Detection refinement:. In the third stage of the approach (step d of Figure 2),
to overcome the limitations of linear logistic regression, the locations found in
the previous stage are refined via a Support Vector Machine using a RBF kernel
with χ2 distance:

χ2(q, t) = exp(−γ
∑

j

(qj − tj)
2

qj + tj
) (7)

where γ is the inverse of the average of the χ2 distance between the vectors of the
training set, and tj and qj are the jth components of two BoVW vectors. A set of
sub-windows are cast with different areas, aspect ratios and offsets with respect
to the original points in Θ, and their corresponding BoVW vectors are directly
evaluated using the non-linear classifier. The highest scored window θ for each
peak is selected and the corresponding posterior probability is approximated
from the classifier score (zθ) with a sigmoid function:

P (C+|hθ) ≈
1

1 + eAzθ+B
(8)

where A and B are the sigmoid parameters, adjusted using Platt’s probabilistic
output algorithm [28, 29].

4. Grasping Point Selection: Lapel

Depending on the task to be conducted after grasping the garment, mindfully
selecting the grasping point can have a significant impact on difficulty; hence,
rather than a generic method, we use a specific strategy tailored to find a suitable
grasping point for the task at hand (see Fig. 1).
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Figure 3: Garments with very different appearance may reduce the performance of intensity
based descriptors such as SIFT. In this figure we can see two very differently textured shirts
with the ground truth bounding box around the collar.

Candidate point detection. In our case the objective is to hang the garment from
a hook, which becomes much easier if the manipulator has the shirt grasped by
the lapel of the collar. We consider all points inside of the detected collar area
(using the method presented in the previous section) as candidate points, and a
local descriptor is computed for each one in order to determine the final grasping
point.

Point ranking. In order to detect the final grasping point, we train a logistic
regressor able to distinguish between lapel and non-lapel, and use it to rank the
candidate points. The one that maximizes the regression score (as in Eq. 4) is
selected as final grasping point. However, using appearance information for this
task can lead to poor results if the texture of the garments used for training
data is significantly different from the ones used for test. A solution to this
problem is to use primarily depth data to detect the final grasping point. As an
example, in Table 1 the performance of depth (SHOT) and appearance (SIFT)
descriptors exemplifies how training the classifier using plain shirts and testing
on a shirt with texture degrades the performance of the appearance-based clas-
sifier without affecting the depth-based one. The set used in the experiment
included 125 images for training and 100 for testing (50 textured and 50 plain),
all drawn from the dataset used in the remaining experiments 1. Hence, enrich-
ing models with depth information should yield improved results in garment
perception tasks.

Unfortunately, existing 3D descriptors are too slow to be densely extracted
in a reasonable time, and a fast perception-action cycle is crucial in robotics
applications. To address this problem we present a novel and fast 3D descriptor
for clothing manipulation, which is described in the next section.

1Available at www.iri.upc.edu/groups/perception/#clothingDataset
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Table 1: Accuracy (%) of lapel point detection when training using plain white and gray shirts
and testing on plain and textured shirts (see Figure 3).

Descriptor Plain Textured
Lapel SHOT 72 68
(Accuracy) SIFT 74 42

Figure 4: Steps of the FINDDD descriptor computation. The second image shows the normal
vectors mapped into RGB. The third image shows the orientation bin centers colored according
to distance to the input normal, plotted as a purple asterisk. The red line in this plot is
the threshold above which the contribution to bin centers is 0 (corresponding bin centers
highlighted in red). See the text for more details.

5. Fast Integral Normal 3D Descriptor

We propose the Fast Integral Normal 3D (FINDDD) descriptor, that takes
advantage of the specificities of a clothes manipulation scenario to be both
highly discriminative and very fast to compute. First, since the range of depth
values within the object will be very limited, we can safely assume that the
density of points will be approximately constant over the whole cloud (i.e. the
separation between neighboring points in the image plane depends on their re-
spective depths. Thus, similar depths will produce similar inter-point distances,
and hence similar point densities). Next, given that all points in a structured
point cloud are distributed in an equally-spaced grid or image-like organiza-
tion, adjacency is well defined. Finally, given the design of our approach and
in contrast with other 3D descriptors such as SHOT, we do not need a specific
coordinate frame for each descriptor, typically used to ensure invariance to ro-
tations. Instead, we rely on the capacity of the learning model used to classify
the descriptors and subsume the variations induced by changes in viewpoint.
Furthermore, additional synthetic training data could be easily generated from
existing 3D scans simply by applying rotation transformations, in a similar way
as done (in a 2D context) for appearance descriptors [30, 31, 32].

The combination of the aforementioned assumptions allow for very fast com-
putations using integral images. We believe that for a scenario such as robotic
manipulation of textile objects, a rapid perception cycle may be more relevant
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(a) (b)

Figure 5: Bin distributions resulting from (a) angular thresholds in spherical angles (bins
represented as areas) and (b) the adopted tessellation-based approach (bin centers represented
as dots). Our 3D descriptor uses a parametrized division of the sphere to create the voting
bins that avoids the typical meridian division that over-represents the zone near the north
pole. Examples of vote patterns are shown, where the purple asterisk indicates the coordinates
of the normal vector.

than highly discriminative but very expensive descriptors. Figure 4 summarizes
the steps in the computation of the descriptor, that will be explained in more
detail in the following paragraphs.

Taking inspiration from the SIFT descriptor [33], we define FINDDD as the
concatenation of normal vector (i.e. surface) orientation histograms for several
sub-regions inside a support area around the point of interest. The steps to
compute the descriptor can be summarized as follows:

1. The normal vector nxyz of every point in the input structured point cloud
is computed. This step can be made very fast using integral images.

2. For each normal vector computed in the previous step, we construct a
vector u with components based on the distance between nxyz and a set
of o orientation bin centers.

3. To compute a descriptor with support region S, divided in s sub-regions
S = {S1, . . . , Ss}, all u within a sub-region are added into a vector Fi.

Fi =
∑

u∈Si

u (9)

Then, the full descriptor is formed by concatenating all sub-vectors: F =
[F1, . . . ,Fs].

4. Finally, each descriptor is normalized using the L1 norm to make it robust
to different densities in the number of points ( “NaN” points due to missing
depth data, caused by occlusions or noise, are discarded). Like in the case
of SHOT [3], we found it beneficial to keep local density information by
only normalizing at the global level.

5.1. Orientation Assignment

In order to re-use previously computed data, and in contrast with other
works that also use point normal information [3], we do not accumulate the
angle between the normal at every point and the normal at the central point of
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the descriptor support area. Moreover, since we are dealing with 2.5D data, only
half of the sphere of orientations has to be considered, which further reduces
the size and computational cost of the descriptor.

Since the normal vectors are circumscribed to the unit sphere, a common
strategy is to express them as angles in spherical coordinates (e.g. [17]):

(φ, θ) =

(

arccos
(nz

r

)

, arctan

(

ny

nx

))

(10)

r =
√

n2
x + n2

y + n2
z. (11)

where φ is the inclination and θ is the azimuth, and (nx, ny, nz) are the normal
vector coordinates.

However, defining the orientation bins in the angular space has some caveats:
first, bins do not cover the same sphere space in all locations (see Figure 5a), and
are smaller around the north pole (maximum elevation), which leads to a non-
uniform representation of the normals; second, azimuth information becomes
unstable as vectors get closer to the maximum elevation point, and small changes
due to noise can easily produce swaps in the assigned bin.

Instead, we define bins distributed across the entire semi-sphere in Carte-
sian coordinates. Precisely, we use the vertex points generated in a triangular
tessellation to obtain a quasi-regular distribution of the orientation bins (see
Figure 5b). One alternative yielding completely regular bins is the approach
of Klaser et al. [34], where points in the sphere surface are projected onto a
platonic solid; however, it has a limitation on the number of bins, since the
platonic solid with more facets available is the icosahedron (20-sided).

The downside of our representation is a higher cost to assign a normal to its
corresponding bin, because the distance to the bin centers in the unit half-sphere
surface has to be computed. However, for a reasonably small number of bins,
there is no noticeable slow-down in computation and, if a larger number of bins
is desired (e.g. for data coming from a very precise 3D sensor), structures like
K-D Trees can significantly accelerate the search, or computational geometry
techniques could be used to directly compute the triangle into which the normal
vector projects.

Increasing the number of orientation bins of the descriptor improves the angle
resolution of the model, and consequently the accuracy with which surfaces can
be represented. However it also induces aliasing and sparsity, which degrade the
significance of distances between descriptors. Another consideration regarding
the number of bins is that it must be adjusted to the level of noise inherent in
the input data, which may otherwise worsen the aliasing problem.

We mitigate these two problems using soft voting to interpolate between
different bins [33]. Each normal contributes to all bins closer than a unit of bin
spacing:

u =

[

max

(

1−
||bi − nxyz||

λ
, 0

)

; i = 1, . . . , o

]

, (12)

where u collects the votes for each centroid bi, nxyz is the normal vector and λ

is the distance between neighboring bin centers.
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Figure 6: Comparison of computation time for descriptors extracted densely (every pixel),
varying the size of the local region used.

5.2. Efficient Computation Using Integral Images

As mentioned earlier, by using structured point clouds, it is possible to take
advantage of integral images2, and make the computational cost linear in the
final number of descriptors n in practice, involving only O(o · n · s) operations,
where s and o are typically negligible: the former is the number of spatial
sub-divisions (typically 16, for a 4 × 4 grid), and the latter is the number of
orientation bins (13 in most of our experiments). We use integral images both
to compute the normal vectors3 and to perform the aggregation of the votes for
every orientation bin and sub-regions of the descriptor.

To compute the descriptors, one integral image is necessary for each orien-
tation bin, where we will accumulate the occurrences of normals falling into
it from the top-left to the bottom-right corner of the structured point cloud.
Consequently, the cost of constructing the integral images is O(o · p), where p

is the total number of points in the point cloud.
Figure 6 shows a comparison of the computational time required to extract

a descriptor for every point of a 640 × 480 structured point cloud, with and
without integral images, using a 3Ghz Linux machine. Note that in the case
where integral images are not used, the neighborhood information provided by
the structured point cloud is still used and, in an unstructured point cloud, we
would require an extra step of searching for the nearest neighbors of each point
in which we want to compute a descriptor. This would require typically using
a K-D tree for nearest neighbor search, at an additional cost of O(log(p)) for

2This is the name by which the technique of summed-area tables became popular in the
computer vision community, and is used here for this reason. This technique is in fact appli-
cable to any matrix-like object (structured point clouds in our case).

3To compute the normal vectors using integral images, we use the implementation in the
PCL 1.5 library, based on [23, 24, 25].

12



each descriptor, plus O(p · log(p)) for building the tree once.

5.3. Compression using PCA

Using 13 orientation bins and 4× 4 spatial subdivisions, the descriptor has
a total of 208 components. This size may not seem very large, since other well
known descriptors have a similar size (e.g. SIFT and SURF have size 128, GIST
has size 960 and SHOT has size 352). On the other hand, FPFH has only
33 components and yields state-of-the-art results in our tests. Furthermore, it
has been shown by Sanchez et al. [35] that using Principal Component Analysis
(PCA) to compress SIFT descriptors to 64 dimensions actually boosts the results
for image classification tasks, since it helps de-correlate the descriptors and
reduce the effect of noise.

Looking at the eigenvalues computed with a large dataset of FINDDD de-
scriptors, we see that the energy quickly goes down, and is almost zero at the
fiftieth eigenvalue. Consequently, we also evaluated the effects of projecting
the FINDDD descriptors using PCA to the same dimensionality as FPFH, that
is, 33 components, and found that the performance of the descriptor not only
remains stable, but it even improves in some cases.

6. Experimental Results

We have evaluated the proposed method in a series of experiments. First
we evaluate and compare the FINDDD descriptor with other state-of-the-art
3D descriptors, and subsequently we individually evaluate the different parts of
the approach: the collar detector and the FINDDD descriptor for lapel point
selection. Finally, the complete system is integrated in a robot manipulator and
evaluated in a cloth grasping experiment.

6.1. FINDDD Benchmarking

We evaluated the performance of FINDDD compared to other state-of-the-
art 3D descriptors, and found it to have a comparable behavior in terms of
accuracy in several tasks related to garment perception, while being two orders
of magnitude faster than the competing descriptors.

6.1.1. Efficiency Assessment

To evaluate the computational cost of our descriptor, we measured the time
necessary to extract a descriptor for every point of a 640× 480 structured point
cloud acquired with a Kinect range camera on a 3Ghz Linux machine (average
of the 10 first point clouds of the dataset from [36], the time reported also
includes loading the point cloud, computing the normal for every point and
storing the results back to disk). Points at the edge of the point cloud, without
enough neighbors for the support region, were discarded. Using more orientation
bins increases the number of integral images that have to be constructed and
the operations to compute each sub-region. Consequently, we have tested the
method with 13 and 41 orientation bins.
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Table 2: Comparison of the computational cost of the evaluated descriptors. Parameter o for
FINDDD stands for the number of orientation bins considered. Refer to the main text for
more details.

Descriptor Time (s)
Time per
desc. (ms)

FINDDD (o=13) 4.4± 0.23 0.0168± 0.00086
FINDDD (o=41) 11.0± 0.41 0.0441± 0.00157
FPFH 352.1± 75.0 1.44± 0.047
SHOT 581.6± 14.9 2.37± 0.294

Two other state-of-the-art descriptors, SHOT and FPFH4, are also evaluated
to provide a reference to our results. The setup is the same as the one used for
our descriptor, but in this case points with a NaN value in any coordinate were
filtered out from the input point cloud as advised in the documentation of the
descriptors.

Table 2 shows the results of the comparison. In the table, the column Time

shows the time spent computing the descriptors for the whole point cloud, and
column Time per desc the average time for a single descriptor (an upper
bound, since the disk reading/writing overhead is also included). Note that
FINDDD, in its both configurations, is near to two orders of magnitude faster
than both FPFH and SHOT. We will next show that the recognition rates when
characterizing garments, are very similar for all methods.

6.1.2. Wrinkle Identification

We perform an initial evaluation of the proposed descriptor performance on
an in-house dataset containing 640× 480 Kinect RGB-D images of a polo shirt
showing one of eight distinct manually produced wrinkles 5. Five repetitions
of each wrinkle were acquired, and the relevant wrinkle area in each image was
annotated by hand. Then, we extracted pixel-wise descriptors for each image,
and selected the center of gravity of the annotation as the representative for
the particular wrinkle and image. We also stored a fixed number of descriptors
from random points in the annotated regions for additional testing.

Using this dataset we evaluate the retrieval performance of FINDDD. The
distance to a query descriptor is used to re-order all the descriptors in the
dataset, and the average precision (AP) of the resulting list is computed. The
AP is then averaged over every representative instance of every wrinkle type.
The same queries are performed in two datasets: one where only the repre-
sentative descriptors are present (columns Rep of Table 3), and another that
additionally contains the descriptors of all the previously selected random points
(columns Ext of Table 3). We also evaluated the performance of the FPFH and
SHOT descriptors in the same way, varying the radius of the region used to

4Both descriptors were computed using the PCL 1.5 Library, and with the parameters
suggested in the tutorials of the library (i.e. support region of 5cm).

5Available at http://www.iri.upc.edu/groups/perception/#findddDescriptor
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Table 3: Results of a retrieval experiment. o stands for the number of orientation bins used,
s for the side (in pixels) of the support region, and sv shows if soft voting was used or not
(True/False). Column Rep shows the mean average precision (%) of the test where only the
representative points were used, while column Ext shows the results for the test that included
the additional random points.

FINDDD FPFH SHOT
o s sv Rep Ext Rad Rep Ext Rad Rep Ext
13 21 T 52.6 50.1 3cm 46.1 50.8 3cm 27.0 25.3
13 21 F 45.7 45.8 4cm 45.3 53.7 4cm 34.8 30.8
13 43 T 62.8 69.8 5cm 44.8 53.6 5cm 35.7 33.9
13 43 F 56.1 64.6 6cm 42.2 52.4 6cm 34.5 34.7
13 65 T 67.6 76.1 7cm 39.0 50.7 7cm 36.2 35.1
13 65 F 60.3 71.6 8cm 36.2 49.2 8cm 34.1 35.3
41 21 T 52.7 52.2 9cm 34.8 47.7 9cm 33.8 36.1
41 21 F 48.1 49.0 10cm 33.1 46.8 10cm 33.7 36.5
41 43 T 66.5 74.6 15cm 33.4 45.1 15cm 30.9 37.7
41 43 F 62.6 70.9 20cm 34.2 44.8 20cm 27.2 36.0
41 65 T 67.0 77.8 25cm 32.0 43.6 25cm 25.5 34.3
41 65 F 63.8 75.4 30cm 30.9 42.7 30cm 23.4 32.0

compute the descriptor. Different tasks and descriptors exhibit different opti-
mal region sizes, with larger regions generally yielding better results in the trials
with the additional sampled points (Ext).

From the results in Table 3 it can be seen that, in our textile manipulation
setup, our proposed descriptor is able to correctly characterize and recognize
wrinkles with a performance similar or even superior to that of the state-of-
the-art descriptors. It is also noticeable that being able to use a large enough
support region is essential to properly characterize a textile wrinkle, which our
descriptor is able to do at no additional computational cost.

6.1.3. Wrinkle Segmentation

In this section we show that the FINDDD descriptor is able to accurately
characterize the different types of wrinkles present in a garment. Figure 7
shows a visualization where pixels in a range image of a t-shirt are color-coded
according to the label assigned to their corresponding FINDDD descriptor by
spectral clustering, with different numbers of clusters. As can be seen, the
information encoded in the FINDDD descriptor can be useful to clearly identify
the main 3D structures, such as ridges or saddles, with increasing levels of
detail. However, this is still preliminary work, and some subtleties may fail to
be properly captured by the labeling.

This could then be potentially used to model the global state of the object
and for planning tasks such as flattening the garment.
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Figure 7: Pixel-wise labellings of a t-shirt range image showing the result of spectral clustering
applied on the FINDDD descriptors. Original image and point cloud shown in the top-left
position and number of clusters is, from left to right and top to bottom: 5, 10, 20, 25. Colors
are assigned randomly in each image, and Canny edges are superimposed for clarity. Best
viewed in color.

6.1.4. Garment Recognition

We also compared the proposed descriptor with FPFH and SHOT in a class
recognition task consisting in distinguishing clothes made of different types of
textile materials on the basis of the wrinkles they produce. We used the publicly
available IRI Clothing Part dataset [36], that contains over a thousand RGB-D
scenes of six classes of garments (polo shirt, jeans, t-shirt, hooded sweater, shirt
and dress), with precise segmentation mask annotations for the collar and other
parts of the garments. The clothes are lying on top of a table, and are displayed
in different degrees of wrinkledness.

We split the dataset in two parts (70% train and 30% test), and represented
the images using BoVW models of size 512. Then we trained a Support Vector

Table 4: Average precision (%) obtained by the different 3D descriptors in the garment
recognition task.

Linear SVM RBF-χ2 SVM
Garment FINDDD SHOT FPFH FINDDD SHOT FPFH

Dress 37.5 25.5 51.2 66.8 61.9 67.6

Shirt 41.7 41.2 45.1 54.5 72.9 79.7

T-Shirt 71.8 58.1 68.9 84.7 70.1 76.5
Jeans 41.5 33.4 58.1 72.9 65.1 77.9

Polo 85.2 64.7 71.6 96.0 83.7 77.6
Sweater 44.8 36.5 80.1 84.6 92.1 93.7

Average 53.7 43.2 62.5 76.6 74.3 78.8
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Figure 8: Collar detection results using visual vocabularies of increasing sizes. The top two
figures show the recall@1-5 (shirt and polo shirt, respectively), and the bottom one the mean
Average Precision for both classes.

Machine (SVM) classifier with either linear or RBF-χ2 kernels on the BoVW
for each textile material class. The average precision obtained by FINDDD (13
orientations and 43-pixel sided support regions), FPFH and SHOT descriptors
in this test can be seen in Table 4. As can be observed, the performance of
FINDDD is comparable to that of the two state-of-the-art descriptors. The
superior performance with the polo shirt may be attributable to the higher
number of training samples for that category.

Note that this test is not directly comparable to the recent work by Willimon
et al. [13], since they are doing clothing classification with a dataset focused on
intra-class variation using a sophisticated approach containing both appearance
and depth information, as well as mid-level feature information, while here we
distinguish between different exemplar garments using only depth information.

6.2. Collar Detection

As explained in Section 3, we use the part detection method to have an initial
estimate in which we can restrict the search for the fine-grained grasping point
location. For simplicity, and given that directly incorporating depth descriptors
does not significantly improve the test accuracy of this operation [37], we use
only SIFT descriptors to construct the BoVW representations. In the future,
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Table 5: Accuracy (%) of lapel point selection when using different spatial priors. In the
Ground Truth (GT) box the annotated bounding box is used to restrict the search, while
in the Detect column the bounding box obtained in the collar detection step with SIFT is
used. We also tested the performance without using a spatial prior with FINDDD 33 (for
computational reasons), that can be seen in the Full ima column.

Shirt Polo
Descriptor Full ima GT box Detect Full ima GT box Detect
FINDDD - 74.4 80.3 - 63.1 61.2
FINDDD 33 18.4 74.4 82.2 13.9 67.2 59.5
FPFH - 40.6 40.0 - 45.5 48.8
SHOT - 72.2 66.3 - 62.7 54.1
SIFT - 74.4 77.5 - 68.3 68.9

we plan to combine shape and appearance information in a way that exploits
the advantages of each source of information [38].

We evaluate the performance of this detection method using the relevant
part of the IRI Clothing Part dataset [36] (i.e. scenes that show shirts or polo
shirts).

Results can be seen in Figure 8. An experiment is considered a true positive
if the predicted grasping point falls within the annotated ground truth bounding
box, and the performance is measured using two metrics: Recall at K (R@K ),
which tells for which percentage of the images a true positive is found on the
K top scored detections. This measure, and specially R@1, is of most relevance
in flexible object manipulation, where typically we will only have one chance
of correctly grasping the object before altering its state, hence requiring a new
detection process. The second metric used is mean Average Precision, which is
equivalent to the area below the precision-recall curve6, and takes into account
both precision and recall. As can be seen, the main elbow in performance of the
collar detection system is close to 128 visual words for both the shirt and the
polo shirt, where around 60% recall is attained. The good performance attained
with this relatively low number of visual words, at least compared to typical
values used in visual object classification literature (e.g. see the contestants
in any edition of the Pascal Visual Object Challenge), can be explained by
the limited “visual world” displayed in the images. Most failure cases of the
method are examples where the garment was highly wrinkled, or where the
collar is only partially visible due to folding of the clothes. Images in the test
set that included garments not used in training also had a higher failure rate,
specially those with long sleeves, which sometimes fold in ways that can mimic
the collar appearance. See Figure 9.

6An evaluation metric that shows the precision attained at every level of recall, when
ordering the test samples by their predicted score.
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Figure 9: Examples of images where the collar detection method may typically fail.

6.3. Lapel Point Selection Using FINDDD

The last step of our approach (see Figure 1) consists on exploiting 3D data
to select a final grasping point in the lapel of a shirt or polo shirt within the
box enclosing the detected collar. This selection can be done based solely on
the “graspability” of the point, but it is also possible to use other criteria that
facilitate the subsequent task. For instance, hanging the garment from a hook
is greatly simplified if it is grasped by a point on the lapel of the collar.

To evaluate how well our proposed descriptor can detect this type of fine-
tuned grasping point compared to other 3D descriptors, as explained in Sec-
tion 4, we trained a logistic regression linear classifier using manually annotated
lapel and non-lapel points within the designated collar area. Then, we computed
their accuracy on a separate testing set. All points within the collar area are
evaluated, and the one with highest score is predicted as final grasping point.

As can be seen in Table 5, the FINDDD descriptor (13 orientations and
43-pixel sided support regions) obtains very competitive results, outperforming
FPFH and SHOT at this task, even when projected to 33 dimensional subspace
using PCA, which successfully removes the noise and unused dimensions of the
descriptor, and in most cases maintains or improves the performance. Results
using SIFT appearance descriptors are also reported for comparison purposes.

Two spatial priors, that provide different insights, are used. On the one hand,
the Ground Truth (GT) box reflects the case of an optimal collar detector: it
is always accurate, but usually larger, and is available for all images. On the
other hand, the detected box (detection is done using SIFT and a 128 visual
word vocabulary) shows the performance of the lapel classifier in the actual
system: the evaluated box is noisier and may not cover the whole collar area,
but is smaller and, since the lapel is only detected when the collar detection
step is successful, it leaves out the hardest images.

The benefit of a two-stage approach (i.e. first detecting the collar and then
selecting the fine-grained grasping point) is apparent when compared to applying
the lapel point classifier to the whole image. In that case, the percentage of
correct grasping point detections is reduced to 13.9% for polo shirt, and to
18.4% for shirt.

The random chance baseline for this task would be 35.8% accuracy, com-
puted by looking at the relative area of annotated pixels inside the ground
truth bounding boxes.
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Figure 10: Detail of the gripper and the hanging operation.

Table 6: Detection results of the lapel grasping experiments using different numbers of visual
words in the collar detection step. The Lapel column shows the accuracy (%) of selecting a
grasping point on the lapel considering the cases in which the collar was correctly detected
(Collar column).

128 vw 1024 vw
Garment Collar Lapel Collar Lapel
Shirt 64.4 84.6 83.2 69.0
Polo 65.3 75.8 75.0 66.7

6.4. Cloth Grasping Experiments

Finally, we evaluate the complete pipeline proposed in this paper in a real
robotic experiment in our laboratory, with a WAM arm and a custom-made
gripper (see Figure 10).

We use the same experimental setup employed to acquire the dataset for
offline evaluation: a table where the garment lays with the robotic arm in one
side, and a Kinect camera observing it from a zenithal position (see Figure 1
bottom).

Table 6 shows results on an experiment consisting in randomly laying either
a shirt or a polo shirt for a hundred repetitions each, and attempting a grasp
on the point suggested by the proposed method. SIFT has been used for the
collar detection part, and FINDDD (13 orientations and 43-pixel sided support
regions) for the lapel point selection. As shown in the table, on average, a valid
lapel point was selected in 80.2% of the cases where the collar was correctly
detected (64.9%) when using 128 visual words, and 67.9% when using 1024
visual words (79.1% average correct collar detections). For this experiment
we used an extended training set including all relevant images available in the
dataset.

As can be seen, using 1024 visual words significantly improves the results of
the collar detection step when compared to only 128, but at an slightly higher
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Table 7: Overall characterization of grasping failures for the lapel grasping experiments. See
text for details.

Error type Percent.
Mechanical or software error 25.0
Grasp too shallow 19.4
Grasp too deep 11.1
Inverse kinematics error 36.1
Other 8.3

computational cost. This increase in detected collars has an incidence in the
performance of the lapel grasping point detector, as it has to deal with harder
examples in which valid grasping points must be found.

Furthermore, in some cases where the collar was not considered correctly
detected, the lapel classifier still managed to find a valid grasping point if it
was present in the considered detection bounding box. For the polo shirt, the
lapel classifier was able to find a correct grasping point in 37.1% of the cases
where the collar detector failed when using 128 visual words, and 24% when
using 1024 visual words.

Some examples of the images and score maps produced in the experiments
can be seen in Figure 11. In the failure case shown in the middle-right panel,
a wrinkle locally resembles the slope of the shirt lapel and attracts the lapel
classifier. Conversely, the “collar probability” of the selected point is low. We
have experimented with direct combination of the lapel and collar probabilities,
and with forcing the selected point to have a certain minimum collar probability,
but none of these two approaches clearly yielded improved results, and a more
elaborate methodology will be necessary. In future work we plan to find a way
to combine the two scores to avoid this type of errors.

Finally, we also report results on the outcome of the grasp action. A suc-
cessful grasp was performed 82.1% of the times, and failures were grouped in
five categories in Table 7: mechanical or software error, for cases where the arm
or gripper couldn’t execute the instructed action; grasp too shallow and grasp
too deep are cases in which the measured depth was inaccurate and either the
gripper didn’t reach the garment, or it pushed too hard against the table and
failed to close; inverse kinematics error corresponds to cases where the detected
grasping point falls outside of the working area of the robot; and other for mis-
cellaneous errors. Although we have qualitatively assessed the garment hanging
step, the methods and technicalities involved are outside the scope of this work,
and will be addressed in the future.

7. Conclusions

In this work we have presented a two-stage approach to determine a grasping
point in the lapel of a collar of a garment (specifically a shirt or a polo shirt)
for hanging purposes. The first stage uses appearance (SIFT) to determine
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Figure 11: Example results of the proposed perception approach in the experiment of hanging
shirts and polos with the robotic arm. Left column corresponds to the blue polo shirt and
right column to the shirt. The main figure shows the garment with the detected bounding
boxes, organized from red to black with decreasing probability, and a white cross indicating
the final selected grasping point. The selected bounding box is highlighted in orange. The
two small panels show the collar (top) and lapel (bottom) probability maps. The figure in
the middle-right shows a failure case of the method: the shape of the wrinkle is similar to
that of a lapel.
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the coarse position of the collar and, in the second stage, depth information
(FINDDD) is used to precisely locate a point in the lapel of the collar.

The coarse-to-fine approach shows promising results dealing with the very
challenging task of detecting task-oriented grasping points in garments, where
the appearance is highly variable, and methods typically resort to long manip-
ulation sequences to guarantee that the garment has been brought to a certain
state, such as in [7].

Depth information has been shown to help when dealing with the variable
appearance of garments, but state-of-the-art shape descriptors are too computa-
tionally expensive to be used in practice in our robotic pipeline. Consequently,
we proposed a novel shape descriptor that, taking advantage of the specific
properties of our scenario, is near two orders of magnitude faster to compute,
while yielding a similar or better performance.

The proposed system has been evaluated both offline with a pre-acquired
dataset [36] and online in a robotic garment grasping experiment. Currently the
system performs well for mildly deformed garments, with a runtime of only a
few seconds. More training data will help improve performance in more difficult
scenarios, but generating high quality annotations for this task is very costly,
thus it would be desirable to develop a semi-supervised training method.

In future work we would like to explore how to effectively fuse appearance
and depth descriptors to optimize the usage of each source of information. We
also want to evaluate the proposed approach on other types of clothes and
parts, and integrate the method in a planning schema, so that manipulation
of the garment can be used to improve robustness. Finally, we would also like
to evaluate the proposed FINDDD descriptor in other tasks, such as wrinkle
segmentation, or description and recognition of 3D rigid objects.
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