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Abstract

Control of drinking water networks is an arduous task given their size and the presence of uncertainty
in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in
the most economic and safe ways. To cope with uncertainty in system disturbances due to the stochastic
water demand/consumption, and optimize operational costs, this paper proposes three stochastic model
predictive control (MPC) approaches, namely: chance-constrained MPC, tree-based MPC, and multiple-
scenarios MPC. A comparative assessment of these approaches is performed when they are applied to
real case studies, specifically, a sector and an aggregate version of the Barcelona drinking water network
in Spain.

1 Introduction

Drinking water networks (DWNs) transport water from sources to consumers ensuring the quality of service
[1]. Nevertheless, limited water sources, conservation and sustainability policies, as well as the infrastructure
complexity for meeting consumer demands with appropriate flow pressure and quality levels make water
management a challenging problem [2]. Water demand forecasting based on historical data is commonly
used for the operational control of water supply along a given prediction horizon. However, the optimality
of such scheduling is affected by the one associated to water demand forecasts. Therefore, the scheduling of
control inputs must be continuously adjusted. This leads to consider the DWNs as dynamical systems and
their operation as optimal control problems, with the objective of satisfying water demands in an optimal
manner despite the presence of disturbances and uncertainties, and considering additionally issues such as
constraints on the manipulated and output variables and multiple conflicting control goals. Given the features
of the problem, MPC provides a control framework capable of dealing with these issues in an explicit manner
[2, 3]. The main idea of MPC is to obtain a control signal by solving, at each time step, a finite-horizon
optimization problem (FHOP) that takes into account a model of the system to predict its evolution and to
steer it in accordance to given objectives. The first component of the obtained control sequence is applied to
the DWN at the current time step and the problem is solved again at the next time step, following a receding
horizon strategy [4]. There are several examples of MPC applied to water networks in the literature, see e.g.,
[5, 6, 7, 8, 9] and references therein.

Among the aforementioned references, a common approach used to cope with perturbed systems is to
rely on the so-called certainty equivalence property [10], which in the MPC framework leads to a perturbed
nominal deterministic MPC strategy, also named certainty-equivalent MPC (CE-MPC). This strategy ad-
dresses perturbed systems by considering nominal models that do not include the uncertainty. Hence, the
expected value of system inputs will lead to an average performing system. In the case of linear systems with
uniformly distributed scenarios, the certainty equivalence property holds [11] and this strategy is optimal.



Nevertheless, this may not be the case due to factors such as the presence of nonlinearities. Hence, the CE-
MPC is usually complemented with a (de)tuning of the controller. Although, in one hand, a frequent violation
of soft constraints can occur, on the other hand, infeasible solutions would result if the constraints were hard
due to the ignored effects of future uncertainty. Nevertheless, there exist other MPC schemes reported in the
literature that aim to ensure robust stability and compliance with constraints in the presence of stochastic
disturbances, see e.g., [12, 13]. As summarized in [13], alternative approaches of MPC for stochastic systems
are based on min-mazx MPC, tube-based MPC, and stochastic MPC (SMPC). The first two approaches are
oriented to ensure worst-case robustness and consequently are conservative, while the third approach relies
on stochastic programming (SP) techniques to offer a probabilistic constraint fulfilment [14]. Since some
violations are allowed, the solutions obtained are less conservative and hence the performance is better in
terms of cost from the objective function. In this way, disturbances are modelled as random variables, and
the control problem is stated by using the expected value of the system variables, i.e., states and control
inputs.

The stochastic approach is a mature theory in the field of optimization [15], but renewed attention has
been given to it due to its great potential in control applications, see e.g., [16] and references therein. From
the wide range of SMPC methods, this paper focuses on three specific techniques, namely: chance-constrained
MPC (CC-MPC), tree-based MPC (TB-MPC), and multiple-scenario MPC (MS-MPC), also called Multiple
MPC in [17].

CC-MPC is a stochastic control strategy that provides robustness in terms of probabilistic (chance)
constraints, such that the probability of violation of any operational requirement or physical constraint
is below a prescribed value [18]. Some works that address the CC-MPC approach in water systems are
[19, 20, 21] and references therein. On the other hand, in the TB-MPC, uncertainty is addressed by considering
simultaneously a set of possible disturbance scenarios modelled as a rooted tree, which branches along the
prediction horizon with a common initial value of the disturbances, see, e.g., [22, 23, 24]. This technique
computes a set of control input sequences, one per each scenario in the disturbance tree, but only applies the
first element from all sequences, which is the same for all the possible scenarios considered. At the next time
instant, the control inputs are recalculated and only the value of the control sequence that corresponds to
the first time instant is applied. The MS-MPC follows a similar approach, but it computes a single control
sequence instead of a tree of control inputs. To do so, the MS-MPC takes into account also different possible
evolutions of the process disturbances but not necessarily in the form of a tree [12]. This approach was used in
[17] for designing an MPC controller for drainage systems. In this way, both the TB-MPC and the MS-MPC
incorporate robustness by considering several disturbance scenarios in a single optimization problem.

The main contribution of this paper consists in the design and assessment of the three aforementioned
stochastic controllers, i.e., CC-MPC, TB-MPC, and MS-MPC, applied to the operational management of a
real DWN] i.e., the Barcelona DWN. These approaches offer a compromise between economic costs, reliability
and computational burden. A discussion of the advantages and weaknesses of these control approaches in the
sense of tractability and performance is presented when applied to two case studies, i.e., a small-scale and a
large-scale model of the Barcelona DWN. This paper is an extension of the results presented in [21], which
details the CC-MPC controller design for DWN, and [25], which provides a comparison between TB-MPC
and CC-MPC applied to DWN.

The remainder of the paper is organized as follows. Section 2 describes the case studies based on the
Barcelona DWN and discusses the modelling of water demand. Section 3 describes the DWN control problem
and introduces the CE-MPC formulation. Section 4 describes the formulation of the CC-MPC, TB-MPC
and MS-MPC approaches. Section 5 discusses the results of the application of the three proposed SMPC
approaches to the case studies via simulation. Finally, the conclusions are drawn in Section 6.

Notation. Throughout this paper, R, R”, R™*™ and R, denote the field of real numbers, the set of
column real vectors of length n, the set of m by n real matrices and the set of non-negative real numbers,
respectively. Moreover, St , denotes the set of positive definite matrices of dimension n, while Z, denotes the

set of non-negative integer numbers including zero. Zi, 2{r€Zy|c; <x<cy)for some ¢y, co € Zy and
Zsc % {x €Zy | x > c} for some ¢ € Z.. For a vector z € R", x(; denotes the i-th element of . Similarly,
X(iy denotes the i-th row of a matrix X € R"*™. Additionally, ||- ||z denotes the weighted 2-norm of a vector,
ie., |z|z = (#7 Zx)'/2. If not otherwise indicated, all vectors are column vectors. Transposition is denoted
by superscript |, similarity is denoted by ~, and the operators <, <,=,>,> denote element-wise relations



of vectors. Furthermore, 0 denotes a zero column vector and I the identity matrix, both of appropriate
dimensions.

2 Case Studies Description and Preliminaries

The MPC approaches presented in this paper are assessed with two representative case studies based on the
Barcelona DWN.

A DWN must satisfy water demands and guarantee service reliability by making optimal use of water
sources and network components in order to minimize economic costs. The water network operates as a full-
interconnected system driven by endogenous and exogenous flow demands. In the Barcelona DWN, water is
taken from both superficial and underground sources. Flows coming from sources are regulated by pumps
or valves. After being extracted from sources, water is purified up to levels suitable for human consumption
in four water treatment plants (WTP). The water flow from any of the sources is limited and has costs
associated to the extraction and the treatment required. The DWN is divided in two management layers:
the transport network, which links the water treatment plants with the reservoirs located all over the city,
and the distribution network, which is sectored in sub-networks, linking reservoirs directly to consumers. In
this work, each sector of the distribution network is considered as a pooled demand to be satisfied by the
transport network.

The two systems under study have been extracted from the Barcelona transport network. The first case
study consists in a sector model and the second one is an aggregate model of the whole network. They differ
mainly in the size of the network flow problems and the number of constitutive elements:

e The sector network considers only a small-scale subsystem related to a portion of the overall DWN (see
Fig. 1). This case study considers 2 water sources, 3 tanks, 6 flows controlled by valves and pumps, 4
demand nodes and 2 intersection nodes.

e The aggregate network represents a simplification from the original DWN, where sets of elements are
aggregated in a single element in order to reduce the size of the original model (see Fig. 2). It consists of
9 water sources, 17 tanks, 61 flows controlled by valves and pumps, 25 demand nodes and 11 intersection
nodes.

2.1 Demand Modelling and Scenario Generation

In DWNSs, the uncertainty is generally introduced by the stochastic behaviour of water consumers. Therefore,
a proper demand modelling is required to achieve an acceptable water supply service level. For the case studies
of this paper, time series forecasting based on auto-regressive integrated moving average (ARIMA) models
are used due to its ability to capture complex linear dynamics from historical data [26]. In this way, it is
possible to generate artificial scenarios with similar statistical properties to those obtained from historical
data.

A correct sampling of scenarios is essential for developing the proposed SMPC approaches. For the
CC-MPC approach, ARIMA models are used to generate a large number of possible demand scenarios by
Monte Carlo sampling for a given time horizon N € Z,; the mean demand is then used for the controller
design. For the MS-MPC approach, a set of Ny € Z, water demand scenarios is generated and used.
Increasing the number of scenarios allows the controller to gain robustness but at the expense of additional
computational effort and economic performance losses. MS-MPC is generally over-conservative, because it
does not consider the controller capacity to adapt to the new observations of the uncertainty and reformulate
its controller structure at each time instant. To cope with this drawback, a representative subset of scenarios
might be chosen using scenario reduction algorithms [27, 28]. Moreover, the reduced set of scenarios can be
transformed into a rooted tree of possible evolutions of the demand [29] that can be used with the TB-MPC
approach, see, e.g., [30, 31]. More specifically, a reduction of the initial number of scenarios into a rooted tree
of N, scenarios, obtained by generating an ensemble forecast tree, only reduces the number of scenarios that
have similar features with their adjacent scenarios. The disturbances tree remains the dominant scenarios.
The rationale behind this approach is that uncertainty spreads with time, i.e., it is possible to predict more
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Figure 1: Sector diagram of the Barcelona DWN

accurately the demand evolution in a short time horizon than in a large one. Besides, TB-MPC takes into
account, within the optimization problem, the MPC capacity to adapt, i.e., a control input sequence is
calculated for each branch of the tree at each time step, by implementing the so-called Multi-stage Stochastic
Programming, as pointed in [22].

3 DWN Control Problem Statement

This section introduces the CE-MPC formulation, including the system defined by time-invariant state-space
linear model in discrete time, its goals and constraints.

3.1 Control-oriented Model

The system model may be described considering the volume of water in tanks as the state variables x € R™,
the flow through the actuators as the manipulated inputs © € R™, and the demanded flows as additive
measured disturbances d € RP. The control-oriented model of the network is described by the following
equations for all time instant k € Z :

Th+1 = Axy, + Buy, + dek, (1&)
0 = FEyur+ Eqdg, (1b)
where (1a) and (1b) describe the mass balance equations for storage tanks and intersection nodes, respectively.

Moreover, A € R**" B € R**™, B, € R™*?P E, € R¥*™ and E4; € R9*P, are time-invariant matrices
dictated by the network topology.

Assumption 1 The states in x and the demands in d are measured at any time instant k € Z .

Assumption 2 The pair (A, B) is controllable and (1b) is reachable’, provided that ¢ < m with rank(E, ) =
q.
1If ¢ < m, then multiple solutions exist, so uj should be selected by means of an optimization problem. Equation (1b)

implies the possible existence of uncontrollable flows dj at the junction nodes. Therefore, a subset of the control inputs will be
restricted by the domain of some flow demands.
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Figure 2: Aggregate model of the Barcelona DWN

Assumption 3 The realization of disturbances at the current time instant k may be decomposed as
di = dy, + ey, (2)

where d, € R™ is the vector of expected disturbances, and er € R™ is the vector of forecasting errors
with non-stationary uncertainty and a known (or approximated) quasi-concave probability distribution D.
Therefore, the stochastic nature of each j** row of dy, is described by dijye ~ Di(ci(j)’k, Y(ew),k)), where J(j))k
denotes its mean, and X(e(;) ) its variance.

Assumption 4 The demands are bounded, i.e., di, € D, for all k € Z,, and input-disturbance dominance
constraints hold, i.e., B4D C —BU and E;D C —F,U.

The system is subject to storage and flow capacity hard constraints considered here in the form of convex
polyhedra defined as

vy € X2 {z e R" | Gz < g}, (3a)
up € U2 {u € R™ | Hu < h}, (3b)

for all k, where G € R™=*" g ¢ R™» H € R™*™_ h € R"™, being r, € Z, and r, € Z, the number of state
and input constraints, respectively.

Note that in (1b) a subset of controlled flows are directly related with a subset of uncontrolled flows. Hence,
u does not take values in R™ but in a linear variety. This latter observation, in addition to Assumption 2,
can be exploited to develop an affine parametrization of control variables in terms of a minimum set of
disturbances as shown in [21, Appendix A], mapping control problems to a space with a smaller decision



vector and with less computational burden due to the elimination of the equality constraints. Thus, the
system (1) can be rewritten as ) R
g1 = Azi, + By + Bady, (4)

and the input constraint (3b) replaced with a time-varying restricted set defined as
Up 2 {uecR™ | HPiiu<h— HPyd} VkeZy, (5)

where B € R"*(m=4) B, ¢ R"*P P, ¢ RmXN(m*Q) and P, € R™*P | are selection and permutation matrices
(see [21, Appendix A] for details). The sets Uy, are non-empty for all k due to Assumption 4.

3.2 Control Problem Statement

The goal is to design a control law that minimises a (possibly multi-objective) convex stage cost ¢(k, z, @) :
Zy x X X U, — R, which bears a functional relationship to the economics of the system operation. Let
zr € X be the current state and let dy = {dk+ilk}i€Z[O,N—1] be the sequence of disturbances over a given
prediction horizon N € Z>1. The first element of this sequence is measured, i.e., dy|, = d, while the rest of
the elements are estimates of future disturbances computed by an exogenous system and are available at each
time step k € Z. Hence, the MPC controller design is based on the solution of the following finite-horizon
optimization problem:

N-1

D%in Z Lk 40, Ty Utei i) s (6a)
i=0

subject to:
Thyivi|k = ATppie + Blgpin + Badiyr, Vi € Zjg n—1) (6b)
xk+i|k S X, Vi € Z[LN] (GC)
ki € Upas Vi € Zjo,N-1) (6d)
xk‘k = Tk- (66)

Assuming that (6) is feasible, i.e., there exists a non-empty control input sequence Qy, = {Up ik biezp x_1;»
then the receding horizon philosophy and the model back-transformation commands to apply the control
input ~ _

U = HN(k‘,J?k,dk) = Plftz‘k + Pody,. (7)

This procedure is repeated at each time instant k, using the current measurements of states and disturbances
and the most recent forecast of these latter over the next future horizon.

4 SMPC approaches applied to DWN

Given the stochastic nature of future disturbances, the prediction model (4) involves additive uncertainty,
i.e., the water demand, which is an unmanipulated input. In this way, the change in water demand depends
on the uncertainty of external factors, see, e.g., [32, 33]. Therefore, the historical water demand, in an
implicit manner, takes into account historical data related to demographic, meteorological, and hydrological
conditions, among other factors. In this sense, the compliance of constraints for a given control input cannot
be ensured. Consequently, the use of SMPC strategies may allow to establish a trade-off between robustness
and performance. In this context, three SMPC approaches are formulated below.

4.1 CC-MPC

Since the optimal solution to (6) does not always imply feasibility of the real system, it is appropriate to relax
the original constraints in (21c¢) with probabilistic statements in the form of the so-called chance constraints.
In this way, state constraints are required to be satisfied with a predefined probability to manage the reliability
of the system. Considering the form of the state constraint set X, there are two types of chance constraints
according to the definitions below.



Definition 1 (Joint chance constraint) A (linear) state joint chance constraint is of the form
PGjx < g3y, Vi € L) > 1 — 0uy (8)

where P denotes the probability operator, §, € (0,1) is the risk acceptability level of constraint violation for
the states, and G ;) and g(;) denote the 7™ row of G and g, respectively. This requires that all rows j have
to be jointly fulfilled with the probability 1 — 6.

Definition 2 (Individual chance constraint) A (linear) state individual chance constraint is of the form

PGz < gy 21— 625, Vi€Zp,,, (9)
which requires that each ™ row of the inequality has to be fulfilled individually with the respective probability
1— 0y, where é,; € (0,1).

Both forms of constraints are useful to measure risks, hence, their selection depends on the application. All
chance-constrained models require prior knowledge of the acceptable risk §, associated with the constraints.
A lower risk acceptability implies a harder constraint. This article is concerned with the use of joint chance
constraints since they can express better the management of the overall reliability in a DWN. In general, joint
chance constraints lack from analytic expressions due to the involved multivariate probability distribution.
Nevertheless, sampling-based methods, numeric integration, and convex analytic approximations exists, see
e.g., [15] and references therein. Here, (8) is approximated following the results in [34, 35] by upper bounding
the joint constraint and assuming a uniform distribution of the joint risk among a set of individual chance
constraints that are later transformed into equivalent deterministic constraints under Assumption 5.

Assumption 5 Fach demand in d € RP follows a log-concave univariate distribution, whose stochastic
description is known.

Given the dynamic model in (4), the stochastic nature of the demand vector d makes the state vector
z € R™ to be also a stochastic variable. Then, let the cumulative distribution function of the constraint be
denoted as

Feo(9) EP[{Guyz < g(1ys-- - Gry® < gy ] - (10)

Defining the events C; £ {G(j)x < g(j)} for all j € Z7*, and denoting their complements as Cy = {G(j)x > g(j)},
then it follows that

Faa(g) =P[CiN...NC,.] (11a)
=P[(CfU...UCF) ] (11b)
=1-P[(C{U...UCL )] >1—46,. (11c)

Taking advantage of the union bound, the Boole’s inequality allows to bound the probability of the second
term in the left-hand side of (1lc), stating that for a countable set of events, the probability that at least
one event happens is not higher than the sum of the individual probabilities [34]. This yields

P [jc; gi[@[(}ﬂ. (12)

j=1 =1

Applying (12) to the inequality in (11c), it follows that
Y P[CE] <b e Y (1-PIC)) < ba. (13)

At this point, a set of constraints arises from previous result as sufficient conditions to enforce the joint
chance constraint (8), by allocating the joint risk 0, in separate individual risks denoted by 0, ;, j € Zi".



These constraints are

P[C;] >1—0,,, VYjeZi®, (14)
Zém,j S 596; (15)
j=1

0<6,; <1, (16)

where (14) forms the set of 7, resultant individual chance constraints, which bounds the probability that
each inequality of the receding horizon problem may fail; and (15) and (16) are conditions imposed to bound
the new single risks in such a way that the joint risk bound is not violated. Any solution that satisfies the
above constraints, is guaranteed to satisfy (8). As proposed in [35], assigning, e.g., a fixed and equal value
of risk to each individual constraint, i.e., 0, j = d,/r, for all j € Z; ...}, then (15) and (16) are satisfied.

Remark 1 The single risks 6,5, j € Z1,r,), might be considered as new decision variables to be optimised,
see e.g., [36]. This should improve the performance but at the cost of more computational burden due to the
greater complexity and dimensionality of the optimization task. Therefore, as DWNs are often large-scale
systems, the uniform risk allocation policy is adopted to avoid overloading of the optimization problem.

After decomposing the joint constraints into a set of individual constraints, the deterministic equivalent
of each separate constraint may be used given that the probabilistic statements are not suitable for algebraic
solution. Such deterministic equivalents might be obtained following the results in [37]. Assuming a known
(or approximated) quasi-concave probabilistic distribution function for the effect of the stochastic disturbance
in the dynamic model (4), it follows that

P[Gyzre S 9] 21— 005 & Fg 50 (90) — Gy (Azg + Big)) 21— b,

P -1
© Gy (Azk + Bur) < g) = Fg 5,4, (1= 025), (17)
. —1 . C . . .
for all j € Z ), where FGU)dek() and FG(j)dek(-) are the cumulative distribution and the left-quantile

function of G(j)dek, respectively. Hence, the original state constraint set X is contracted by the effect of
the r,, deterministic equivalents in (17) and replaced by the stochastic feasibility set given by

X x = {x € R™ |3y, € Uy, such that
G(j)(Axk + Buy) < 9i) — FC:(_lj)dek(l — 69:,]’)’ Vj e Z[er]},

for all k € Z. From convexity of G(jyzx+1 < g(;) and Assumption 5, it follows that the set X, is convex
when non-empty for all §, ; € (0,1) [38] and most quasi-concave distribution function. For some particular
distributions, e.g., Gaussian, convexity is retained for d, ; € (0,0.5]

In this way, the reformulated predictive controller solves the following deterministic equivalent optimiza-
tion problem for the expectation E[-] of the cost function in (6a):

N-1

min D E(E A+ i gy i) (18a)
" i=0

subject to:
Thpiti|k = ATppie + Blggin + Badiyir, Vi € Zjg n—1) (18b)
Gy (Azp i + Biigri) < 90y — 24,5 (02), Vi € Zig n—1y, Vi € Zp 1), (18c)
Uptilk € ®k+ia Vi € Zjg,N—1] (18d)
Th|p = Tk, (18e)

where Uy, = {tg ik }iezy vy 19 the sequence of controlled flows, dy,, = dj, is the current demand and dj.
are expected future demands computed at time instant k € Z for i-steps ahead with i € Z; y_1). Moreover,
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Figure 3: Reduction of a disturbance fan (left) of equally probable scenarios into a rooted scenario-tree
(right).

2k (62) 2 Fél 54 (1 — %), where n. € Z>1 is the number of total individual state constraints along the
() Badi+i e =

prediction horizon, i.e., n. = r,N. Since n. depends not only on the number of state constraints r, but also

on the value of N, the decomposition of the original joint chance constraint within the MPC algorithm could

lead to a large number of constraints. This fact reinforces the use of a fixed risk distribution policy for DWN

control problems, in order to avoid the addition of a large number of new decision variables to be optimized.

Remark 2 [t turns out that most (not all) probability distribution functions used in different applications,
e.g., uniform, Gaussian, logistic, Chi-squared, Gamma, Beta, log-normal, Weibull, Dirichlet, Wishart, among
others, share the property of being log-concave. Then, their corresponding quantile function can be computed
off-line for a given risk acceptability level and used within the MPC convex optimization. O

4.2 TB-MPC

CC-MPC might be conservative if the probabilistic distributions of the stochastic variables are not properly
characterized or do not have a log-concave form. Therefore, this section presents the TB-MPC strategy
that relies on scenario trees to approximate the original problem, dropping Assumption 5. The approach
followed by TB-MPC is based on modelling the possible scenarios of the disturbances as a rooted tree, as
seen in Fig. 3. This means that all the scenarios start from the same measured disturbance value. From
that initial point, the scenarios must remain equal until the point in which they diverge behaving differently.
This point is called a bifurcation point, as described in [27]. Each node of the tree has a unique parent and
can have many children. The total number of children at the last stage corresponds to the total number of
scenarios. The probability of a scenario is the product of probabilities of each node in that scenario. Recall
that a large number of scenarios might improve the robustness of the TB-MPC approach but at the cost
of additional computational burden and economic performance losses. Hence, a trade-off must be achieved
between performance and computational burden.

Notice that before a bifurcation point, the evolution followed by the disturbance cannot be anticipated
because different evolutions are possible. For this reason, the controller has to calculate control inputs that
are valid for all the scenarios in the branch. Once the bifurcation point has been reached, the uncertainty is
solved and the controller can calculate specific control inputs for the scenarios in each of the new branches
[39]. Hence, the outcome of TB-MPC is not a single sequence of control inputs, it is a tree with the same
structure of that of the disturbances. Only the first element of this tree is applied (the root) and the problem
is repeated in a receding horizon fashion.

The easiest way to understand the optimization problem associated to TB-MPC is to solve as many
instances of Problem (6) as the number N, € Z, of scenarios considered, but formally it is a multi-stage
stochastic programming problem that should be and solved as a big optimization problem for all the scenarios.
Due to the increasing uncertainty, it is necessary to include non-anticipativity constraints [40] into the MPC



formulation so that the calculated input sequence is always ready to face any possible future bifurcation in
the tree [41]. TB-MPC constrains the control inputs relative to a scenario and its parent from the root at
time instant k to the branching point. In this sense, it is necessary to define the tree structure, at each time
step k over the horizon N, by means of two functions for each scenario: a parent function P(-), defined from
Zp, N, to Zpy N, which indicates from which scenario it branches out; and a branching point function Bp(-),
defined from Z; n,) to Zjg r4+n), Which indicates the time when the scenario emerges as different from its
parent. For more details, see [27] and references therein.

More specifically, if dff = {de RIS .,dgﬂ\,‘k} and d? = {d2|k7dz+1|k7 ... ,d2+N|k} are two distur-
bance sequences corresponding respectively to the forecast scenarios a,b € Z; n,], then the non-anticipative

constraint uy ;. = i, must be satisfied whenever the parent of the scenario a was b, that is P(a) = b,

and the scenario a has+not emerged yet at time instant k + i, i.e., k +14 < Bp(a) for any i € Zy ] in order
to guarantee that for all j € Z; y,j the control input sequences 0 = {ﬂi+i|k}ieZ[O,N_1] do not depend on the
unobserved stochastic variables, as established in [22].

In this way, the TB-MPC controller should solve the following optimization problem at each time instant
k € Z., accounting for the N, demand scenarios, each with probability p; € (0, 1] satisfying Z;V;1 p; =1:

N, N—-1
min > P (Z bk + i’xiwlk’%ﬁlk)) ’ (19a)

Yo =1 i=0

subject to:
Thpiiie = ATy e + Bl + Bady (19b)
x?@+i+1|k €X, (19¢)
Uy yap € Ut (194d)
l‘i‘k = Tk, d?c\k = dk, (196)
—a - P(a) = b,
Ujp gy = “Z-&-ilk when { 1 S_)Z < Bp(a) Va,b € Zp,n,), (19f)

for all i € Zjg, 1) and all j € Zj v, where U], £ {@/ € R™ 7| HPM@/ < h — HPMad]_,}.

Remark 3 In practice, Problem (19) can be solved more efficiently by using a transformation matriz that
removes the redundancy of the optimization wvariables due to non-anticipative constraints (19f). In this
manner, the number of optimization variables and constraints decrease [/2]. O

The control signal is the same for all scenarios at the current time step since these scenarios start with
the measured disturbance and equality constraints are formulated. The optimization problem meets these
constraints and computes the control input under economic policies. If the solver is not able to calculate the
control inputs by infeasibility, these equality constraints can become soft-constraints and penalize deviations.
In addition, note that uncertainty spreads with time, i.e., the estimation of the disturbances at the first time
instant can be carried out with a certain degree of accuracy. Scenarios tend to diverge with time because the
uncertainty grows as well.

Remark 4 Another way to solve the optimization problem in (19) is to treat each scenario independently by
considering distributed optimization and attain a coordinated solution using a distributed control scheme, as

shown in [/1]. O

4.3 MS-MPC

The optimization based on scenarios provides an intuitive way to approximate the solution of the stochastic
optimization problem. The MS-MPC approach can be implemented similarly to the TB-MPC. The difference
between both approaches is that while TB-MPC calculates as many control sequences as scenarios considered,
MS-MPC optimizes a single control sequence valid for all the scenarios.
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The MS-MPC approach is computationally efficient since its solution is based on a deterministic convex
optimization, even when the original problem is not [43]. Thus, a stochastic optimization is solved in a
deterministic way. One of its advantages is that it is possible to calculate the risk acceptability level (0, ) of
constraint violation as a function of the number of scenarios considered for any violation level v € [0, 1] [28].
In particular, the probability of the predicted states to satisfy the constraints is given by

Plzi, € X, VieZ)y ' >1-4,, (20a)

where

5y = /Ol[min{l, (R o 1) Rffl (?)w‘u o) KT}y, (20b)

j=0
As it can be seen, the risk acceptability level §, is a function of K € Z, that establishes the total number of
scenarios generated that represent the evolutions of the water demand, R € Z that represents the number of

discarded scenarios (R < K), and p; which is a parameter related to the algebraic properties of the problem
[43]. Notice that Ny = K — R, that is, the number of scenarios considered in the FHOP.

Remark 5 Note that the calculation of probabilistic bounds for TB-MPC' is beyond the scope of this work.
However, given that the performance of TB-MPC is better than that of MS-MPC (the controller is executed
in closed loop from a control viewpoint in TB-MPC), the same probabilistic bounds could be used for both,
MS-MPC and TB-MPC, at least as a practical rule. O

The MS-MPC controller should solve the following FHOP, accounting for the Ny € Z, scenarios:

N, N-1
min > P (Z Uk +i7xfc+ikaﬂk+z‘k)> ; (21a)

U =1 i=0
subject to:
j A o 5
Thvirtje = ATy T Blkrik + Bady gy (21b
Tipiprn €5 (21c

'L~Lk+”k S ®k+i7 (21(1

)
)
)
mi‘k = Tk, dilk = dy, (21e)

for all © € Zjg ny_17 and all j € Z; n,), where p; is again the probability of occurrence of each considered
scenario [17].

It should be noticed that this approach reduces the number of decision variables in the FHOP compared
to the TB-MPC approach, but it might increase the computational time since having less degrees of freedom
increases the complexity of complying simultaneously with all the considered scenarios.

Remark 6 One way to address the complezity of the MS-MPC' optimization problem is to follow the ideas
presented in [17, 44], where only three disturbance scenarios are considered, i.e., the best, the worst and the
average case, each one with its probability of occurrence. This is a practical way to relax the computational
burden. O

In this paper, the simplification highlighted in Remark 6 is adopted. In this way, the MS-MPC approach
considers the solution of (21) with N, = 3.

5 Results

The formulation of the SMPC problems for the case studies considered in this paper addresses the design of a
control law that (i) minimizes the economic operational cost, (ii) guarantees the availability of enough water
to satisfy the demand and (iii) operates the network with smooth variations of the flow through actuators.
These objectives can be expressed quantitatively by the following performance indicators? for all time steps

2The performance indicators considered in this paper may vary or be generalized with the corresponding manipulation to
include other control objectives.
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k€Z+Z

Cp (g, Uk Cu k) = clkWe U At, (22a)
_ TW, — if <
Cs(xp; sp) = {2k = 1) T Walow = si) if o = (22b)
0 otherwise,
(a(Ady) 2 ATl Wag Ay (22¢)

The first objective, g (g, Uk; cu k) € R>o, represents the economic cost of network operation at time step
k, which depends on a time-of-use pricing scheme driven by a time-varying price of the flow through the
actuators c, i £ (c1+cok) € R:’_ﬁq, which in this application takes into account a fixed water production
cost ¢; € R and a water pumping cost cz x € R that changes according to the electricity tariff (assumed
periodically time-varying). All prices are given in economic units per cubic meter (e.u./m?®). The second
objective, £s(x;sk) € Rxq for all k, is a performance index that penalizes the amount of water volume
going below a given safety threshold s, € R"™ in m®, which is desired to be stored in tanks and satisfies
the condition zpyin < s < Tmax. Note that this safety objective is a piecewise continuous function, but
it can be redefined as {g(&x; Tk, Sk) £ f;—WS &k, accompanied with two additional convex constraints, i.e.,
xp > s — & and § € R, for all k, being £ a slack variable. The minimal volume of water required
in a tank is given by its net demand, hence, s, = —B,dj, for all k. The last objective, {a(Aty) € Rxq,
represents the penalization of control signal variations Ady, £ 4y — tGp—1 € R™ 9. The inclusion of this
latter objective aims to extend actuators life and assure a smooth operation of the dynamic network flows.
Furthermore, W, € ST, W, € S, and Wag € S’/ are matrices that weight each decision variable in
their corresponding cost function.

To achieve the control task, the above predefined objectives are aggregated in a multi-objective stage cost
function, which depends explicitly on time due to the time-varying parameters of the involved individual
objectives. The overall stage cost is defined for all k € Z as

Uk, gy g, €)= MLE (T, Tk Cuk) + A2la (Adiy) + Asls (€ Tk Sk)s (23)

where A1, A2, A3 € R, are scalar weights that allow to prioritize the impact of each objective involved in the
overall performance of the network. These weights are assumed to be fixed by the managers of the DWN.

Numerical results of applying the three different SMPC approaches (CC-MPC, TB-MPC and MS-MPC)
to the Barcelona DWN case studies are summarized in Tables 1, 2 and 3.

Simulations have been carried out over a time horizon of eight days, i.e., ny, = 192 hours, with a sampling
time of one hour. The patterns of the water demand in this paper were synthesized from real values measured
in the considered demand of the Barcelona DWN between July 23" and July 27¢", 2007. Initial conditions,
i.e., source capacities, initial volume of water at tanks and starting demands, are set a priori according
to real data. The weights of the cost function (23) are Ay = 100, Ay = 10, and A3 = 1; these values
allow to prioritize the impact of each objective involved in the overall performance of the network. The
prediction horizon is selected as N = 24 hours, due to the periodicity of disturbances. The formulation of
the optimization problems and the closed-loop simulations have been carried out using MATLAB R2012a
(64 bits) and CPLEX solver, running in a PC Core i7 at 3.2 GHz with 16 GB of RAM.

The key performance indicators used to assess the aforementioned controllers are defined as follows:

24 =
P, L2

Yo, ng’ (24a)

k=1
Oy 2| {k € Zpp, | 2k < —Bydy} |, (24b)
3 =Y > max{0, —Byiydi — 7r(n } (24c)

k=11i=1

1 &
Oy — ) 24d
* N kZ::l ko (24d)

where @, is the average daily multi-objective cost with ¢ given by (23), @2 is the number of time instants
where water demands are not satisfied, ®3 is the accumulated volume of water demand that was not satisfied
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Table 1: Comparison of the CC-MPC, TB-MPC and MS-MPC applied to the sector model of the DWN.

CC-MPC | TB-MPC | MS-MPC

g B BBy By | B By Py Dy N| B DBy by N, 0
5830714 0 0  1.2548 5

0.3 58535.80 0 0 0.0919|58515.40 1 0.4813 1.9701 10 |60831.33 0 0 16.1547 107 0.3
58589.15 1 4.155 3.0145 14
5851537 0 0  3.2218 19

0.2 58541.19 0 0 0.707 |58678.12 2 0.7443 7.5362 38 |69342.48 0 0 17.2401 129 0.2
58647.27 4 4.0329 27.0914 75
58705.28 1 0.2136 35.6572 107

0.1 58558.29 0 0 0.716 |58713.15 0 0  42.7024 129]66011.29 0 0 21.7521 149 0.1
58761.98 0 0  54.4587 149

over the simulation horizon n,, and ®,4 is the average time in seconds required to solve the MPC problem at
each time instant k € Zy -

The effect of considering different levels of joint risk acceptability was analysed for the CC-MPC approach
using 6 = {0.3,0.2,0.1}. In the same way, the size of the set of scenarios selected for the MS-MPC is
established by using (20) to guarantee the same risk levels of the CC-MPC approach. In this way, the total
number of scenarios that represents the evolution of the water demand in the considered simulation time
for the MS-MPC was K = 192. Likewise, the TB-MPC approach was applied considering different sizes for
the set of reduced scenarios, i.e., N, = {5,10,19,38,75,107,129,149}. The last three N, scenarios allow to
compare the behaviour between MS-MPC and TB-MPC, while the remaining scenarios were used to analyse
the performance with respect to a small number of scenarios.

Table 1 summarizes the results of applying the SMPC approaches to the sector model of the Barcelona
DWN presented in Fig. 1. The different values of § in the CC-MPC approach highlight that both reliability
and control performance are conflicting objectives, i.e., the inclusion of safety mechanisms in the controller
increases the reliability of the DWN in terms of demand satisfaction, but also the cost of its operation. The
main advantage of the CC-MPC is its formal methodology, which leads to obtain optimal safety constraints
that tackle uncertainties and allow to achieve a specified global service level in the DWN. Moreover, the
CC-MPC robustness is achieved with a low computational burden given that the only extra load is the
computation of the stochastic characteristics of disturbances propagated along the prediction horizon N. In
this way, the CC-MPC approach is suitable for real-time control of large-scale DWNs.

Regarding the TB-MPC and MS-MPC approaches, numerical results show that considering a larger
number of scenarios increments (in average) the stage cost while reducing the volume of unsatisfied water
demand. This might be influenced by the quality of the information that remains after the reduction
algorithms and, consequently, it affects the robustness of the approach being subject of further research.

The main drawback of the TB-MPC approach is the solution average time and the computational burden.
The implementation for all cases taking scenarios greater than N, = 149 was not possible due to memory
issues. Hence, some simplification assumptions as those used in [24] or parallel computing techniques might
be useful. Another way to address the problem generated by the computer effort is to use a MS-MPC
based on the three-scenarios approach, described in Subsection 4.3. At this point, the best, the worst and the
average disturbance scenarios were obtained by generating 100 different possible evolutions of the disturbance,
then they were lumped and averaged the 10 lowest, 10 highest, and 80 middle, respectively. It means that
the occurrence probabilities were established as 0.1, 0.1, and 0.8 for the best, the worst, and the average
disturbance scenario, respectively, as proposed in [17].

Additionally, Table 2 summarizes the simulation results of applying the studied SMPC approaches again
to the sector model DWN. The configuration of the controllers in this case is as follows: the CC-MPC with
a probability of risk of 5%, the TB-MPC reducing to N, = 3 branched disturbances, the MS-MPC based on
the three scenarios approach (i.e., best, worst and average), and the CE-MPC with an average disturbance.
On the one hand, the CE-MPC approach presents the lower cost but on the other hand it has problems
with the demand satisfaction. The TB-MPC approach presents a lower accumulated volume of unsatisfied

13



water demand compared with respect to the CE-MPC approach. The MS-MPC and CC-MPC approaches
are able to satisfy the water demand required by the consumers. The CC-MPC approach presents a better
performance regarding cost and computational time compared to the MS-MPC approach.

Table 2: Comparison of the MS-MPC, TB-MPC, CC-MPC and CE-MPC applied to the sector model DWN.
Controller d, by, By Dy

CC-MPC 585401.16 0 0 0.1069
TB-MPC 58425.59 1 1.2229 1.4235
MS-MPC 60567.62 1 0.6965 0.5314
CE-MPC 5832755 1 0.7411 0.1041

As for the second case study, Table 3 presents the results obtained after the application of the SMPC
approaches to the aggregate model DWN, as a way to show the strengths and weaknesses of each of the
aforementioned approaches applied to a larger system. For this reason, TB-MPC and MS-MPC with a
large number of scenarios, could not be applied due to memory issues. TB-MPC was implemented with
a reduction to N, = 3 branched scenarios. MS-MPC has been designed considering the three scenarios
(minimum, average and maximum) as explained in the previous case study. CC-MPC is applied to this
system with a risk probability of 5%. As it can be seen from the results, the TB-MPC approach does not
offer benefits in terms of satisfaction of water demand and computational time with this limited amount of
scenarios for the DWN aggregate model. MS-MPC presents encouraging results regarding demand satisfaction
and computational time well below that TB-MPC. MS-MPC approach presents a higher average daily multi-
objective cost and a computational time required to solve the FHOP around three times more regarding
CC-MPC. Furthermore, MS-MPC and CC-MPC, have a good performance with respect to water demand
satisfaction. Based on the obtained results, the CC-MPC approach offers better performance in terms of
demand satisfaction, computational time and, it presents the best behaviour with respect to the average
daily multi-objective cost (¢1) compared with the same indicator obtained with TB-MPC and MS-MPC
approaches.

Table 3: Comparison of the MS-MPC, TB-MPC, CC-MPC and CE-MPC applied to the DWN case study
for the aggregate DWN model.

Controller P, by P Dy

CC-MPC 1.4064-10* 0 0 0.9056
TB-MPC 1.4497-10* 20 18.81 8.48
MS-MPC 1.5267-10* 0 0 3.24
CE-MPC 1.2038-10* 23 5.211 0.8442

As expected, the SMPC approaches have a better performance indicators with respect to CE-MPC
approach, which does not take into account the stochastic nature of water demand in the formulation of
FHOP.

6 Conclusions

In this paper, three stochastic control approaches have been assessed to deal with the optimal operational
management of a DWN. The proposed stochastic control strategies are based on MPC which allows the
optimization of the objective function to ensure a reliable water supply in the most economic and safe way
by considering the uncertainty in the water consumption. Simulation results show that all the considered
methods require less than 1 minute to solve the optimization problem in each case, much shorter than the
sampling time of 1 hour. Hence, it is possible to choose an approach that shows the best performance in
terms of demand satisfaction, which is given by the number of time instants where water demands were not
satisfied and by the cumulated volume of non-satisfied water demand. In this sense, the results in this paper
show that CC-MPC is more appropriate when requiring a low probability of constraint violation, because
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the use of TB-MPC and MS-MPC implies the inclusion of a higher number of scenarios, which hinders the
application of these control strategies to large DWNs. However, the use of these scenarios-based approaches
may be very demanding in terms of computational time.

From a practical viewpoint, both TB-MPC and CC-MPC outperform MS-MPC. TB-MPC excels due
to its close-loop control capability and requires to build a tree to reproduce the main dynamics of the
disturbance [27, 45, 46]. CC-MPC improves the performance by allowing a probability of constraint violation
and requires considering a well-known behaviour of water user demand in terms of probability distribution.
Finally, MS-MPC is an alternative to cope with the uncertainty, which considers the possible evolutions of
the water demand modelled as scenarios, by using an open-loop forecasting of disturbances. A drawback that
presents this approach is its reduced capacity to be adapted to changes that the water demand could arise.
This may result in more conservative control inputs that increase the economic costs.

Each of the approaches described have their advantages and weakness. CC-MPC presents the best
computational time and economic costs against the need to take account of a probability distribution function
that represents the behaviour of the disturbances. TB-MPC and MS-MPC approaches are ways to solve
the stochastic optimization in a deterministic manner, but require a greater computational effort. Finally
TB-MPC and MS-MPC approaches can be implemented using a reduced number of scenarios at the cost of
lower robustness.
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