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Recently, there has been an increasing interest in studying large-scale distributed systems
in the control community. Efforts have been invested in developing several techniques wishing
to address the main challenges found in this kind of problems, for instance, the amount of
information to guarantee the proper operation of the system and the economic costs associated
to the required communication structure. Moreover, another issue appears when there is a large
amount of required data to control the system. The measuring and transmission processes, and
the computation of the control inputs make closed-loop systems suffer from high computational
burden.

One way to overcome such problems is to consider the use of multi-agent systems
framework, which may be cast in game-theoretical terms. Game theory studies interactions
between self-interested agents. Particularly, this theory tackles with the problem of interaction
between agents using different strategies that wish to maximize their welfares. For instance in [1],
the authors provide connections between games, optimization, and learning for signal processing
in networks. Other approaches in terms of learning and games can be found in [2]. In [3],
distributed computation algorithms are developed based on generalized convex games that do not
require full information, and where there is a dynamic change in terms of network topologies.
Applications of game theory in control of optical networks and game-theoretic methods for
smart grids are described in [4], [5], [6]. Another approach in game theoretical methods is
to design protocols or mechanisms that possess some desirable properties [7]. This approach
leads to a broad analysis of multi-agent interactions, particularly those involving negotiation and
coordination problems [8]. Other game-theoretical applications to engineering are reported in
[9].

From a game-theoretical perspective, it can be distinguished among three types of games:
matrix games, continuous games, and differential/dynamic games (see “The relationship among
matricial games, full-potential population games, and resource allocation problems”). In matrix
games (that generally use the normal form), individuals play simultaneously and only once, and
the decision is mainly based on a static terms. In this case, players or agents are individually
treated. Differently, in continuous games, players have infinitely many pure strategies [10], [11].
On the other hand, in dynamic games it is assumed that players can use some type of learning
mechanism that allows them to adjust the actions taken based on their past decisions. Basically,
it can be said that dynamic games are characterized by three main problems: i) how to model
the environment where players interact; ii) how to model the objectives of players; and iii)
how to specify the order in which the actions are taken and how much information each player
possesses. In this case, it is assumed that there are interactions between large number of agents
(which are usually unknown) [12].

Among these dynamic games, there exist the evolutionary game dynamics, which are
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dynamic processes that describe how the aggregate behavior of the agents changes over time [13].
Evolutionary game theory (EGT) was first studied by Fisher, while he was trying to explain the
approximate equality of the sex ratio in mammals [14]. However, it is said that the area bloomed
with the appearance of the seminal article The Logic of Animal Conflict by Maynard Smith and
Price in 1973, where the concept of evolutionarily stable strategy (ESS) was originally defined
[15]. Since then, several works have been published mainly in biology [16], [17] due to the
usefulness of the ESS concept to explain several behaviors that emerge in nature. However, there
exists another approach to understand EGT. This approach is based on the dynamic foundations
of the ESS concept, which were firstly introduced by Taylor and Jonker in 1978 providing
the replicator dynamics [18]. Later on, it was proved that the replicator nonlinear differential
equation can also be addressed from an economic perspective, using models in imitation among
populations of economic agents [13]. The combination of population games (which describe
strategic interactions among large number of small and anonymous agents) and a revision protocol
(which specifies how agents can choose and change strategies) leads to a dynamic process
describing the behavior of agents in time called evolutionary game dynamics [13]. Modeling
strategic interactions of agents in large-scale systems is more suitable from this perspective,
since the evolution of the agents behavior is better described by the differential equation that
captures this process [19].

Some applications of EGT in engineering problems can be found along different fields.
For instance, wind farms control [20], [21], multiple access control for communication systems
[22], cyber security [23], combinatorial optimization [24], bandwidth allocation [25], hierarchical
frequency control in microgrids [26], dispatch of electric generators [27], building temperature
control [28], constrained extremum seeking [29], and control of drinking water networks [30],
among others.

There are three main advantages of using EGT in engineering problems. The first
motivation is that the analogy between games and engineering problems is straightforward in
a large variety of cases. For instance, a control problem can be viewed as a game where the
available control inputs are associated to strategies, and the control objective is expressed in
terms of payoff functions. There are several examples of the aforementioned analogy in the
literature. For example, in [21], authors report the design of a power-wind farm control by
taking as strategies the axial induction factors of the wind turbines; in [31] and [32], authors
develop a controller to optimally distribute flows between different reservoirs in water systems,
which are taken as strategies into the underlying game.

The second motivation to use an EGT approach is the relationship between the solution of
a game given by a Nash equilibrium and the solution of optimization problems. In this regard, it
has been proven that, under certain conditions, the Nash equilibrium satisfies the Karush-Kuhn-
Tucker (KKT) first-order conditions of constrained optimization problems [13]. This property
has been exploited in many works such as [30], where distributed optimization problems are
addressed by using potential games and population dynamics. In [33], a general analysis of state-
based potential games is presented and the growing interest in the application of game-theoretic
methods to the design and control of multi-agent systems is discussed.

Finally, the third motivation for using an EGT approach is that the solution of games
can be obtained by employing local information [34], [35]. In [20], local rules are designed
in order to achieve a global objective. Additionally, in [36] the issue of dealing with coupled
constraints is solved by decoupling such constraints using local rules. Therefore, if a game
framework is applied to address an engineering problem, distributed methodologies emerge. This
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feature is quite relevant since nowadays the complexity of systems is increasing permanently,
which makes the implementation of centralized approaches expensive or even infeasible. In this
regard, the appealing features of distributed population dynamics can be exploited in several
applications. For instance, it has been shown that distributed population dynamics can be used
in the design of constrained optimization algorithms and in the synthesis of control systems
for problems requiring non-centralized schemes. Compared to other distributed techniques such
as dual decomposition methods [37], the implementation of distributed population dynamics
does not need the inclusion of a centralized coordinator. This key property reduces the cost of
the required communication infrastructure. Furthermore, some families of distributed population
dynamics (for instance, distributed replicator dynamics and distributed Smith dynamics) naturally
address nonnegativity constraints that emerge in a variety of problems due to physical limitations
(for instance, in scheduling problems, the time allocated to each task cannot be negative).
Although nonnegativity constraints are tackled in other distributed approaches by means of
barrier functions, it is known that the use of those functions carries out some problems related
to the convergence rate and the accuracy of the solution, especially for large-scale problems
[38].

An outstanding advantage of distributed population dynamics compared to distributed
learning algorithms for normal-form games is that classic learning techniques fail in applications
that include constraints involving all the decision variables (this drawback has been pointed out
in [33]). Under this scenario, distributed population dynamics become a proper alternative since
their trajectories evolve towards the optimal solution satisfying a coupled constraint associated to
the mass of the population that is involved in the strategic game. This property can be exploited
for solving dynamic resource allocation problems.

One crucial engineering problem where dynamic resource allocation is paramount consists
in the design of a smart city (SC) [39]. An SC can be seen as an organic system that is in charge
of connecting and controlling different subsystems and components in order to have a perfect
behavior. In other words, the SC is like an intelligent control similar to the human being, which
must handle different services through a communication backbone [40]. Among the emerging
problems associated to such systems are those related with water and energy. In this article,
three emergent problems in SC are addressed: smart lighting, optimal economic dispatch in
microgrids, and control of urban drainage systems (UDS).

Lighting systems represent a high energy consumption in buildings, such that reaching
comfortable illuminance levels require distributed control strategies to deal with energy saving,
daylight harvesting, and cross-illumination effects. Then, with the adaptation of a population-
based methodology, limited power resources are split among lamps of several zones taking into
account local controllers exchanging information within a communication network and different
lighting environments.

On the other hand, the frequency control in microgrids is one of the fundamental problem
in the context of smart grids. In particular, the dynamical optimal dispatch of active power
of distributed generators is solved as a dynamic resource allocation problem using population
games. Conventional dispatch problem in power systems consists in either minimizing the total
generation cost or maximizing the total utility of all generators, while restrictions over both power
balance and generation capacity are satisfied [41]. Traditionally, the economic dispatch problem
has been solved by using static optimization algorithms [42], or direct search methods [43], which
operate off-line in a time interval between 5 minutes to 1 hour [37]. This traditional dispatch
algorithm requires a centralized controller with a high-bandwidth communication infrastructure
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as the number of nodes increase to handle information from each node within the distribution
system. Therefore, distributed control algorithms such as the distributed population games are
becoming promising approaches in the context of smart grids since they can be more robust
and resilient to network variations. To analyze the effects of the communication infrastructure
in the optimal dispatch algorithm, it has been proposed a distributed version of the replicator
dynamics algorithm to respond dynamically to the needs of the microgrid assuming that no full
information is available.

Finally, the real-time control design of UDS is challenging since these large-scale systems
involve a large number of states and control inputs. Besides, they are affected by exogenous
disturbances given by rain events. As a convenient and suitable solution, it is shown that the
control of UDS can be addressed as a resource allocation problem, and that the entire UDS
may be divided into several sub-systems locally controlled by using population-dynamics-based
strategies.

Population Games

Preliminary Concepts

Population games describe the strategic interaction of large populations of players.
Different from normal-form games, where players are individually treated, in population games
players are grouped in a continuum of mass denoted by m ∈ R>0. Thus, in this framework,
each individual of the population corresponds to a quantum of that mass. Besides, individuals
can choose their actions to play from a set of pure available strategies denoted by S. This set of
strategies is finite and, for convention, strategies are indexed using natural numbers. Hence, for
a game with n available strategies, the set of strategies is given by S = {1, ..., n}. For instance,
in the classic network-routing game, each element of the set S is associated with an available
route of the network. An assumption of population games is that all players have the same set
of strategies. However, it is worth noting that multiple set of strategies can be introduced in the
formulation of population games by using a framework known as multi-population (this topic is
out of the scope of this article).

Since in population games the number of players is large, strategy profiles are not
described by the actions of all players as is usual in normal-form games. In fact, strategy profiles
of population games are characterized by the distribution of the mass of players m among the
available strategies. For instance, in a game with two available strategies where exactly one half
of the population chooses the first strategy and the other half chooses the second strategy, the
strategy profile is given by (m

2
, m

2
). Strategy profiles of population games are called population

states. To formalize the notation of population states, the nonnegative scalars p1, . . . , pn are
defined, where pi denotes the portion of the mass of players that chooses the strategy i ∈ S .
Thus, the vector p = [p1, . . . , pn]> denotes the population state. The set of possible population
states, which corresponds to all possible distributions of individuals among the strategies, is
given by the following simplex

∆ =

{
p ∈ Rn

≥0 :
∑
i∈S

pi = m

}
. (1)

Individuals that choose the ith strategy to play obtain a reward that depends on the

September 16, 2016 DRAFT



4

population state. This reward is captured by a payoff function fi : ∆ → R (within the biology
framework, the payoff function is usually called fitness function). Hence, for a given population
state p, fi(p) specifies the reward associated with the strategy i ∈ S. A population game is
completely characterized by the payoff vector f : ∆ 7→ Rn, where f(p) = [f1(p), . . . , fn(p)]>.

As in normal-form games, Nash equilibrium is the most commonly used solution concept
in population games since in a Nash equilibrium each individual of the population is playing the
best possible strategy against a given population state. Formally, the concept of Nash equilibria
of population games is introduced in Definition 1.

Definition 1: Nash Equilibria (adapted from [13]). A population state p∗ ∈ ∆ is a Nash
equilibrium if each used strategy entails the maximum benefit for those players who choose it.
Equivalently, the set of Nash equilibria is given by NE = {p∗ ∈ ∆ : p∗i > 0 ⇒ fi(p

∗) ≥
fj(p

∗), for all i, j = 1, . . . , n}.
♦

According to Definition 1, if the population adopts a Nash equilibrium, individuals
cannot improve their benefit by changing their strategy. Therefore, under the assumption that the
individuals are rational (that is, they try to maximize their payoff), Nash equilibria are natural
candidates to be the output of a population game. In fact, a key result in game theory states that
every population game has at least one Nash equilibrium [13]. However, this fact does not imply
that populations involved in strategic interactions necessarily adopt Nash equilibria. Forthcoming
sections explore the conditions for guaranteeing convergence of the population state to a Nash
equilibrium.

Strategy-constrained interactions

Players of the population encounter each other and interact according to the framework
described above. Traditionally, these encounters do not depend on the strategies played by
the individuals. In other words, encounters between individuals playing the ith strategy and
individuals playing jth strategy are allowed no matter what i and j are (e.g., see Figure S1(a)).
Nonetheless, in the more general framework proposed in [44], interactions among players are
strategy-constrained.

Following the approach reported in [44], the strategy-constrained interactions can be
modeled by using an undirected graph G = {V , E}. The set of nodes V is associated with
the available strategies, that is, V = S, and the set of edges E ⊂ V × V describes the
allowed interactions between individuals playing different strategies. Hence, if (i, j) ∈ E , then
an individual playing strategy i can be matched with an individual playing strategy j. On the
other hand, if (i, j) /∈ E , then individuals playing strategies i and j cannot encounter each other
(for further details, the reader is referred to [44]).

Figure 1 shows the graph representation of two different interaction scenarios for the
same population. Notice that populations where interactions are not strategy-constrained are
represented by complete graphs since individuals playing any pair of strategies can encounter
each other. By contrast, populations under strategy-constrained interactions are represented
by non-complete graphs due to the fact that the encounter between individuals depends on
the strategies that these individuals are playing. In [44], strategy-constrained interactions are
employed to model local information structures.
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Population Dynamics

Nash equilibrium predicts the outcome of a population game. Different from this static
notion, there exists a framework capable to model not only the outcome of a population game,
but also the evolution of the population state along the time. This framework is called population
dynamics, and its fundamental input is the concept of revision protocol.

A revision protocol can be seen as a set of rules that allows the individuals to take
decisions. Specifically, a revision protocol establishes conditions under which an individual
changes its strategy. Formally, Definition 2 introduces the concept of revision protocol.

Definition 2: Revision Protocol (adapted from [13]). A revision protocol, denoted by ρ =
[ρij], is a map ρ : Rn×∆ 7→ Rn×n

≥0 characterized by the conditional switch rates {ρij : i, j ∈ S}.
Given a population state p and a payoff vector f(p), ρij(f(p),p) captures the switch rate from
the ith strategy to the jth strategy. ♦

The dynamical process induced by revision protocols can be described as follows: at
each time instant, an individual of the population is randomly selected and receives a revision
opportunity. If an individual playing the ith strategy is selected, it switches to the jth strategy
with probability proportional to ρij(f(p),p). Assuming that interactions among individuals of
the population are not strategy-constrained, the process described above is modeled with the
following dynamics

ṗi =
∑
j∈S

pjρji(f(p),p)− pi
∑
j∈S

ρij(f(p),p), for all i ∈ S, (2)

which correspond to the mean dynamics [13]. The first term of the right-hand-side of (2) models
the inflow of players to the ith strategy (that is, individuals that switch from other strategies to
the ith strategy), while the second term models the outflow of players from the ith strategy (that
is, individuals that change strategy i ∈ S by another strategy).

Summarizing, (2) models the dynamics of a population involved in a strategic game that
is using a given revision protocol. In this regard, different revision protocols produce different
population dynamics models. The most studied dynamics in the literature are listed below.

• The pairwise proportional imitation protocol ρij = pj[fj(p) − fi(p)]+, where [·]+ :=
max(·, 0), leads to the replicator dynamics, which are characterized by the following
differential equation

ṗi = pi
(
fi(p)− f̄

)
, for all i ∈ S, (3)

where f̄ := 1
m

∑n
j=1 pjfj(p) is known as the average payoff function. Replicator dynamics

were introduced by Taylor and Jonker in 1978 [18]. These dynamics are largely studied in
biology, being the first game dynamics used to describe evolutionary game theory. From
a biological point of view, replicator dynamics capture the natural selection process where
the size of the most successful populations (that is, those with a payoff higher than the
average) increases while the size of the less successful ones decreases.

• The pairwise comparison protocol ρij = [fj(p) − fi(p)]+ produces the Smith dynamics,
which are given by

ṗi =
n∑
j=1

pj [fi(p)− fj(p)]+ − pi
n∑
j=1

[fj(p)− fi(p)]+, for all i ∈ S. (4)
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The Smith dynamics were proposed by Smith in 1984 [45]. Smith used these dynamics
to describe traffic assignment, which is a class of congestion game that emerges in
transportation problems. Different from replicator dynamics, Smith dynamics satisfy Nash
stationarity. This latter concept means that the set of equilibrium points of the Smith
dynamics is equal to the set of Nash equilibria of the underlying population game.

• The logit choice protocol ρij = eη
−1fj(p)∑

k∈S
eη
−1fk(p)

, where η > 0 is known as noise level, generates

the logit dynamics

ṗi =
eη
−1fi(p)∑

k∈S

eη
−1fk(p)

− pi, for all i ∈ S. (5)

The logit dynamics, which are used to represent bounded rationality of players, were first
introduced by Blume in 1993 [46]. If η → 0, then players are completely rational, and they
only choose the best possible strategies under the current population state. Nonetheless, if
the noise level η increases, then players can choose strategies that are not best responses
(indeed, if η → +∞, individuals play strategies nearly at random). This last situation models
scenarios in which players have either a limited knowledge of the game or poor computation
capabilities [47].

• Finally, for population states belonging to the interior of the simplex ∆, the modified
pairwise comparison protocol ρij =

[fj(p)−fi(p)]+
pi

leads to the projection dynamics, which
are described by

ṗi =
n∑
j=1

(
fi(p)− fj(p)

)
, for all i ∈ S. (6)

Lahkar and Sandholm introduced the projection dynamics in 2008 [48]. These dynamics
are derived by means of geometrical considerations. In fact, the general expression of the
projection dynamics is given by ṗ = ΠT∆(p)(f(p)), where the right-hand-side term denotes
the orthogonal projection of the payoff vector onto the tangent cone of ∆ at p. In the
interior of the simplex ∆, this orthogonal projection is given by (6).

Distributed Population Dynamics

According to the mean dynamics in (2), it is needed to know the entire population state
and all the payoff functions to compute the changes of the proportion of individuals playing
the ith strategy. Thus, population dynamics derived from (2) require full information to evolve.
Nevertheless, in a large number of scenarios, full-information dependency is undesirable (due
to, for instance, privacy issues, size of systems, limitations on the communication infrastructure,
among others). In this situation, the procedure reported in [44] can be employed to relax the full-
information dependency of the classic population dynamics. Before introducing this procedure,
the following assumptions are required.

Assumption 1: Let G = {S, E} be the graph that describes the strategy-constrained
interactions of a population. Let pNi ∈ R|Ni|+1

≥0 be a vector formed by the elements of the
set {pj : j ∈ (Ni

⋃
{i})}, where Ni is the set of strategies that can interact with the ith strategy

following the graph G, that is, Ni = {j ∈ S : (i, j) ∈ E}. The payoff function associated with
the ith strategy only depends on pNi . To make explicit this dependence, the payoff function is
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written as fi(pNi).
Assumption 2: Let Assumption 1 hold. The conditional switch rate ρij only depends on

the payoffs fi(pNi), fj(pNj) and on the proportions pi, pj . To make explicit this dependence,
the conditional switch rate is written as ρij

(
fi(pNi), fj(pNj), pi, pj

)
.

The core of the framework developed in [44] to relax full-information dependency lies
on the mean dynamics for populations with strategy-constrained interactions. Since this kind of
interactions can be described by a graph G = {S, E} and provided that Assumptions 1 and 2
are satisfied, the corresponding mean dynamics are given by

ṗi =
∑
j∈Ni

pjρji
(
fj(pNj), fi(pNi), pj, pi

)
− pi

∑
j∈Ni

ρij
(
fi(pNi), fj(pNj), pi, pj

)
, for all i ∈ S.

(7)
Notice that to compute ẋi using (7), it is only required to know information associated

with the portions of population playing neighboring strategies. Hence, applying a revision
protocol that satisfies Assumption 2 in the mean dynamics for populations with strategy-
constrained interactions leads to obtain population dynamics that only use local information
to evolve, that is, distributed population dynamics. For instance, if the pairwise proportional
imitation protocol ρij = pj[fj(pNj) − fi(pNi)]+ is considered, then the following distributed
replicator dynamics are obtained

ṗi = pi

(
fi(pNi)

∑
j∈Ni

pj −
∑
j∈Ni

pjfj(pNj)

)
, for all i ∈ S. (8)

In the same way, the pairwise comparison protocol generates the distributed Smith
dynamics that are given by

ṗi =
∑
j∈Ni

pj
[
fi(pNi)− fj(pNj)

]
+
− pi

∑
j∈Ni

[
fj(pNj)− fi(pNi)

]
+
, for all i ∈ S. (9)

Properties of Population Dynamics

Population dynamics exhibit appealing features that can be exploited in engineering
applications. This section presents two fundamental properties of population dynamics: the
invariance of the simplex ∆ in (1), and the convergence of the trajectories of population dynamics
towards the Nash equilibria.

Simplex Invariance

In previous works such as [49], [13], it has been shown that the population mass m
is conserved over time under population dynamics. Furthermore, it has been proved that the
population state p remains nonnegative for these dynamics. Therefore, the simplex ∆ is invariant.
This property is formalized in Lemma 1.

Lemma 1: Simplex Invariance. Let ∆ be the simplex given in (1). If p(0) ∈ ∆, then
p(t) ∈ ∆, for all t ≥ 0 under both the standard mean dynamics (2) and the mean dynamics for
populations with strategy-constrained interactions (7).

Proof: A proof of this lemma can be found in [49], [13], [44]. The idea behind the proof
is sketched follows: first, mean dynamics satisfy mass conservation because they do not admit
neither birth nor elimination of individuals. Indeed, changes in the population appear due to
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switching of players among strategies. Second, mean dynamics guarantee nonnegativeness of
the population state. This property follows from the fact that, under mean dynamics, the fraction
of individuals playing strategy i only decreases due to switching of individuals to other strategies.
Therefore, if this fraction is null, migration is not possible.

Remark 1: Notice that, since all population dynamics are based on the standard mean
dynamics (2), it is possible to conclude that any class of population dynamics satisfies simplex
invariance. The same condition holds for the distributed population dynamics because they are
based on the mean dynamics for populations with strategy-constrained interactions (7). ♦

According to Lemma 1 and the definition of the simplex ∆ given in (1), population
dynamics satisfy both mass conservation and nonnegativity of the elements of the population
state p. To illustrate this result, consider the classic rock-paper-scissors game, for details of this
game see “Rock-paper-scissors game in a population with different types of interactions”. Figure
2 shows the trajectories of a population that is evolving according to the replicator dynamics
(Figure 2(a)) and Smith dynamics (Figure 2(b)). Notice that both replicator and Smith dynamics
keep the trajectories in the interior of the simplex ∆.

The property stated in Lemma 1 is crucial in many applications of population dynamics,
especially in those related to optimization and control, where the invariance of the simplex ∆
guarantees the satisfaction of a given constraint or even a set of constraints (see [44], [27], [26]).

Convergence to Nash Equilibria

Other key property of population dynamics is that, under some conditions, they evolve
towards the Nash equilibria of the corresponding population game. Although convergence
conditions cover several types of population games, this article focuses on full-potential games
since they may model a broad class of engineering applications; for instance, access control
in communication networks [22], bandwidth allocation [25], hierarchical frequency control in
microgrids [26], dispatch of electric generators [27], and so forth.

Before introducing the result on convergence to Nash equilibria, the definition of a full-
potential game is introduced.

Definition 3: Full-Potential Game (adapted from [13]). Let f : Rn
≥0 7→ Rn be a payoff

vector that characterizes a population game with payoffs defined on the positive orthant. If there
exists a continuously differentiable potential function V : Rn

≥0 7→ R that satisfies ∇V (p) = f(p),
for all p ∈ Rn

≥0, then f is a full-potential game. ♦
Roughly speaking, a full-potential game is a game whose payoff vector is equal to the gradient
of a potential function. Given a full-potential game, Theorems 1 and 2 establish conditions for
guaranteeing the convergence of the population state to Nash equilibria under different population
dynamics.

Theorem 1: If f is a full-potential game with strictly concave potential function, f has a
unique Nash equilibrium p∗. Moreover, if p(0) ∈ int∆, where int∆ = {p ∈ Rn

>0 :
∑n

i=1 pi = m},
then p(t) asymptotically converges to p∗ under replicator dynamics, Smith dynamics, and
projection dynamics.

Proof: A proof of this theorem can be found in [13]. It is worth noting that replicator
dynamics have other equilibrium points different from the Nash equilibrium of the game.
However, these equilibrium points are not stable.

As shown in Theorem 2, a similar result is obtained for distributed population dynamics.
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Theorem 2: Let f be a full-potential game with strictly concave potential function.
Furthermore, assume that the unique Nash equilibrium of the game p∗ belongs to the interior
of the simplex ∆, that is, p∗ ∈ int∆. If p(0) ∈ int∆ and the graph that describes the
strategy-constrained interactions among the individuals of the population is connected, then p(t)
asymptotically converges to p∗ under both the distributed replicator dynamics and the distributed
Smith dynamics.

Proof: A proof of this theorem can be found in [44].
Summarizing, under appropriate initialization, convergence to Nash equilibria is guaran-

teed for full-potential games whose potential function is strictly convex. In the case of distributed
population dynamics, additional conditions are required. These conditions are related to the
location of the Nash equilibrium inside the simplex ∆, and the connectivity of the graph that
models the strategy-constrained interactions of the individuals within the population.

Convergence properties of population games have been exploited in engineering applica-
tions during the last few years (see [29], [30] and references therein). This fact is mainly given
since there exists an equivalence between the Nash equilibria of a full-potential game and the
arguments that maximize its potential function. Figure 3 illustrates this property by showing
the convergence of the population state (whose evolution is depicted in black solid line) to the
Nash equilibrium of a full-potential game under replicator dynamics and distributed replicator
dynamics. Notice that the Nash equilibrium matches the argument that maximize the potential
function.

In conclusion, if the payoff vector is selected in a proper way, that is, as the gradient
of an objective function V (p), population dynamics become a constrained optimization method
where the constraint is given by the simplex ∆. Indeed, this feature has been employed in
recent research, such as in [50], [27]. In this works, the authors seek to maximize certain
criteria subject to the simplex constraint, which represents a resource restriction in most of the
considered engineering problems. Besides, it is worth noting that the application of population
dynamics is not limited to static optimization. Indeed, these dynamics have been used to design
time-varying adaptive controllers based on extremum seeking architectures [29], [25]. Once the
preliminary concepts of population dynamics have been introduced as well as the properties
exhibited by these game-theoretical approaches, three applications within the context of smart
cities are presented and discussed. The control design for the three aforementioned applications
is addressed by using the population dynamics while exploiting their stability and invariance set
properties.

Engineering Applications

Lighting Systems

One of the main tasks in building automation is the efficient use of energy resources due
to the high building consumption, which is around 70% of the electricity produced in developed
countries [51]. In particular, lighting systems account for a significant energy usage with a 25%
and a 12% in commercial and residential sectors, respectively [52], representing about 7% of
the global CO2 emissions by the flaring of fossil fuels to produce electricity [53].

Modern lighting has a large potential for energy savings using different strategies
such as occupancy sensors, daylighting, and other control and regulation systems, decreasing
consumption between 24% to 38% [54]. However, since illumination is related to people welfare
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and productivity, appropriate lighting controllers must also provide comfortable and uniform
lighting levels in the environment. Recent developments in efficient lamps, dimmable actuators,
light sensors, wireless communication devices, and reduced embedded controllers allow designing
distributed strategies to deal with the challenges of new lighting systems.

Lighting control techniques cover a wide range of applications, from conventional
methods to advanced implementations of intelligent techniques and agent-based controllers [55],
where the suitable use depends on the environment features. In this sense, advances in building
designs and networked sensor-actuator systems have motivated the development of techniques
based on hierarchical structures [56], systems with novel decentralized integral controllers [57],
and wireless sensors with optimization algorithms [58], to deal with the energy efficiency and
provide comfort to the occupants.

The implementation of successful control strategies in large systems, such as office
buildings, requires the division of the environment in zones with local controllers acquiring and
processing information in a communication network. When the number of sensors and actuators
increase, most of the centralized techniques become inefficient, while distributed strategies with
limited information are robust to packet loss while reducing the computational cost of the control
techniques [59]. To control the illuminance in large-scale systems, it is presented and discussed
a resource allocation strategy based on the distributed replicator dynamics to obtain desired
illumination levels, taking into account a limited amount of energy and the network topology
defined by the local exchange of information among the controllers. This methodology is applied
in the experimental testbed reported in [57] to show the appropriate management of cross-
illuminance, daylighting, and energy saving.

Modeling light-propagation effects to calculate the illuminance at each point of an
environment is a complex task that is usually performed by using specialized software tools
[60]. Nevertheless, the room conditions are relaxed here assuming the lamps as punctual light
sources and small area sensors. Besides, assuming that the light emission of each lamp has the
same intensity in a broad solid angle (as in incandescent or fluorescent lamps) and that the sets
lamp-ballast are fully dimmable, the illuminance perceived by the ith sensor due to the jth lamp
can be expressed by

Eij =
kjvj
d2
ij

,

where vj is the voltage applied to the lamp j, dij is the distance between the ith sensor and the jth

lamp, and kj is a positive constant depending on the lamp characteristics (luminous efficiency
and effective illuminance solid angle, among others [61]). Then, different cross-illuminance
conditions can be obtained by modifying kj . The total illuminance measured in the ith zone of
a room split into n zones is given by

Ei(p) =
n∑
j=1

Eij =
n∑
j=1

kjvj
d2
ij

. (10)

The illuminance at each zone depends on all the voltages applied to the lamps. This condition
makes the resource allocation problem difficult since changes in a certain voltage affect directly
all the output variables.

On the other hand, the system communication network is modeled by an undirected graph
G = (V , E), where the node set V is given by local controllers at each lighting zone, and the
edges set E is given by the communication links for bidirectional information exchange.
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Lighting Control

To obtain a desired illumination in a lighting system with n zones, the resources to be
managed are the voltages applied to the lamps. Therefore, according to the population-game
theory (Table 1), the population state is analogous to the voltage vector v = [v1 v2 . . . vn]>, the
strategy set is given by the illumination zones, and the population mass is the limited voltage (or
power) available in the system, which is denoted as Vtot > 0. Besides, given the communication
constraints, an appropriate distributed control can be performed by the distributed replicator
dynamics described in (8).

However, the invariance of the simplex ∆ is not an advantage in this case. With this
property, if v(0) ∈ ∆ then

n∑
i=1

vi = Vtot

is ensured for all time. Notice that even when Vtot is large and the setpoints are small (references
are achieved with only a portion of the total resources), Vtot is still split among the n lamps. In
consequence, the setpoints cannot be reached and the appropriate resource constraint is

n∑
i=1

vi ≤ Vtot. (11)

To solve this problem, a fictitious zone is added to the lighting environment to act as a surplus
variable in the resource allocation. It is worth noting that the remaining power is not applied
to any lamp and the desired illumination is obtained only with the required voltage. Then, an
extended population state padd ∈ Rn+1

≥0 is defined as

padd = [p1 p2 . . . pn pn+1]>,

and the simplex
∆add = {padd ∈ Rn+1

≥0 : 1>n+1padd = m}

is still invariant under the dynamics in (8) with the addition of a new strategy to the game
[50]. However, the network topology must be also modified defining the augmented graph
Gadd = (Vadd, Eadd), where Vadd = V

⋃
{n + 1} and Eadd is the union of the original set

of edges E with at least one pair (i, n+ 1) for some i = 1, . . . , n. In other words, the fictitious
zone is attached to the original network with links to real nodes to preserve the connectedness
of the new graph.

With these conditions, the required constraint (11) is now satisfied. Moreover, the
equilibrium point for the extended dynamics is the same defined by the payoff equality (including
the fictitious zone)

f ∗i = f ∗j , for all i, j ∈ Vadd. (12)

Taking advantage of this property, the control goal for the lighting system is achieved if the
payoff functions are defined depending on the tracking error between the illuminance measured
in each zone (Ei) and the setpoint (Eseti). Then, the payoffs are given by

fi = B + Eseti − Ei, for all i = 1, . . . , n (13)

fn+1 = B, (14)
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where B > 0 is a large enough constant to guarantee that fi > 0, satisfying the payoff conditions
in biological population dynamics. Therefore, at the equilibrium, f ∗i = B, and the tracking error
becomes zero at each zone (Eseti − E∗i = 0, for all i). Notice that the definition of the payoff
function in the fictitious zone determines the equilibrium value of the rest of payoffs and allows
the distributed replicator dynamics to obtain the desired illuminances. It is also remarkable that
the achieved steady state is the unique Nash equilibrium according to the properties of the
replicator dynamics [49], taking into account surplus resources, decreasing payoff functions, and
connected graphs for the resource allocation process.

In most application cases of evolutionary game theory [49], as well as in behavioral
ecology [62], the payoffs of the players are decreasing to ensure stability of the equilibrium
points, that is, the more individuals sharing the same strategy, the smaller the payoff. In
the lighting model, if the illuminance Ei in (10) is replaced into (13), the real payoffs
fulfill this requirement. Besides, with certain conditions over the environment and appropriate
initial conditions (padd(0) ∈ ∆add), the asymptotic stability of the equilibrium point (12) is
demonstrated in [50] with a locally-Lipschitz Lyapunov function.

Testbed Application Cases

The application of the designed strategy is shown in two different environments of the
testbed in “An experimental testbed for lighting systems”.

Divided Environment: The control objective in this case is to obtain a uniform illuminance
for all zones (Eseti = Eset, for all i = 1, 2, . . . , 8). To show the influence of the communication
network, two topologies are chosen to indicate the information exchange among local controllers
(including the fictitious zone denoted by FZ). The extended graphs (Gadd) for the application of
the distributed replicator dynamics are presented in Figure 11. It is worth remarking that the
fictitious zone does not represent a real controller in the system, but some extra software tasks
in one of the controllers where the FZ is attached to. Nevertheless, a communication channel is
needed between the nodes with links to FZ (if there exists already a link, no modifications are
required in the original network).

Figure 12 presents the results of the control process. Dashed and solid lines for cases 1
and 2, respectively, show the behavior of the measured illuminance in each sensor (right axis
and black lines), and the voltage applied to each lamp (left axis and blue lines). The setpoint
(red-dotted line) is achieved in all the zones after an initial transient period, according to the
expected results. Given that zones are uneven, the required power at each lamp is different in
order to obtain the uniformity in the environment.

To simulate the influence of the daylight, in t = 40 s an external light is applied to the
environment through a window close to zones 7 and 8 (see Figures 12(d), and 12(h)). It is shown
that the resources are reallocated to react against the disturbance and to reach again the setpoint.
Voltages applied to the lamps are reduced taking advantage of the daylighting, representing better
use the available resources and energy savings. Notice that the reduction on the necessary power
to maintain the desired illuminance is significant and zones 7 and 8 are the most affected by the
disturbance. At t = 60 s, the window is closed and the correction on lamp voltages allows the
system to achieve again the setpoint.

The closeness of the fictitious zone to certain nodes influences the transient behavior.
In the first case, zones 7 and 8 presented in Figures 12(d) and 12(h), respectively, reach the
equilibrium point faster than the farther zones, while in the second case, zones 1 and 8 are the

September 16, 2016 DRAFT



13

fastest ones. With the definition of the payoff in FZ, this node has relevant information about the
equilibrium state. Therefore, closer zones need less time to access this data across the network
and their dynamics are faster.

Open Environment: The uneven cross-illumination effects are enhanced in this envi-
ronment and the high variable couplings represent a more challenging control problem with
interesting results. The desired reference in this case changes from Eset = 6 V (during the first
100 s) to Eset = 5 V (from t = 100 s to t = 200 s), and finally it is set to Vset = 5.5 V for the
last 100 s. As in the divided environment, all zones have the same illuminance setpoint and the
network topologies are given by the graphs shown in Figure 11.

Results for the first topology are presented using dashed lines in Figure 13. Although the
total power resources are enough, the desired tracking is only achieved in zones 7 and 8 (see
Figures 13(d) and 13(h)), which are connected to the fictitious zone. In the rest of zones, the
illuminance does not reach the setpoints. It is remarkable that even though the voltages applied
to the lamps 5 and 6 drop to zero (see Figures 13(c), and 13(g)), their illuminance is higher than
the desired setpoint. This absence of resources in certain zones is known as truncation [62] and,
in population-games terms, represents strategies with no population shares. Taking into account
the network topology, these truncated zones are nodes whose participation in the information
exchange is depleted and, in consequence, the graph may become disconnected. This situation
is illustrated in Figure 14(a), where the truncation of nodes 5 and 6 splits the graph into two
separated components.

The truncation in central zones allows the position of the fictitious zone to determine
the connectivity of the graph, which is a necessary condition to perform the resource allocation
process [63]. For instance, in the network topology for case 2 (Figure 14(b)), the resulting graph
is still connected due to the attachment of FZ. In consequence, as it is shown using solid lines in
Figure 13, all untruncated nodes achieve the setpoints since the resource allocation is performed
over the resulting graph including all zones (except the truncated ones). However, due to the
cross-illumination effects, the illuminance in zones 5 and 6 is high even when their lamps are
turned off.

With the distributed replicator strategy, the light influence among zones provides an
opportunity to save energy taking into account a robust network topology to avoid the formation
of insulated components in the graph. Therefore, the location of the fictitious zone is a key factor
for the graph robustness given that the connections of this new node affect the graph topology.
Hence, defining the neighborhood of FZ becomes a design parameter that may connect different
components in a room, distant environments such as different floors in buildings, or increase the
connectedness in weak graph topologies.

Smart Grids

The potential of the population dynamics approach for solving a fundamental problem
that arises in smart grids is now presented and discussed. In particular, the optimal dispatch of
active power of distributed generators (DG) is solved as a dynamic resource allocation problem.
Conventional dispatch problem in power systems consists in minimizing the total generation cost
or in maximizing the total utility of all generators, while the restrictions on power balance and
generation capacity are satisfied [41]. Here, the maximization of utility functions is adopted.
Traditionally, the economic dispatch problem has been solved by static optimization algorithms
[42], or direct search methods [43], which operate off-line in a time interval between five minutes
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to one hour [37]. However, changing environments need new control tools for the management
of distribution systems.

The solution of the optimal dispatch of active power of distributed generators as a dynamic
resource allocation problem based on population dynamics is first presented in [27] in the context
of microgrids. In this context, a microgrid is defined as a set of interconnected distributed
devices, for example generators and loads, which must cooperate with other elements in the
electric network to be collectively treated by the grid as a controllable load or generator. First,
it is considered the case where the dispatch algorithm is being executed at the central controller
of the microgrid. Then, a distributed version of the algorithm is presented, where the dispatch
algorithm is executed in a fully-distributed fashion at each distributed generator.

Dynamic Economic Dispatch Algorithm for Microgrids

A hierarchical dynamic management strategy is presented to deal with the main control
issues related with microgrids. Two control levels are considered. At the lower level of the
microgrid architecture, distributed generators connected to loads through an inverter are found.
The distributed generators are modeled as controllable voltage source inverters. The magnitude
and frequency of the output voltage are controlled by means of a droop-gain controller [64].
For more details about this approach the reader is referred to [26] and references therein. An
illustrative general scheme is presented in Figure 15 for a microgrid with seven distributed
generators (DG 1, DG 2, ..., DG 7) and several loads connected in a electrical topology adapted
from the IEEE 30-bus distribution system.

At the higher level of the microgrid control architecture, it is designed a control strategy
that dynamically dispatches active power setpoints. This controller has to generate the power
setpoints based on economic criteria. In this model, the production costs of active power and load
demands are considered as external inputs coming from the lower level control to the microgrid
central controller, where the dynamic dispatch based on replicator dynamics is being executed.
This fact implies that costs and load demands could be time-varying, allowing the inclusion
of renewable energy resources. The main focus here is on the higher level of the microgrid,
where the dynamic dispatch is executed. The maximization of utility functions for the economic
dispatch problem is adopted including active power generation by means of voltage source
inverter connected to distributed generators at a lower level. The economic dispatch problem
(EDP) can be formulated as follows

max J(p) =
n∑
i=1

Ji(pi),

such that
n∑
i=1

pi =
n∑
i=1

li = PD,

0 ≤ pi ≤ Pmaxi , for all i = 1, 2, ..., n,

(15)

where pi is the power setpoint for the ith DG, n is the number of DGs, li are the loads, PD is the
total load demanded by the microgrid, Pmaxi is the maximum generation capacity of the ith DG,
and Ji(pi) is the utility function of each DG. This utility function must be defined according
with the economic dispatch criterion [41], which states that all generation units must operate at
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the same marginal utilities, that is,

dJ1

dp1

=
dJ2

dp2

= · · · = dJn
dpn

= λ, (16)

for some λ > 0 such that
∑n

i=1 pi = PD. Based on the economic dispatch criterion (16), this
optimization problem can be solved using quadratic utility functions for each DG [27].

Population-Games Approach for Dynamic Dispatch in Microgrids

The population dynamics chosen in this work to deal with the EDP are the replicator
dynamics (3). The replicator dynamics is used to solve the EDP as a resource allocation problem.
Basically, n is defined as the total number of generators in the system and the ith strategy
corresponds to choose one of the n DGs in the microgrid. Each pi is the amount of power
assigned to each DG, and it corresponds to the proportions of individuals that choose the ith

strategy in S. To achieve an appropriate performance in steady state, the load demanded power
(PD) should be the sum of all power set-points, that is,

∑n
i=1 pi = PD. To guarantee the power

balance, the results presented in [65] are used, where the choice of f̄ = (1/PD)
∑n

i=1 pifi
guarantees the invariance of the constraint set ∆ in (1).

This result ensures that if p(0) ∈ ∆, then p(t) ∈ ∆, for all t ≥ 0. In other words, the
control strategy defines setpoints such that they guarantee the suitable balance between demanded
power and generated power by the DGs for all t > 0. This condition produces, in steady state,
a frequency deviation equal to zero and, in consequence, an adequate frequency regulation. In
order to include economical and technical criteria into the control strategy, the power dispatched
to each generator depends on a cost factor and the maximum power generation. An important
characteristic of the replicator dynamics is that its stationary state is achieved when the payoff
functions are all equal to the average payoff f̄ . This condition is the link between replicator
dynamics and the EDP, since it is equal to the economic dispatch criterion (16) choosing the
payoff function to be

fi(pi) =
dJi
dpi

, for all i = 1, 2, ..., n. (17)

Based on the economic dispatch criteria (16), which guarantee that the solution is optimal while
satisfying the constraints, these optimization problems can be solved using payoff functions as
marginal utilities based on the fact that all payoff functions are equal to f̄ . The selected payoff is
a function that increases (decreases) when the power is far (near) from (to) the desired setpoint.
In this form, the replicator allocates more (less) resources to those generation that have a payoff
that is above (below) the average. This behavior can be modeled using a logistic-type function
[66]. In general form,

f(y) = ry
(

1− y

K

)
,

where y is the independent variable, and K is a parameter known as the carrying capacity such
that y ∈ (0, K). The particular payoff functions related to the EDP use as parameters the nominal
power (as carrying capacity) and a generation cost factor (ci) of each DG. Then, according to
(17), the payoff functions of each DG are defined as

fi(pi) =
dJi
dpi

=
2

ci

(
1− pi

Pmaxi

)
, for all i = 1, 2, ..., n. (18)
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In addition, the fact of using all payoff functions as marginal utilities leads the population game
to be a potential game, which implies that Nash equilibria correspond to the Karush-Kuhn-Tucker
first-order necessary conditions [67]. The payoff functions in (18) lead to the following quadratic
utility functions for each DG in the optimal dispatch problem [27]

Ji(pi) =
1

ci

(
2pi −

p2
i

Pmaxi

)
, for all i = 1, 2, ..., n. (19)

On the other hand, if (3) is taken in steady state, that is ṗi = 0, and pi > 0, the equilibrium point
is an optimal point for the resource allocation related to a wide family of payoff functions [68].
This payoff function has been used in several works such as [27], [26], [69], among others.

Distributed Replicator Dynamics for Optimal Dispatch

The dispatch algorithm presented previously requires a centralized controller with a high-
bandwidth communication infrastructure as the number of nodes increases to handle information
from every single node along the distribution system. Therefore, distributed control algorithms
are becoming promising approaches in the context of smart grids since they can be more robust
and resilient to network variations. The replicator dynamics equation needs full information
from all the agents to calculate f̄ . The replicator dynamics can be understood as a multi-agent
controlled system, where each agent dynamics are described by (3), and the controller that
receives the state information of all agents is given by the average payoff. It has been assumed
that the communication between agents and the controller is ideal and that full information is
available, which sometimes in real implementations is not possible due to limitations induced
by the communication network. However, replicator dynamics as a network control system have
been shown independent of delays [70]. In addition, in [67] it is suggested that contractive
games admit global convergence results under evolutionary dynamics. To analyze the effects
of the communication infrastructure in the optimal dispatch algorithm, it has been proposed a
distributed version of the replicator dynamics algorithm to respond dynamically to the needs of
the microgrid assuming that no full information is available. A distributed replicator dynamics to
dispatch distributed generator over a communication topology in a microgrid is proposed based
on (8). The distributed replicator dynamics consider local information from the neighbors of a
given agent in an interaction network. In order to guarantee that the related optimization problem
can be solved, Assumptions 1 and 2 are considered.

Assumption 1. The communication graph between generation units is undirected and
connected.

Assumption 2. The Nash equilibrium p∗ belongs to the interior of the simplex ∆.
Assumption 1 implies that all generators are communicated. A neighborhood of agents

are necessary to calculate a local payoff function for each generator. Assumption 2 is related
to the problem feasibility. If the demand is lower than the capacity of the generators, then it
means that the total capacity of power generation is inside the simplex and the solution of the
optimization problem can be found. On the other hand, since the utility functions are concave
then the solution of the problem is unique. In addition, in steady state the balance condition is
satisfied.

The full-information constraint for the average payoff is modified to include the
communication graph between the generators. A communication infrastructure with limited
message passing can be effectively used among the multi-agent system. To guarantee the power
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balance, the results presented in [71] are used, where it is proven the invariance of the constraint
set ∆. The full-information constraint for the calculation of the original average payoff is relaxed
and the distributed replicator dynamics equation can be used to satisfy the network constraints in
the general EDP given by the topology of the graph. Some additional features of the distributed
replicator dynamics can be discussed. First, the steady state of (8) is achieved when

fi(p
∗
i )
∑
j∈Ni

p∗j =
∑
j∈Ni

fj(p
∗
j)p
∗
j for all i = 1, . . . , n, (20)

which is satisfied if fi(pi) = fj(p
∗
j), for all j ∈ Ni and all i. Considering that Assumption 1

holds, the following condition is satisfied

fi(p
∗
i ) = fj(p

∗
i ) = f̄ ∗, (21)

where f̄ ∗ is the equilibrium average payoff. Then, at steady state all payoff functions are equal
and all individuals earn the same payoff. Hence, the distributed replicator dynamics equation
and the replicator dynamics equation have the same equilibrium point p∗. On the other hand,
the coverage of the total demand is respected because the set ∆ is also invariant under the
distributed replicator dynamics equation. This property has been proved in [71] using some
topological properties of the connected graphs to show that

∑
i ṗi = 0 when p(0) ∈ ∆. With

this property, it is ensured that the demanded power PD is supplied by the DGs in the dispatch
process.

Considering that (20) is only a possible condition to satisfy (21), a stability analysis of
this equilibrium point is required to show the convergence from any p(0) ∈ ∆ to the point
of maximum utility J(p∗). The main stability result has been recently presented in [71] as a
proposition, which states the general payoff functions conditions to guarantee the convergence
of the method.

Proposition 1 ([71]): If fi is a strictly decreasing locally Lipschitz function,∑n
i=1 Pmaxi ≥ PD, p(0) ∈ ∆p, and fi(pi) > 0 for all 0 ≤ pi ≤ Pmaxi , then the equilibrium point

p satisfying (21) is asymptotically stable in ∆ under the distributed replicator dynamics (8).
According to the payoff definition in this specific application, the equilibrium point of (8) is
maximizing the utility functions in the system.

Simulation Results for the Dynamic Dispatch Algorithm

The dynamic economic dispatch algorithm based on distributed replicator dynamics (8)
is tested here for a low voltage microgrid case study of seven distributed generators with several
loads connected in a electrical topology adapted from the IEEE 30-bus distribution system [41].
An unpredicted increase in the total demand is activated at t = 0.8 s. This unpredicted load can
take negative values and can be considered as a non-dispatchable DG or intermittent renewable
resource. The microgrid test system is shown in Figure 15 (a) with total power demand PD = 9
kW, an unpredicted load increase of 3 kW, and different costs for each generator with DG 7
as the more expensive and with DG 3 as the cheapest. DG 1, DG 4, DG 5, and DG 6 are
similarly expensive, while DG 2 is cheaper. The microgrid is started from zero initial conditions
and is operating at a frequency of 60 Hz. The capacity of generators DG 1, DG 2, DG 3, DG
4, DG 5, DG 7 is 3.6 kW (Pmax1,2,3,4,5,7 = 3.6 kW), and the capacity of generator DG 6 is 2 kW
(Pmax6 = 2 kW). Figure 15 (b) shows the topology of the communication network between the
DGs. It has been considered that through this topology the DGs interchange information about

September 16, 2016 DRAFT



18

the dynamic power dispatch of each DG.
The control inputs have been calculated using a Matlab/Simulink model using SimPower

on a Core i7 laptop with 4Gb RAM. Figure 16 (a) shows that the frequency of the microgrid
is maintained between an operational interval (less than +/−0.2 Hz) all the time since the
power balance is kept at a minimum and the response of the distributed replicator algorithm is
dynamic and continuous. It can be observed when an increment in load at t = 0.8 s is made
and the frequency has a small variation but stabilize to zero again. In Figure 16 (b) is shown
the power dynamically dispatched for each generator. It can be observed that, at the beginning,
generator DG 7 (more expensive) is dispatched to a minimum power during the low demand
intervals due to the high generation cost, while the generator DG 3 (cheapest) is dispatched near
to its maximum capacity and remains near that value despite load variations. However, when
the demand is increased at t = 0.8 s, generator DG 7 increases its power to compensate the
increased demand. It is also noticed that due to less capacity the expensive DG 6 reaches its
maximum capacity at the load variation. Finally, it is shown that DGs with similar parameters
have similar responses, as it is the case of DG 1, DG 4, DG 5, and DG 6. DG 2 is dispatched
near to its maximum capacity since it is a cheap generator.

Urban Drainage Systems

Urban Drainage Systems (UDS) are large-scale systems composed of arrangements
of channels connected by chambers, which transport wastewater, stormwater, or both. These
elements may be represented by interconnected reservoirs able to store wastewater, that is,
elements that store wastewater within the UDS may be grouped and simplified as a unique
reservoir for control purposes as made with the concepts of virtual tanks in [72]. Besides, the
chambers composing the UDS may be of inspection and/or collection. The efficiency of the
UDS is given by their capacity to perform under specific design conditions along the time.
For instance, some specific design conditions are the average velocity, the Froude number, the
filling ratio, among others [73]. In order to meet these design conditions, UDS are regulated by
using measurements collected by proper equipment and also using knowledge about the control
structures; for instance, retention gates as presented in [72]. Regarding the structure topology
of UDS, these systems might be commonly characterized by a tree topology (or also known as
dendritic) [74]. Under this specific type of topology, clusters of channels in the UDS converge
to a unique drain point. Moreover, each cluster is known as a stage within the whole system.

Broadly speaking, the UDS can be modeled by using either an hydrological or hydraulic
approach. The hydraulic model is mainly based on physics. For instance, the Navier-Stokes
equations, or their particular well known case, the one dimentional Saint-Venant equations [75].
On the other hand, the hydrological model is mainly based on the mass conservation principle,
and it is also considered as an hydraulic model simplification. Even though the hydrological
models are not accurate for transient processes, these models are useful to characterize the
distribution of flows along the UDS and coming from exogenous non-manipulated sources or
events. Besides, the hydrological models do not demand high computational costs in comparison
with the hydraulic models, which is a relevant aspect when designing real-time control, but might
be a relevant source of uncertainty for both the evolution and management of the system.

Furthermore, computational burden is a quite relevant aspect taking into account that the
UDS are large-scale systems involving a large number of states and control inputs that have to
be computed in a limited time, for instance, it is expected that a centralized controller requires
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more time than a non-centralized controller computing less number of control inputs.
One of the main control objectives considered for large-scale UDS is the minimization

of overflows, that is, fluids released to the receptor environment and/or streets. To this end, it is
used to solve a resource allocation problem at each stage that UDS have. This is made by using
a decentralized population-games-based controller. Consequently, due to the fact the controller is
in charge of managing fluids, a flow-based hydrological model is appropriate to characterize the
behavior of the system from the control-oriented point of view. Finally, it is also contemplated
that rain events might occur unexpectedly along the time. Therefore, rain events are treated
as UDS disturbances. The selected UDS dynamics are given by the Muskingum linear model,
which is an hydrological-based model (see “Muskingum model”).

System Partitioning and Control via Population Dynamics

The stated decentralized population-games-based control consists in dividing the UDS
into N different sub-systems with the same local topology. The control scheme is decentralized
since the different controllers for each sub-system neither interact to each other nor exchange
information in order to compute the optimal control inputs. Then, a population dynamics-based
controller is designed at each sub-system. This population dynamics approach has been already
studied in [76] and [31] as a data-driven control approach. Prior showing the methodology
to design the population-games-controller, an analogy between each element of the population
dynamics approach and the elements in UDS is presented in Table 1.

Regarding the system partitioning issue –the division of the UDS into N sub-systems–,
and taking into account the fact that each sub-system is controlled independently by solving
a resource allocation problem with population dynamics, the criterion to define the partitions
consists in finding sub-systems whose structures are given by a convergence-flow topology
according to Definition 4.

Definition 4: Flow-Convergence Topology. This topology is composed of n reservoirs
whose outflows correspond to the inflows of a common reservoir as presented in Figure 4(a)
[31]. In this topology, n reservoirs with outflows converging to a common one are called source
reservoirs, and the reservoir whose inflow is given by all the outflows from source reservoirs
is called receptor reservoir. Notice that the topology presented in Figure 4(c) corresponds to a
case of flow convergence with a single source reservoir. ♦

The partitioning of the UDS is performed by dividing the whole system into cases of
flow convergence, each one of them controlled by a local population-games-based controller,
that is, the entire control system for the UDS is composed of N local controllers that do not
communicate with each other and which operate independently and in parallel, composing a
non-centralized control topology.

In the case of flow convergence topology with more than one source reservoirs, the set
of source reservoirs is given by S = {1, ..., n}. The volume of the reservoir i ∈ S is denoted
by vi, its maximum volume capacity is denoted by v̄i, and its inflows and outflows are given
by qin,i and qout,i = Kipivi, respectively. The parameter pi ∈ [0, 1] determines the percentage
of opening of the output gate associated to the ith reservoir, and Ki > 0 scales the outflow,
whose interpretation can be associated to a discharge coefficient of the reservoir. The volume of
the receptor reservoir is denoted as vr, and its maximum volume is denoted by v̄r. Besides, the
control input p should satisfy the simplex set describing all the possible strategic distributions
given by (1). Notice that, for the particular case of flow convergence with only one source
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reservoir (S = {1} is a singleton set), the reservoir outflow is given by pi = m, i ∈ S.
The inflow of the receptor reservoirs are not considered to be physically constrained since

it is assumed that their maximum possible inflows, according to the discharge coefficients and
the maximum volumes of the respective source reservoirs, are supported by the infrastructure
of the system. However, the inflows of the receptor reservoirs are constrained in function of the
available capacity of these reservoirs. This fact allows the source reservoirs to retain wastewater
if it is necessary to avoid overflows as it is explained next.

The population mass is selected to have an upper bound m ≤ `, where ` is a design
parameter. Therefore, the value for the population mass m, which determines the upper limit
for the output gates percentage, varies every selected period time τ depending on the measured
volume of the receptor reservoir, that is, m = ` (1− vr/v̄r). Notice that if ` is selected greater
than one, then it is possible that, in the evolution of the portion of the mass of players, pi takes
values greater than one, for any i ∈ S . However, since the opening percentage should belong
to the interval [0, 1], the control signal would be saturated because of the actuator physical
constraint. Therefore, in this article it is proposed to establish the design parameter ` = 1,
guaranteeing that pi ∈ [0, 1] for any population mass m = ` (1− vr/v̄r).

For instance, let m = m1 be the population mass corresponding to the case of flow
convergence shown in Figure 4(a), and let m = m2 be the population mass for the example shown
in Figure 4(b). Due to the fact that the current volume of the receptor reservoir vr presented in
the example of Figure 4(a) is greater than the current volume of the receptor reservoir presented
in example Figure 4(b), then m1 < m2 since at the second scenario there is more available
volume at the receptor reservoir. Similarly, comparing the examples shown in Figure 4(c), and
4(d) with population mass m = m3, and m = m4, respectively, it is obtained that m3 < m4 due
to the available volume at the receptor reservoir.

Assumption 3: The n source reservoirs in the flow-convergence topology have the same
discharge coefficients, i.e., Ki = K, for all i ∈ S. ♦

Assumption 3 implies a direct relationship between the constraint over the opening
percentages in the valves and a constraint over the total inflow of the receptor reservoir. To
clarify this fact, let ṽ = max(v1, . . . , vn) be the maximum current volume of the source reservoirs.
Therefore, the maximum possible inflow to the receptor reservoir is constrained by the upper
bound Kmṽ. It follows that if the constraint

∑
i∈S Kipi = Km is considered, then according

to Assumption 3, it is obtained that
∑

i∈S pi = m, which is a constraint over the opening
percentages of the valves. As as result, the total inflow of the receptor reservoir is constrained
by
∑

i∈S Kpivi ≤ Kmṽ, where m ∈ [0, 1] since ` = 1.
According to the condition for the payoff functions in a UDS system presented in [77], the

payoff function should be increasing with respect to the current volume at the source reservoir.
Hence, the considered payoff function to control the flow convergence topology is selected
considering the normalized outflows using the current volumes and the discharged coefficients,
that is,

fi(pi) = −

(
1

Avi
v̄i

+ ε

)
︸ ︷︷ ︸

θi

pi, (22)

where A fixes the slope rate of the payoff function, and ε ∈ R>0 is a small factor that prevents
an indetermination of fi when the ith reservoir is empty. Moreover, the payoff function in (22)
for the strategy i ∈ S only depends on the volume vi and the proportion of agents pi, making the
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function appropriate in the decentralized control design due to the fact that only local information
is required. Besides, the payoff function represents a full-potential game with potential function
given by V (p) = −1

2

∑
i∈S θip

2
i , where θi > 0, for all i ∈ S . The potential function V (p) is a

strictly concave function. Therefore, according to Theorem 1, the existence of a strictly concave
potential function implies the uniqueness of a Nash equilibrium.

Consider again the example shown in Figure 4(a), where v1
v̄1
> · · · > vi

v̄i
> · · · > vn

v̄n
,

which implies that θ1 > · · · > θi > · · · > θn. Then, in the population game, it is expected that
p1 > · · · > pi > · · · > pn, assigning more priority to those reservoirs that are more filled up
incrementing their outflow, and consequently avoiding overflows. More specifically, consider the
example shown in Figure 4(a) with population mass m = 1, and with n = 3 whose discharge
coefficients are equal, that is, K1 = K2 = K3 = 1, and with parameters A = 1, and ε = 0.1. The
maximum volumes of the reservoirs are v̄1 = 15 m3, v̄2 = 13 m3, and v̄3 = 10 m3. Suppose that
the current volumes at the reservoirs 1, 2, and 3 ∈ S are v1 = 10 m3, v2 = 5 m3, and v3 = 1 m3,
respectively. Considering the payoff function of the form in (22), it is obtained f1 = −1.3043p1,
f2 = −2.0635p2, and f3 = −5p3. Therefore, the Nash equilibrium for this game is given by
p∗1 = 0.5283, p∗2 = 0.3339, and p∗3 = 0.1378 since with this distribution it is obtained that
f1(p∗1) = f2(p∗2) = f3(p∗3). It follows that a bigger outflow is assigned to the fullest reservoir.

For the population dynamics design, the replicator dynamics with full information in
(3) are implemented. Then, the closed-loop controller is completed for each stage within the
whole UDS. The feedback is made by measuring information about the current volume at each
reservoir, and by using the constant information about the maximum capacity at each reservoir.
With this measured information, each controller finds the proper population mass and computes
the proportion of agents in order to establish a proper control signal at the valves of each sub-
system. The detailed closed-loop control scheme for each sub-system is presented in Figure
5.

It is worth noting that the way in which population dynamics are applied to solve
engineering problems is flexible. This property is due to the fact that the key issue for
designing population-dynamics-based controllers lies in the selection of the analogy between
the engineering problem elements and the population game elements. This analogy is not unique
in several cases. For instance, in the approach described in this section, the population mass was
associated with the sum of the opening percentages of the source reservoirs valves. However,
there exist other possible analogies, such as choosing the sum of the source reservoirs inflows
as the population mass. In all cases, analogies have to be designed taking into account that
population-dynamics-based controllers seek to dynamically distribute a certain resource among
a set of entities to achieve a desired goal.

Case Study

The considered case study consists of the Bogotá (Colombia) stormwater UDS shown in
Figure 6, which is divided into several flow-convergence cases. In this particular UDS, there
are 163 sub-systems and, consequently, there are 163 decentralized population-games-based
controllers. For instance, consider the segments of the UDS highlighted with blue color. These
two parts of the network are presented in Figure 7. There are five different sub-systems in the
segments presented in Figure 7 that are summarized in Table 2.

Figure 8 presents the communication layer, that is, it is shown 163 decentralized
population-games-based controllers, the information that each controller measures and the control
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actions that each controller establishes. Moreover, Figure 8 shows each closed-loop as the one
presented in Figure 5.

The system is tested for an abrupt rain scenario that causes overflows. The direct run-off
hydrographs that represent the system disturbances are presented in Figure 9.

Notice that the decentralized population-games-based controller is composed of N local
controllers, then it is assumed that there is fully-available local information at each sub-system.
The volumetric capacity of each reservoir is defined as the normalized volume of the ith reservoir
denoted by ṽ that is, ṽ = vi/v̄i where v̄i is the maximum volume of the ith reservoir. Then, a
flooding event occurs when the volume in a reservoir vi is greater than v̄i, that is, when ṽ > 1.
Moreover, when considering normalized volumes, different reservoirs with different maximum
capacities are compared properly according to an available capacity percentage. As previously
said, the control objective is to avoid the overflows throughout the UDS. To this end, it is taken
advantage of all the available volume capacities into the whole network. At each sub-system,
there is a controller managing the outflows of the source reservoirs and distributing their current
available capacity.

The evolution of the normalized reservoir volumes for the case without control are
presented with blue color in Figure 10, whereas the evolution of the same reservoir volumes
for the case with the decentralized population-games-based control are presented with black
color in Figure 10. It can be seen that, with the decentralized population-games-based control,
the overflows are avoided by doing an optimal distribution of flows throughout the system.
Furthermore, the total volume of overflows for the case without control is 7770.2 m3, which
is completely reduced with the designed decentralized population-game-based control, that is,
the volume of wastewater released to the receptor environment is 0 m3 with the decentralized
controller. It is pointed out that both cases with and without the population-games-based control
are simulated with the same disturbances (rain events).

Concluding Remarks

Nowadays, engineering infrastructures are becoming complex systems given their large-
scale nature complemented by the inherent nonlinearities of their compositional elements. Given
that fact, several methods and approaches towards overcoming management and control problems
for such large-scale systems have been presented and discussed, taking into account the concept of
agents as baseline. Considering this modular methodology of splitting the system into subsystems
related to agents, game theory, and particularly evolutionary game theory (EGT), appears as a
way of handling the interaction between the agents defining the large-scale system in order to
reach the control objectives seen as welfare relations within the EGT framework. This paper has
highlighted the advantages of using EGT for the management and control of real engineering
problems by means of showing the design and application of distributed control strategies for
three relevant problems directly related to the framework of the smart cities. Specifically, this
article shows the performance of EGT for designing local controllers towards fulfilling a global
objective. This fact allows to implement non-centralized control strategies without a central
coordinator and allowing to save computational time given the modularity of the entire control
solution. Hence, this particular feature of a closed-loop topology based on EGT gives rise to
considering other added advantages such as the potential inclusion of fault tolerance capabilities
into the controller designs, key property when handling large-scale critical infrastructure systems.
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In general, open problems related to the way the proposed control strategies must be
decentralized, become scalable, and incorporate robust features may be discussed. In this sense,
newer techniques should combine economic incentives, as well as the necessary amount of
information to guarantee that we can add more elements to the system without having to
entirely reconfigure the system. For the smart lighting application, the distributed characteristics
of the proposed technique allow the algorithm to be implemented over large-scale systems
with connected-graph communication structures. To solve resource allocation problems, the
methodology facilitates the inclusion of new nodes to the network with simple plug-and-play
controllers or special-purpose devices. In this sense, energy efficiency programs, demand response
strategies, and optimization of wireless sensor networks can be considered as future work in the
building automation field.

The distributed replicator dynamics approach used to solve the economic dispatch
problem in the smart grid context could be extended to tackle several important issues such
as including power losses, the physical power flow constraints, or the variability of renewable
generation. Finally, regarding the UDS, although the proposed control approach can cope with
overflows, more control objectives may be considered for their management, for instance, the
minimization of operational costs given by the energy consumption of actuators to regulate the
flows, or the minimization of the time spent for carrying the wastewater towards the treatment
plant. The incorporation of additional control objectives are proposed as further work in the
design of decentralized population-games-based controllers for UDS.
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study,” in Proceedings of European Control Conference, pp. 2426–2431, 2015.

[32] L. Garcı́a, J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano, and C. Ocampo-Martinez,
“Modeling and real-time control of urban drainage systems: A review,” Advances in Water
Resources, vol. 85, pp. 120–132, 2015.

[33] J. R. Marden, “State based potential games,” Automatica, vol. 48, no. 12, pp. 3075–3088,
2012.

[34] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press, 1991.
[35] G. Arslan and J. Shamma, “Distributed convergence to Nash equilibria with local utility

measurements,” in Proceedings of the 43rd IEEE Conference on Decision and Control
(CDC), vol. 2, pp. 1538–1543, 2004.

[36] N. Li and J. Marden, “Decoupling coupled constraints through utility design,” IEEE
Transactions on Automatic Control, vol. 59, no. 8, pp. 2289–2294, 2014.

[37] D. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility
maximization,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8,
pp. 1439–1451, 2006.

[38] P. A. Jensen and J. F. Bard, Operations research models and methods. John Wiley & Sons
Incorporated, 2003.

[39] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz,
G. Ouzounis, and Y. Portugali, “Smart cities of the future,” The European Physical Journal
Special Topics, vol. 214, no. 1, pp. 481–518, 2012.

[40] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon, T. Pardo, and
H. J. Scholl, “Understanding smart cities: An integrative framework,” in Proceedings of the
45th Hawaii International Conference on System Science, pp. 2289–2297, 2012.

[41] B. Wollenberg and A. Wood, Power generation, operation and control. John Wiley & Sons,
Inc, 1996.

[42] T. Ibaraki and N. Katoh, Resource allocation problems: algorithmic approaches. Cam-
bridge, MA, USA: MIT Press, 1988.

[43] S. Ahn and S. Moon, “Economic scheduling of distributed generators in a microgrid

September 16, 2016 DRAFT



26

considering various constraints,” in Proceedings of the IEEE Power & Energy Society
General Meeting., pp. 1–6, IEEE, 2009.

[44] J. Barreiro-Gomez, G. Obando, and N. Quijano, “Distributed population dynamics: Opti-
mization and control applications,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 99, pp. 1–11, 2016.

[45] M. J. Smith, “The stability of a dynamic model of traffic assignment-an application of a
method of lyapunov,” Transportation Science, vol. 18, no. 3, pp. 245–252, 1984.

[46] L. E. Blume, “The statistical mechanics of strategic interaction,” Games and economic
behavior, vol. 5, no. 3, pp. 387–424, 1993.

[47] D. Ferraioli, “Logit dynamics: a model for bounded rationality,” ACM SIGecom Exchanges,
vol. 12, no. 1, pp. 34–37, 2013.

[48] R. Lahkar and W. H. Sandholm, “The projection dynamic and the geometry of population
games,” Games and Economic Behavior, vol. 64, no. 2, pp. 565–590, 2008.

[49] J. Weibull, Evolutionary Game Theory. The MIT press, 1995.
[50] A. Pantoja and N. Quijano, “Distributed optimization using population dynamics with a

local replicator equation,” in Proceedings of the IEEE 51st Conference on Decision and
Control (CDC), pp. 3790–3795, 2012.

[51] N. Gershenfeld, S. Samouhos, and B. Nordman, “Intelligent infrastructure for energy
efficiency,” Science, vol. 327, no. 5969, pp. 1086–1088, 2010.

[52] U.S. Energy Information Administration (EIA), “Annual energy outlook 2015,” tech. rep.,
Department of Energy, 2015. Available on: www.eia.gov/forecasts/aeo/.

[53] International Energy Agency (IEA), Guidebook on Energy Efficient Electric Lighting for
Buildings. Aalto University School of Science and Technology, 2015.

[54] A. Williams, B. Atkinson, K. Garbesi, E. Page, and F. Rubinstein, “Lighting controls in
commercial buildings,” Leukos, vol. 8, no. 3, pp. 161–180, 2012.

[55] A. Dounis and C. Caraiscos, “Advanced control systems engineering for energy and comfort
management in a building environment: A review,” Renewable and Sustainable Energy
Reviews, vol. 13, no. 6-7, pp. 1246–1261, 2009.

[56] A. Dounis, P. Tiropanis, A. Argiriou, and A. Diamantis, “Intelligent control system for
reconciliation of the energy savings with comfort in buildings using soft computing
techniques,” Energy and Buildings, vol. 43, no. 1, pp. 66–74, 2011.

[57] M. Koroglu and K. Passino, “Illumination balancing algorithm for smart lights,” IEEE
Transactions on Control Systems Technology, vol. 22, no. 2, pp. 557–567, 2014.

[58] Y. Wen and A. Agogino, “Control of wireless-networked lighting in open-plan offices,”
Lighting Research and Technology, vol. 43, no. 2, pp. 235–249, 2011.

[59] X. Cao, J. Chen, Y. Xiao, and Y. Sun, “Building-environment control with wireless sensor
and actuator networks: Centralized versus distributed,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 11, pp. 3596–3605, 2010.

[60] C. Ochoa, M. Aries, and J. Hensen, “State of the art in lighting simulation for building
science: a literature review,” Journal of Building Performance Simulation, vol. 5, no. 4,
pp. 209–233, 2012.

[61] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice Hall Professional
Technical Reference, 2002.
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Sidebar: Rock-paper-scissors game in a population with different types of
interactions

The strategies employed by the individuals within a population can constraint their
interactions. To illustrate this fact, consider the example depicted in Figure S1. This figure shows
two populations where individuals are playing the classic rock-paper-scissors game. Assuming
that players can only be matched with their neighbors, each population exhibits a different type
of interactions. On the one hand, Figure S1(a) shows a population with unconstrained interactions
since a player that chooses a certain strategy can interact with players that choose any other
strategy. For instance, consider the payer marked with the circle drawn in solid blue line. The
neighborhood of this player (which is marked with the circle drawn in dashed red line) contains
individuals playing all the available strategies. On the other hand, Figure S1(b) shows the same
population game, but with strategy-constrained interactions. In this case, notice that the allowed
interactions depend on the strategies of players. For instance, an individual that choose scissors
to play can not encounter an individual playing rock.

(a) (b)

Figure S1. A population game with two different types of interactions: (a) Unconstrained
interactions. (b) Strategy-constrained interactions. Each element represents a player, and the shape
of the element (rock, paper, or scissors) denotes the strategy that the player has adopted. Notice
that, in populations with unconstrained interactions, each player can interact with individuals
that are playing any strategy. By contrast, in populations with constrained interactions, allowed
interactions are restricted by players’ strategies.
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Sidebar: The relationship among matricial games, full-potential population
games, and resource allocation problems

Matrix game

Consider a two-player symmetric matricial game as in Table S1.

TABLE S1
MATRICIAL REPRESENTATION OF THE COORDINATION GAME

Player 2

Pl
ay

er
1 1 2 3

1 -1,-1 0,0 0,0
2 0,0 -2,-2 0,0
3 0,0 0,0 -3,-3

This game is known as coordination game. Assigning a different interpretation of the
game, suppose that each player represents an animal selecting among three possible habitats
from the set of strategies S = {1, 2, 3}, which represent the strategies. The payoff describes the
amount of available food and/or the reproduction chances. Players one and two select a strategy
in order to maximize their utilities denoted by u1, and u2, respectively.

Moreover, suppose that player one selects strategies 1, 2, and 3 ∈ S with probabilities
p1 = [p1

1 p1
2 p1

3]>, whereas player two selects the same strategies with probabilities
p2 = [p2

1 p2
2 p2

3]>, where
∑3

i=1 p
1
i = 1, and

∑3
i=1 p

2
i = 1. The Nash equilibrium is given

by p1∗ = p2∗ = [6/11 3/11 2/11], since under this scenario, there is no incentive for any
player to change their strategic distribution to increase their utilities. Let E1(p1,p2) be the
expected utility of player one given by

E1=−p1
1p

2
1− 2p1

2p
2
2− 3(1− p1

1 − p1
2)p2

3,

=−0.54,

and, let E2(p1,p2) be the expected utility of player one given by E2 = −0.54.

Population game

Now, consider a population composed of a large and finite number of animals which may
select among three different habitats given by S = {1, 2, 3}. Figure S2 shows the population and
each color corresponds to a strategy. Animals can interact each other to compare their utilities
and determine whether it is better to change habitat.

The scalar pi ∈ R≥0 represents the proportion of animals selection the strategy i ∈ S.
Moreover, p ∈ Rn is the population state, and the set of possible population states is given by
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Figure S2. A population with three available colored strategies.

∆ = {p ∈ Rn
≥0 :

∑
i∈S pi = 1}. Payoff functions are given by

f(p) =

 −1 0 0
0 −2 0
0 0 −3

p.

The evolution of the population states p for three different initial conditions under the replicator
dynamics are shown in Figure S3. Notice that all the trajectories converges to the equilibrium

p*

Figure S3. Evolution of proportion of animals to the equilibrium point from three different
initial conditions.

point p∗ = [6/11 3/11 2/11].

Potential games and resource allocation problems

The coordination game is a full-potential game with potential function

V (p) = −1

2
p2

1 − p2
2 −

3

2
p2

3,

since f(p) = ∇V (p). The potential function and its projection over the simplex are presented in
Figure S4. Notice that the Nash equilibrium coincides with the maximum point in the potential
function. Consequently, it is possible to maximize a function subject to the constraint given by
the simplex
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Figure S4. Potential function and its contour projection over the simplex.

max
p∈∆

V (p),

subject to ∑
i∈S

pi = 1,

pi ≥ 0, for all i ∈ S.

The optimization problem is of the same form as a resource allocation problem with a concave
cost function and constraints related to a total resource and positivity.
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Sidebar: An experimental testbed for lighting systems

A lighting environment is represented by the testbed shown in Figure S5, where luminaries
are small incandescent lamps in the roof of the box and sensors are the photocells in the floor.
The lamps are driven by power amplifiers and the sensor signals are obtained by a voltage-divider
array interfaced by a dSPACE DS1104 DAQ board to Simulink programs.

Figure S5. Experimental testbed to model an eight-zones environment. Each zone composed
by close lamps and photocells can be divided by “walls” to emulate different cross-illumination
conditions. The control strategy is implemented in Simulink through a dSPACE DS1104 DAQ
board.

The environment is divided in eight zones, each one with a lamp and a sensor distributed
unevenly across the room. In this representation, the influence among zones or cross-illumination
can be varied by cardboard “walls” or partitions with different heights, such that the higher the
divisions, the lower the influence of other zones. Therefore, open or divided environments can be
emulated. Moreover, the box has a window in the rightmost side to simulate daylight and show
the effects of this disturbance over the system. The control goal is to reach a desired illuminance
setpoint at each zone with a limited available power, handling disturbances and inter-zone effects.
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Zone 1 Zone 2

Zone 3 Zone 4

Zone 6

Zone 8

Figure S6. Testbed schematics of different environments. The former (left) emulates a system
with cubicles separated by half-size walls. The latter (right) represents an open environment with
high cross-illuminance effects. The resource allocation process is performed to split a selected
available voltage among the lamps to obtain desired illuminations in each zone. Therefore, the
second case is more challenging because of the significant variable coupling.

Two cases are considered to show the adaptability of the population-based methodology.
The first case represents a lighting system with half-size divisions, such that the cross-illumination
is not negligible, but reduced. The second case is an open environment to observe the effect
of coupling among zones and how to use it to provide energy savings. A schematic of the two
environments is presented in Figure S6. In both cases, it is assumed that the resources are enough
to achieve the desired illumination levels in the environments.

September 16, 2016 DRAFT



36

Sidebar: Muskingum model

The Muskingum model is a linear hydrological-based model that allows to describe the
behavior of UDS by using the mass conservation principle. For the ith reservoir is given by the
following differential equation and relation between its inflows and outflows [S1]

vi =γi (Iili +Oi(1− li)) ,
v̇i =Ii −Oi,

where vi is the volume of the reservoir, γi is a parameter for the model calibration, li is the
reservoir length, and Ii and Oi are the inflows and outflows, respectively. Then, by expressing
the outflows as function of vi, Ii, li, and γi, it is obtained that

v̇i =
1

1− li

(
Ii −

vi
γi

)
v̇i =qin,i −Kipivi,

where qin,i = Ii/(1 − li), qout,i = Kipivi, and Kipi = 1/(γi − γili). Furthermore, pi ∈ [0, 1]
determines the control input over the output gate, which sets its grade of opening (that is, zero
is completely closed, and one is completely opened).

References

[S1] V. Te Chow, Open channel hydraulics. McGraw-Hill Book Company, Inc; New York, 1959.

September 16, 2016 DRAFT



37

List of Figures

1

2

3

1 2 3

(a) (b)

Figure 1. Graph representation of the two types of interactions described in Figure S1:
(a) Unconstrained interactions. (b) Strategy-constrained interactions. For notational purpose the
available strategies are indexed (1 corresponds to rock, 2 corresponds to paper, and 3 corresponds
to scissors). Notice that, while unconstrained interactions are represented by complete graphs,
strategy-constrained interactions are represented by non-complete graphs

paper

rock scissors

paper

scissorsrock

(a) (b)

Figure 2. Trajectories of the rock-paper-scissors game under two population dynamics: (a)
Replicator dynamics. (b) Smith dynamics. Each color corresponds to a trajectory generated with
a different initial condition. Notice that all the trajectories are inside the simplex ∆, whose limits
are drawn in black color. This fact is given since replicator and Smith dynamics satisfy mass
conservation and nonnegativity of the states.
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(a) (b)

Figure 3. Convergence to Nash equilibrium in a full-potential game under: (a) Replicator
dynamics. (b) Distributed replicator dynamics. A population playing a full-potential game and
evolving following these dynamics tends towards the Nash equilibrium of the game. In addition,
the Nash equilibrium matches the maximizer of the potential function.

(a) (b) (c) (d)

Figure 4. (a) and (b) exhibit a convergence topology with n source reservoirs and one receptor
reservoir [31]. (c) and (d) exhibit a particular case of convergence topology with only one source
reservoir.

UDS

Population-games-based
controller

vp

Figure 5. Closed loop for each sub-system (partition) of the UDS.
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Figure 6. Large-scale drainage system in Bogotá-Colombia. The network at the Chicó
neighborhood, which is located at the north of the city. This UDS system has 219 sub-catchments
that drain to 219 collection chambers. Clusters of different catchments are simplified into
reservoirs as in [72], and the system dynamics for control purposes are modeled with the
Muskingum linear reservoir model.
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Figure 7. Example of five sub-systems, each one of them with various source reservoirs and only
one receptor reservoir. Some reservoirs (for example those highlighted into the figure) might be
source and receptor for two different partitions, simultaneously. The sub-systems are composed
of reservoirs 41, 102, and 183; 41, 90, and 182; 20, 22, and 93; 20, 21, and 101; 12, 21, 212,
and 214.
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Figure 8. Communication layer for each controller. The red arrows correspond to the measured
information, and the blue arrows correspond to the computed control inputs. Each controller
presented by gray circles has a closed-loop scheme as the one presented in Figure 5. Furthermore,
notice that the controllers are local and use partial information from the UDS. Besides, due to the
fact each controller only computes a small portion of the total control inputs, the computational
burden is reduced with respect to a centralized controller computing the 219 control inputs.
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Figure 9. 219 Direct run-off hydrograph. The run-off hydrograph di = 0 for i = {1, ..., 219} in
the interval of time 0[hours] ≤ t ≤ 40[hours], and 70[hours] ≤ t ≤ 480[hours]. These rain events
are unknown and considered as disturbances for the UDS.

Figure 10. Evolution of normalized volumes along 20 days. Blue lines correspond to the scenario
without control, and black lines correspond to the scenario with decentralized population-games-
based control. Figure shows the evolution of the normalized reservoirs volume where overflows
occur without control, that is, reservoirs 5, 10, 12, 13, 14, and 24; and their involved reservoirs
in the same local controller, that is, 4, 21, 26, 30, 73, 76, 181, 212, and 214 (these reservoirs
correspond to the controllers c123, c53, c63, c49, and c59).
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Figure 11. Graph structures for the lighting system. Given the network structure for the real
zones, the inclusion of the fictitious zone (FZ) requires an extra link between nodes 1 and 8
only in the second case, since in the first one, there already exists the link (7, 8).

Figure 12. Testbed results for the divided environment. Dashed and solid lines represent the
responses for the networks in cases 1 and 2, respectively. Illuminance of each zone (left axis and
black lines) and voltage applied to each lamp (right axis and blue lines) are shown for the two
cases, while the illuminance set point (Eset) is presented in red. The desired uniform illuminance
is reached in all zones even when a disturbance is applied between t = 40 s and t = 60 s. The
disturbance emulates daylighting through a window in the environment.
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Figure 13. Testbed results for the open environment. Dashed and solid lines represent the
responses for the topologies in cases 1 and 2, respectively. Illuminance of each zone (left axis
and black lines) and voltage applied to each lamp (right axis and blue lines) are shown for
the two cases, while the changes in illuminance setpoints (Eset) are presented by the red line.
Due to the truncation of zones 5 and 6, the resource allocation within the first network is not
successful due to the formation of unconnected components. In the second case, the fictitious
zone connects the graph and the desired setpoints are reached except in the truncated zones.
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Figure 14. Graph structures with truncated zones. In the first case the truncation splits the
graph into two components. The location of the fictitious zone (FZ) in the second case connects
the graph despite of the truncated zones.
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Figure 15. Microgrid test system with seven distributed generators and several loads: (a) An
illustrative general scheme of a microgrid model adopted from a IEEE 30-bus distribution system
and (b) graph representing the topology of the communication network between DGs.
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Figure 16. Results obtained with distributed replicator dynamics for the microgrid test system:
(a) frequency response at the main grid bus, and (b) DGs active power response. As seen in
(a), the distributed replicator dynamics returns the operating frequency of the mcirogrid to its
nominal value. Figure (b) shows that when the demand is increased at t = 0.8 s, the expensive
generator DG 7 increases its power to compensate the demand constraint.
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List of Tables

TABLE 1
EQUIVALENCE RELATIONSHIPS BETWEEN POPULATION DYNAMICS AND APPLICATION CASES

Population dynamics UDS Lighting Systems Microgrids
Population System Lighting environment Power dispatch
Strategy Source reservoirs Lighting zones Distributed generators
Population mass Total inflow to receptor reservoir Total available voltage Total demanded power
Agent Flow unit Voltage unit Power unit
Proportion of agents Proportion of flow Proportion of voltage Proportion of power
Strategic distribution Flow distribution in source reservoirs Voltage split among lamps Economic power dispatch
Payoff of a strategy Current volume Tracking error Marginal utility

TABLE 2
DESCRIPTION OF THE SUB-SYSTEMS PRESENTED IN FIGURE 7.

Source reservoirs Receptor reservoir
102, 183 41
41, 182 90
22, 93 20
20, 101 21

21, 214, 212 12
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