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Abstract: The sensor localization problem can be formalized using distance and orientation
constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in
many cases such estimation is not available and a method able to determine all the feasible solutions
from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance
space can not take into account orientations, or they can only deal with one- or two-dimensional
problems and their extension to 3D is troublesome. This paper presents a method that addresses
these issues. The proposed approach iteratively projects the problem to decrease its dimension, then
reduces the ranges of the variable distances, and back-projects the result to the original dimension,
to obtain a tighter approximation of the feasible sensor locations. This paper extends previous
works introducing accurate range reduction procedures which effectively integrate the orientation
constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a
sensor moved by a parallel manipulator are used to validate the approach.

Keywords: localization; sensor networks; distance constraints; orientation constraints;
Distance Geometry

1. Introduction

The accurate localization of a sensor is fundamental in many applications. For instance, one
of the main problems to address in sensor networks is the location of the nodes since most of the
objectives of such networks rely on the correct association between the sensor readings and the location
information [1]. Moreover, the position of the nodes can be exploited to optimize aspects such as the
power consumption of the network [2]. Even for isolated sensors, the position at which each measure
is taken is fundamental to determine, for instance, the exact place where there is a defect in a pipe
probed with a radar [3] or a problem in an electronic device inspected with ultrasounds [4].

Sensor localization is typically based on angular and distance information. Distance Geometry
studies problems characterized by distance and orientation constraints between a given set of points [5].
It provides a formulation invariant to the reference frame and, therefore, it gives geometric insights
on different problems that remain concealed when using Cartesian geometry. These insights allow
deriving solutions common to problems that otherwise have to be treated on a case-by-case basis [6].
Due to its generality, Distance Geometry finds application in many fields, including biochemistry [7],
nano-technology [8], inverse/direct kinematics of serial/parallel robots [9], singularity analysis [10],
or fusion of sensor data [11]. This paper proposes novel Distance Geometry tools for the sensor
localization problem.

Arguably, the main issue of existing Distance Geometry techniques is that they can not deal with
orientation constraints, which are fundamental in many applications [12,13]. The common alternative
is to first take into account only the distance constraints to generate all the possible solutions and then
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rule out those with wrong orientations in a post-processing. However, in principle, the orientation
constraints can be integrated into the solver and exploited to focus the search effort, thus increasing
the computational efficiency. To the best of our knowledge, only two approaches exists that combine
distance and orientation constraint [14,15], but they are limited to 1D or 2D problems, respectively,
and their possible extensions to solve higher-dimensional problems is non-feasible.

This paper presents an alternative that naturally scales to higher dimensions. The proposed
procedure is geometric, avoiding the use of Cayley-Menger determinants, the dominant tool in
Distance Geometry [16–18], which generates formulations that rapidly get involved with the number
of points and their dimension [19,20]. The method extends some of the ideas in [21], which implements
geometric methods to project the problem to a lower dimensional sub-space, reduce the feasibility
ranges for the variable distances in the problem, and back-project these reduced ranges to the original
dimension to obtain a tighter approximation of the solution set. Herein, the approach in [21] is
improved by introducing novel projection and back-projection methods that clearly outperform the
original ones. Moreover, the range reduction procedure proposed in this paper effectively integrates
the orientation constraints, which were not considered in [21].

This paper is structured as follows. Next section frames the proposed approach in the context of
existing works and Section 3 formalizes the problem addressed in this paper. Then, Section 4 describes
the projection, range reduction, and back-projection procedures, and Section 5 experimentally evaluates
them. Finally, Section 6 summarizes the contributions of this work and points to issues deserving
further consideration.

2. Related Work

The problem of localization appears in many fields, including sensor networks, mobile robotics,
or in the position analysis of mechanisms. In all the cases, the problem is to localize one or more
devices from sensor information. The sensor information can be based on distances (either given by the
configuration of the sensing device or computed from time of flight or from signal strength) [22–24],
on angles [25–27], or even on signal profiling [28–30]. The latter approach can produce accurate results,
but it requires a map of the signal profile acquired offline, which is not available in general. Thus, the
method introduced in this paper addresses the sensor localization problem using only distance and
angular information acquired on-line, but it is agnostic on how the distance and orientation constraints
are obtained. Actually, the angular information required in the proposed method is just the relative
orientation of particular point sets, which is easier to obtain than accurate angular measures.

In any case, the sensor readings will be affected by the inaccuracies inherent to any physical
process. The way in which such inaccuracies are modeled characterizes the two main families of
approaches to the localization problem. The first one, which is the most popular, represents the
inaccuracies with probabilistic models [31–40]. In this case, maximum likelihood estimators are
typically used to determine the most probable solution to the problem using iterative procedures
that require an initial point relatively close to the optimal solution. Such initialization points are not
easy to determine. Moreover, as remarked in [41] (p. 2549), the probabilistic approaches assume
unbiased distributions, which is a hypothesis hard to validate in practice due to the existence of flex
and flip ambiguities [42]. For this reason, set theoretic approaches have been proposed, where the
sensor inaccuracies are bounded in given intervals, but where not assumption is taken about the error
distribution inside such ranges [43]. The method proposed in this paper belongs to this second family
of approaches.

The space where the problem is formalized gives another broad classification of localization
methods. In this case, the dominant approach formalizes the sensor localization in Cartesian
space [24,44–48] introducing arbitrary reference frames, anchor nodes, and non-linearities when
transforming distances to coordinates. A better alternative, explored herein, is to reduce the location
uncertainty directly in distance space and compute coordinates only when uncertainties are reduced
using a process of error propagation [18,42,49–52]. Moreover, like the method described in [53], our
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approach does not require anchor nodes for the range reduction since they are only used, if available,
when computing coordinates.

A popular approach operating in distance space is Multidimensional Scaling (MDS) [49]. In this
approach, an initial estimation for the missing distances is refined by projecting the distance matrix to
the cone of positive semidefinite matrices to obtain the closer valid distance matrix in the least square
sense. In related approaches, semidefinite programming [50,51,54,55] and simulated annealing [42,47]
are used to obtain better approximations in the cone of semidefinite matrices and to avoid local
minima. Such approaches assume a probabilistic model of the error, operate on points, can not
guarantee the final solution to be inside pre-define ranges, and only provide good results if the number
of known distances is relatively large. In the extreme case in which enough distances are initially
known, trilateration methods can be used to determine the location of the sensors using a greedy
procedure [11,20,52,56]. While the methods that project to the cone of semidefinite matrices only
provide one solution to the problem, trilateration-based methods can deliver all the valid solutions.
Actually, the determination of all the valid localizations is a fundamental problem in distance-based
sensor localization [41]. The approach presented in this paper is related to the MDS method in the
sense that it also decomposes a given matrix to determine valid coordinates for the sensors to localize.
However, our approach adopts a set theoretic approach which guarantees the solutions to be inside
the given ranges and, like in the trilateration approaches, it determines all the valid solutions for a
given localization problem. Additionally, a relevant distinctive feature of the approach is that it can
incorporate orientation constraints to avoid flip ambiguities, focusing only on the valid solutions.
To the best of our knowledge, no other distance-based approaches exist able to integrate the orientation
constraints in the search process for arbitrary dimensional problems. Moreover, the method is also
able to deal with flex ambiguities providing a complete approximation of the set of valid locations if
such ambiguities occur.

Finally, in sensor networks there is a difference between centralized and distributed localization
systems [38,57,58]. In principle, the latter offer better scalability and they are energetically more
efficient, but they must be carefully designed to ensure convergence and to control the error
propagation. While the approach introduced in this paper can be combined with distributed
approaches that fuse local position estimations [59], we describe it as a centralized procedure to
simplify the presentation.

Summarizing, this paper presents a sensor localization system able to integrate distance and
orientation information, which operates in distance space to avoid non-linearities and arbitrary
reference frames, without making any assumption on the distribution of errors in the input data, and
that is able to determine all the solutions of the given problem without any initial estimation, even if
the solution set is a flex. All these features make the proposed system a unique approach in the field.

3. Problem Formalization

The general problem addressed here can be formalized as follows. Given si,j, with 1 ≤ i, j ≤ n,
the square of di,j, the distance between points Pi and Pj in Rq, and σF,i,k, the desired relative orientation
between any two q-dimensional simplices sharing hyperface F defined by {Pi1 , . . . , Piq}, and with
apexes at Pi and Pk, the objective is to find all the possible coordinates for the points up to rigid
transformations, such that the given distance and orientation constraints are fulfilled. Typically, q is
2 or 3 and, by convention, σF,i,k is set to −1 if the two simplices must be on the same side of the
hyperplane defined by F, +1 if they have to be on opposite sides of this hyperplane, and 0 if their
relative orientation is not fixed.

Since rigid transformations have to be disregarded, the coordinates of one of the points, say
P1, can be arbitrarily fixed to x1 and the rest of the yet unknown coordinates can be arranged in a
(n− 1)× q matrix
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X =


x2 − x1

x3 − x1

. . .
xn − x1

 (1)

Then, the (n− 1)× (n− 1) matrix
G = X X> (2)

is known as the Gram matrix. If all the squared inter-point distances are know, the entries of this
matrix can be computed using the cosine law, without resorting to the coordinates

Gi,j = (xi − x1) (xj − x1)
> = d1,i d1,j cos(α) =

1
2
(s1,i + s1,j − si,j) (3)

with α the angle between
−−→
P1Pi and

−−→
P1Pj.

Schoenberg showed that a set of inter-point distances can be embedded in Rq if and only if G is a
positive semidefinite matrix with range q [60]. In this case, the first q steps of the Cholesky factorization
of G are feasible and generate X, from which the desired coordinates can be readily determined [16].
Thus, in the context of Distance Geometry, the Cholesky factorization can be interpreted as a process
of determining the q-dimensional coordinates of a set of points from their pair-wise distances. The first
step of the factorization gives the first coordinate for all the points (i.e., the first column of X) and
defines a set of distances in a q− 1 dimensional space that, once recursively processed, provides the
remaining q− 1 columns of X.

Thus, if all the pair-wise distances are know, the Cholesky factorization yields the desired set of
coordinates. However, due to characteristics of the problem or to sensor range limitations, in general
only few of the input distances are know [61]. The rest of them are corrupted with noise and systematic
errors, which are assumed bounded, but without any particular noise probability distribution inside
the bounds [43]. Thus, distances may be exactly known (in which case the initial lower and upper
bounds coincide), unknown (in which case the initial range goes from zero to infinity), or estimated
using sensor information (in which case an initial finite range is known). The Cartesian product of
such ranges defines an initial box, i.e., an orthotope, in distance space which includes the solutions for
the problem at hand.

The approach proposed here to find all the solutions in the given initial box is based on the
recursive Cholesky factorization and it is illustrated in Figure 1. Let’s suppose that we have five
points, Pi, Pj, Pk, Pl , and Pm, and that all the distances between them are known, except di,k. Thus,
in this example, the initial search space is di,k ∈ [0,+∞], i.e., a one-dimensional box. Fixing Pj, Pl ,
Pm and Pk, point Pi can be placed at two locations relative to the plane defined by Pj, Pl , and Pm.
The approach proposed in this paper first projects the points to a plane orthogonal to PjPm to obtain
P′i , P′j , P′k, and P′l . Then, these points are projected to a line orthogonal to P′j P′l to obtain P′′i , P′′j , and
P′′k . Actually, the projections are not explicitly computed, but the distance between projected points is
directly obtained. Two possible values exist for the distance between P′′i and P′′k , d′′−i,k and d′′+i,k . If no
orientation constraint is introduced in this problem the range for this distance must include these
two values, i.e., d′′i,k ∈ [d′′−i,k , d′′+i,k ]. This range once back-projected (i.e., when undoing the projection
steps) gives a range for di,k, [d−i,k, d+i,k], tighter than the initial search box. This range can not be further
reduced by projection and back-projection and, thus, to isolate the two solutions of this problem the
branch-and-bound approach illustrated in Figure 2 is adopted. The obtained range is split in two
sub-ranges, [d−i,k, c] and [c, d+i,k] with c = (d−i,k + d+i,k)/2, which are processed independently to isolate
the two solutions. However, if an orientation constraint is introduced indicating, for instance, that Pi
and Pk must be at opposite sides of the plane defined by Pj, Pl , and Pm, only one of the two solutions
is valid. This solution can be directly identified in a single iteration and without any range division
fixing d′′i,k to d′′+i,k , which once back-projected gives a single value for di,k.
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Figure 1. Schematic illustration of the projection and back-projection range reduction procedure
proposed in this paper. See the text for details.

d1

d1

d1

d2

d2

d2

Figure 2. Searching for two solutions (indicated by crosses) in a two-dimensional distance space using
a branch-and-prune approach. The initial search space (light gray rectangle on the left plot) is reduced
as much as possible, but without leaving out any solution. The result is the middle-gray rectangle.
Then this space is bisected and the search is repeated independently in the two resulting sub-spaces, as
shown in the right part of the figure. Finally, the solutions are isolated as small boxes in distance space
(the dark-gray squares around the crosses).

Schoenberg’s characterization of feasibility has been exploited projecting incomplete distance
matrices to the cone of semidefinite matrices with the aim of determining one valid set of
coordinates [49–51,54], while we are interested in all the possible ones in the given input intervals.
Cholesky methods for interval matrices exist and might be used [62,63], but they assume a Gram
matrix with uncorrelated entries, which is not our case, as it can be concluded from Equation (3) since
several entries of G involve the same squared distances. These correlations induce overestimations in
interval arithmetics [64]. Consider, for instance, that we want to determine the range of

f (x) = x2 − x (4)
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with x ∈ [−1, 1]. Plain interval arithmetics evaluates f as if its two terms were independent

f (x) ∈ [−1, 1]2 − [−1, 1] = [0, 1]− [−1, 1] = [−1, 2] (5)

while the actual range of f in the given domain is [−0.25, 2]. The method presented in [21] interprets
the Cholesky factorization geometrically to deal with distance constraints, but it is based on interval
arithmetics and, thus, it is also affected by the overestimation issue.

In the approach presented in this paper, the correlations are taken into account to provide tighter
range evaluations and, thus, a faster convergence to the solutions. Note, however, that since we are
working with ranges and not with points Schoenberg’s approach only provides necessary conditions
for realizability. Thus, the method presented next is based on necessary conditions that progressively
isolate the solution set.

4. Isolating the Solution Set via Projections and Back-Projections

Next, we describe the three basic steps of the proposed method: projection on a given hyperplane,
distance range reduction, and back-projection. Projections on different hyperplanes can be used
to reduce the ranges and, when no further reduction is possible, the largest distance range is split
at its central point and the two resulting sub-problems are treated independently. This process is
iterated until the solution set is isolated with a desired accuracy. In this process some empty boxes,
i.e., boxes resulting from a bisection which include no solutions, may be generated. The performance
of a branch-and-prune solver can be evaluated by the number of empty boxes generated, i.e., the
lower the better since the ideal algorithm would converge directly to the solutions without exploring
empty boxes.

4.1. Projection

Figure 3, illustrates a single step of the Cholesky factorization of the Gramian associated with a
distance matrix. For instance, the element d1,i =

√s1,i is decomposed into d1,i, the projection of d1,i on

the axis defined by P1Pn, and d⊥1,i =
√

s⊥1,i, the projection on the q− 1 dimensional space orthogonal to

this axis. Projections d1,i, with 1 < i ≤ n, give the first column of X in Equation (2) and the recursive
analysis of matrix D′ with D′i,j = s⊥i,j would provide the q− 1 remaining columns of this matrix.

P1

Pn

Pi

d⊥1,i

d1,i

d1,i

d1,n

di,n

α

di,n

β

Figure 3. Projecting distances on the axis defined by P1Pn and on its orthogonal complement.

Formally, d1,i is
d1,i = d1,i cos α (6)

which, by the cosine rule becomes
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d1,i =
1

2 d1,n
(s1,i + s1,n − si,n) (7)

The square of the projection in the subspace orthogonal to the vector pointing from P1 to Pn is

s⊥1,i = s1,i − d
2
1,i = s1,i −

1
4 s1,n

(s1,i + s1,n − si,n)
2 (8)

The interval evaluation of Equations (7) and (8) would produce overestimation [21] since, for
instance, s1,n = d2

1,n and, thus, d1,n appears twice in them. Tighter estimations can be obtained using
the monotonicity analysis introduced in [15], which we recall next.

If a function is monotone in a given domain, it is clear that its extrema are the boundary of the
domain. Moreover, if the domain is an axis-aligned box, as it is our case, we can appeal the following
well-known proposition to find exact bounds without overestimation:

Proposition 1. [65]. Let x = (x1, . . . , xq) be a tuple of q real interval-valued variables defining an axis-aligned
box such that xi ∈ [x−i , x+i ], and let f (x) ∈ [ f−, f+]. If f is continuous and locally monotonic with respect to
each argument, then

f− = min
x∈H

f (x)

and
f+ = max

x∈H
f (x)

whereH is the set of 2q vertices of the box defined by x.

If the derivatives of f with respect to x1, . . . , xn are know, then the vertices defining the extrema
can be identified without the need of evaluating f in all of them: the maximum would correspond
to the vertex where, for i = 1 . . . n, xi is x−i if ∂ f /∂xi < 0 and x+i otherwise. The minimum would be
in a vertex defined with the opposite criterion. Therefore, the analysis of the sign of ∂ f /∂xi reveals
the monotonic domains for f as a function of xi. Moreover, the boundaries between monotonic
domains, i.e., the points where the derivative is 0, have to be analyzed separately, considering also the
monotonicity, since they may include the extrema of f , as illustrated in Figure 4.

Applying this monotonicity analysis to d1,i as defined in Equation (7), we obtain

∂d1,i

∂d1,i
=

d1,i

d1,n
(9)

∂d1,i

∂di,n
= − di,n

d1,n
(10)

∂d1,i

∂d1,n
= 1− d1,i

d1,n
(11)

The first two derivatives are positive and negative, respectively, and thus the maximum of d1,i
can only be at d1,i = d+1,i and di,n = d−i,n and the minimum at d1,i = d−1,i and di,n = d+i,n. If Equation (11)
is also monotone, only the corresponding limit, d1,n = d−1,n or d1,n = d+1,n, need to be considered.
However, if the ranges of d1,i and d1,n intersect, Equation (11) could vanish and the extrema of d1,i can
be in the subspace where d1,i = d1,n, which must be analyzed separately. In this situation, shown in
Figure 5, P1Pn is orthogonal to PiPn, and thus

d1,i =
√

d2
1,i − d2

i,n (12)
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which is monotone in both d1,i and di,n. Therefore, the maximum of d1,i in Equation (12) is at d1,i = d+1,i
and di,n = d−i,n and the minimum at d1,i = d−1,i and di,n = d+i,n. Thus, if P1Pn can be orthogonal to PiPn,
these points must be considered as potential extrema of d1,i.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

x1

x2

x2

f
f

∂f/∂x1 = 0

f+

f−

Figure 4. Schematic illustration of how to determine the exact bounds of f (x1, x2) analyzing its
monotonicity. We have to consider the value of the function in selected corners of the domain and
the sub-spaces where ∂ f /∂x1 = 0 or where ∂ f /∂x2 = 0, if such conditions may hold in the domain.
These sub-spaces have to be recursively analyzed. For instance, the plot at the right shows this analysis
for the first case. The evaluation of f on x−1 = 0 and x+2 = 1 gives f+, the upper bound of this function
in the prescribed domain. In this example, the lower bound f− is obtained in the analysis of the
sub-space where ∂ f /∂x1 = 0. Figure adapted from [15].

P1

Pn

Pi

d⊥1,i d1,i

d1,i

d1,n

α

di,n

β

Figure 5. Special situation where P1Pn is orthogonal to PiPn. This case has to be considered separately
in the monotonicity analysis of d1,i.
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The monotonicity analysis for s⊥1,i as defined in Equation (8) requires computing

∂s⊥1,i

∂d1,i
= 2 d1,i

(
1− d1,i

d1,n

)
(13)

∂s⊥i,n
∂di,n

=
2 d1,i d1,i

d1,n
(14)

∂s⊥1,i

∂d1,n
= −2 d1,i

(
1− d1,i

d1,n

)
(15)

These three derivatives are monotone, except for d1,i = 0 or d1,i = d1,n. In the first case, we
have that

s⊥1,i = si,n − s1,n (16)

and, in the second one,
s⊥1,i = s1,i − s1,n (17)

Both expressions are linear and, thus, monotone.
A similar monotonicity analysis can be done for di,j = d1,i − d1,j, with 1 < i < j ≤ n, and for the

corresponding s⊥i,j to obtain tight ranges for all of them.

4.2. Range Reduction

When the projection process is repeated q− 1 times, the problem becomes one-dimensional and
all ranges should correspond to distances between points on a line. Then, the congruence between the
ranges can be enforced using the triangular equality [66]. However, in our case, orientation constraints
can be exploited to further reduce the ranges, as detailed in Algorithm 1. This algorithm is a variant of
the Floyd-Warshall method to determine the shortest paths between all pairs of nodes in a weighted
graph [5]. The distance between two points, Pi and Pk, is the shortest possible via any intermediate
point Pj. Since distances are not signed, when considering a triplet Pi, Pk, and Pj, we have to consider

the case where vectors
−→
PjPi and

−−→
PjPk have the same or opposite orientations on the line (see Figure 1).

This gives two possible values for di,k, d−i,k and d+i,k (see lines 5 and 9 in Algorithm 1) and the range
for this distance must be set to the interval hull of both of them, i.e., the smallest interval containing
the two given solution ranges. Function HULL in line 12 of Algorithm 1 implements this procedure.
Note that HULL(a, b) = HULL(b, a) and that, by convention, HULL(a, ∅) = a.

If σF,i,k with F = {Pi1 , . . . , Piq} and i1 = 1, is set to 1 or −1, and the original problem is projected
using the axes defined by Pi1 Pi2 , . . . , Pi1 Piq , the orientation of the triplet P1, Pi, and Pk is fixed, i.e., σ1,i,k
in the projected problem has the same value as σF,i,k in the original problem. This is illustrated in
Figure 1, where the relative orientation of the tetrahedra formed by {Pj, Pl , Pm, Pi}, and {Pj, Pl , Pm, Pk}
translates to a particular orientation of vector

−−−→
P′′j P′′i with respect to vector

−−−→
P′′j P′′k . This can be exploited

to consider only one of the two solutions of the triangular equality. Since all the possible combinations
of projections are iteratively used in the algorithm, all the orientations fixed in the original problem are
eventually used when reducing the ranges.

The reduction in the orthogonal subspace can be translated to the projection axis defined by P1Pn

taking into account that, as shown in Figure 6, Pi must be at distance d1,i ∈ [d−1,i, d+1,i] from P1 and at
distance di,n ∈ [d−i,n, d+i,n] from Pn, i.e.,

s1,i = d
2
1,i + s⊥1,i (18)

si,n = (d1,i − d1,n)
2 + s⊥1,i (19)



Sensors 2016, 16, 1096 10 of 19

Thus,
d1,i = HULL(d1,i ∩

√
s1,i − s⊥1,i, d1,i ∩

√
si,n − s⊥1,i + d1,n) (20)

Once the ranges for d1,i with 1 < i < n are clipped, the triangular equality can be used to
propagate the reductions to the other projections on the axis defined by P1Pn.

Algorithm 1: Range reduction using distance and orientation constraints.

ReduceRange(D)
input :The matrix of squared distances
output :The reduced matrix of squared distances.

1 for j = 1 . . . n do
2 for i = 1 . . . n− 1 do
3 for k = i + 1 . . . n do
4 if j 6= 1 or σ1,i,k ≤ 0 then
5 d−i,k ← si,k ∩ |di,j − dj,k|2

6 else
7 d−i,k ← ∅

8 if j 6= 1 or σ1,i,k ≥ 0 then
9 d+i,k ← si,k ∩ (di,j + dj,k)

2

10 else
11 d+i,k ← ∅

12 si,k = HULL(d−i,k, d+i,k)

13 RETURN(D)

P1

Pn

Pi
d
+

i,n

d
−

i,n

d
+

1,i

d
−

1,i

d1,i

d
⊥

1,i

Figure 6. Possible location of Pi for the given ranges of d1,i and di,n and the corresponding projections
on the axis defined by P1Pn, d1,i, and on its orthogonal complement, d⊥1,i. A reduction in the range of
d⊥1,i can be translated into a reduction of the range of d1,i.

4.3. Back-Projection

The reduced ranges on the projected sub-spaces can be back-projected to recover possibly reduced
distance ranges in the original space taking into account that, as shown in Figure 3,

s1,i = d
2
1,i + s⊥1,i (21)



Sensors 2016, 16, 1096 11 of 19

and

s1,i = s1,n + si,n − 2 d1,n di,n cos β = s1,n + si,n − 2 d1,n di,n (22)

The expression in Equation (21) is monotone and, for Equation (22), we have

∂s1,i

∂di,n
= 2 di,n (23)

∂s1,i

∂di,n
= −2 d1,n (24)

∂s1,i

∂d1,n
= 2 d1,n − 2 di,n (25)

that are monotone except for di,n = d1,n. In this case

s1,i = si,n − s1,n (26)

which is monotone both in si,n and in s1,n.
The improvement of the projection and back-projection procedures based on the monotonicity

analysis presented in this paper with respect to those presented in [21] based on interval arithmetics
are illustrated in Figure 7 for a particular example. The figure shows the accuracy in the approximation
of the solution set for a problem with two isolated solutions and a one-dimensional flex. The approach
using standard interval-based projection and back-projection correctly isolates the solutions, but, for
the flex, the approximation is rough and irregular. With the same parameters, the projection and
back-projection methods based on the monotonicity analysis generate a more regular and accurate
approximation. This example also illustrates that the proposed approach can deal with problems even
if they include flex ambiguities, which are hardly considered in previous works.

s1,3

s1,5

s2,4

(a)

s1,3

s1,5

s2,4

(b)

Figure 7. Approximation of the solution space for a problem with two isolated solutions and a
one-dimensional flex. The isolated solutions are encircled to make them visible. (a) Using a projection
and back-projection relying on standard interval arithmetics we obtain a rough approximation of
the flex. (b) Using the monotonicity-based alternative introduced in this paper over-estimations are
avoided and the flex is tightly bounded.

5. Experiments

To illustrate the localization method introduced in this paper, we apply it to solve the localization
of a fleet of robots carrying sensors to survey a flat environment and the position analysis of a sensor
moved by a parallel manipulator. A non-optimized and non-parallelized Matlab implementation of
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the approach introduced in this paper including the examples described next is attached to this paper
as multimedia material.

5.1. Localization of Networked Mobile Robots

Networked mobile robots interact over a signal exchange network for its coordinated operation
and behavior. Such systems have applications in diverse areas of science and engineering such as
rescue operations [67], networked vehicles [68] or distributed arrays of sensors [69].

Robot teams can exploit collaboration to maintain global positioning as they move through space.
Each robot can be equipped, for instance, with an infrared sensor and a camera to estimate its distance
to the teammates [70]. Moreover, the camera provides information about the relative bearing of the
robot with respect to the rest of the team. Thus, the global positioning of the team must fulfill a set of
distance and orientation constraints as the ones given in Section 3.

Since the distance measurements are noisy, or simply missing due to the limited range of the
infrared sensors, maximum-likelihood estimators that determine the most probable position of all the
robots have been used in the past [71]. Nevertheless, it is difficult to give realistic probability density
functions of the sensor readings due to the complexity of the physical process on which the estimated
distance is based. Instead, if we simply assume that errors in measurements are bounded, it is possible
to apply a Distance Geometry approach to obtain tight bounds, as exemplified next.

Consider the team of six mobile robots shown in Figure 8. The maximum range of the infrared
sensors is 8 meters and distances are estimated with a 3% of error. Moreover, the orientations of the
triangles given by the robot’s cameras are those in the figure. For instance, σF,1,4 with F = {P2, P3} is +1.
In these conditions, the sensors provide the matrix D1 of distance ranges between the robots shown in
Figure 9. Some of the distances are not measured due to sensor problems, or because the robots are
further than the maximum span of the infrared sensor. Thus, for those distances we can only assume
that they in the range [0,+∞]. In the actual implementation 100 meters is used as the maximum
possible distance since this is larger than the sum of all the measured distances in the problem.

R1

R2

R3

R4

R5

R6

Figure 8. A fleet or robots. Each robot is equipped with an infrared sensor to measure the distances
to nearby teammates. The lines in the figure represent the distances actually measured. The relative
orientation of the triangles is given by cameras mounted on the robots.
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D1=


[0.00, 0.00] [57.99, 58.01] [52.99, 53.01] [0.00, 10000.00] [0.00, 10000.00] [0.00, 10000.00]
[57.99, 58.01] [0.00, 0.00] [40.99, 41.01] [52.99, 53.01] [51.99, 52.01] [52.99, 53.01]
[52.99, 53.01] [40.99, 41.01] [0.00, 0.00] [57.99, 58.01] [0.00, 10000.00] [0.00, 10000.00]
[0.00, 10000.00] [52.99, 53.01] [57.99, 58.01] [0.00, 0.00] [0.00, 10000.00] [49.99, 50.01]
[0.00, 10000.00] [51.99, 52.01] [0.00, 10000.00] [0.00, 10000.00] [0.00, 0.00] [36.99, 37.01]
[0.00, 10000.00] [52.99, 53.01] [0.00, 10000.00] [49.99, 50.01] [36.99, 37.01] [0.00, 0.00]



D2=


[0.00, 0.00] [57.99, 58.01] [52.99, 53.01] [0.11, 221.94] [0.16, 219.89] [0.11, 221.94]
[57.99, 58.01] [0.00, 0.00] [40.99, 41.01] [52.99, 53.01] [51.99, 52.01] [52.99, 53.01]
[52.99, 53.01] [40.99, 41.01] [0.00, 0.00] [57.99, 58.01] [0.65, 185.39] [0.77, 187.27]
[0.11, 221.94] [52.99, 53.01] [57.99, 58.01] [0.00, 0.00] [0.97, 173.06] [49.99, 50.01]
[0.16, 219.89] [51.99, 52.01] [0.65, 185.39] [0.97, 173.06] [0.00, 0.00] [36.99, 37.01]
[0.11, 221.94] [52.99, 53.01] [0.77, 187.27] [49.99, 50.01] [36.99, 37.01] [0.00, 0.00]



D3=


[0.00, 0.00] [57.99, 58.01] [52.99, 53.01] [180.94, 181.07] [169.80, 170.20] [220.93, 221.07]
[57.99, 58.01] [0.00, 0.00] [40.99, 41.01] [52.99, 53.01] [51.99, 52.01] [52.99, 53.01]
[52.99, 53.01] [40.99, 41.01] [0.00, 0.00] [57.99, 58.01] [184.95, 185.05] [147.94, 148.06]
[180.94, 181.07] [52.99, 53.01] [57.99, 58.01] [0.00, 0.00] [136.94, 137.06] [49.99, 50.01]
[169.80, 170.20] [51.99, 52.01] [184.95, 185.05] [136.94, 137.06] [0.00, 0.00] [36.99, 37.01]
[220.93, 221.07] [52.99, 53.01] [147.94, 148.06] [49.99, 50.01] [36.99, 37.01] [0.00, 0.00]


Figure 9. D1 stands for the matrix of input ranges as provided by the infrared sensors; D2, for the
matrix of ranges after imposing triangular inequalities; and D3, the matrix of ranges resulting from
applying the method introduced in this paper.

After applying the triangular inequalities, i.e., the standard tool for range reduction when using
Distance Geometry, the undefined ranges get bounded, as shown in matrix D2. Due to the ambiguities
inherent to the used distance formulation, this process only produces a trivial reduction of some of
the ranges. In contrast, applying the method introduced in this paper, matrix D3 is obtained, where
some of the ranges are significantly narrower than the ones obtained with the standard method. For
instance s1,4 is reduced from [0.11, 221.94] to [180.94, 181.07]. The plot in Figure 10 shows a graphical
representation of the reduction of the ranges when we apply alternative tightening processes.

d1,4 d1,5 d1,6 d3,5 d3,6 d4,5

0

2
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10

12

14

16

18

20
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an
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Raw sensors
Triangular inequality
Proposed method

Figure 10. The reduction of the size of the intervals for the non-measured distances in the problem
when applying alternative tightening procedures.

Although not intended for this case, the proposed algorithm can be applied to the same problem,
but without orientation constraints. Then, the problem has 8 solutions corresponding to the different
orientations of the triangles sharing segments R2R3, R2R4, and R2R6. The procedure introduced in
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this paper isolates these eight solutions without generating any empty box, i.e., boxes resulting from
a bisection process that do not include any solution point. Such empty boxes indicate inefficiencies
in the range reduction procedures. Existing branch-and-bound approaches operating in distance
space [19,21] isolate the same 8 solutions, but they generate more empty boxes in the process because
such approaches rely on interval arithmetics which introduce overestimations. Moreover, there is no
way to incorporate orientation constraints in these solvers to directly isolate one of the solutions.

Finally, the approach proposed in this paper may have some resemblance to the MDS method,
although MDS projects distance matrices, while we implicitly project points in Cartesian space using
distance information and MDS assumes a probabilistic model of the errors while we adopt a set
theoretic one. Therefore, the results from both approaches are significantly different. The MDS method
generates an initial distance matrix sampling in the ranges given by the sensors and approximating the
rest of distances by the shortest path on the graph defined by the sampled values. The initial distance
matrix is improved projecting it to the closest point in the least square sense in the cone of semidefinite
matrices. In the projection, all the distances in the matrix are modified and, thus, there is no way to
ensure that the result is included in the ranges provided by the sensors. Consequently, this procedure
has a low probability of generating any of the actual solutions of the problem. Actually, in our tests,
none out of 100 executions of the MDS procedure returned any of the 8 valid solution for the problem,
which are correctly identified by the procedure introduced in this paper.

5.2. Position Analysis of a Parallel Robot

Parallel manipulators, if well calibrated, can move a sensing device with a high position and
angular accuracy [72]. The octahedral parallel manipulator considered next was studied, for instance,
in [73] where a closed formula for its forward position analysis is provided. However, the analytical
approaches do not take into account orientation constraints such as the ones considered in this paper.
The particular robot analyzed has equilateral base and platform with side 12 and 6 distance units,
respectively and the leg lengths are

d1,4 = 19.8 d2,4 = 18 d2,5 = 18

d3,5 = 17 d3,6 = 14.9 d1,6 = 17.8

with these values, the platform can be positioned in six different poses with respect to the robot’s base.
Considering that this problem is three-dimensional and, thus, two consecutive projections are

necessary before reducing the ranges, 150 different combinations of projection are possible. With
these projections, the solutions of the position analysis are isolated after processing 23 boxes: six are
solutions, six are empty boxes (i.e, boxes with no solution inside), and 11 boxes are internal nodes of
the search tree. Despite the double projection introduces dependencies that are not considered when
applying them as independent operations, the performance is remarkably good since very few empty
boxes are generated, in comparison with the number of solutions. Figure 11 shows two views of the
boxes processed by the solver when isolating the six solutions.

However, the six solutions are not equal taking into account aspects such as leg interference
and the stiffness of the platform. If the following orientation constraints are added to the problem
σ1,2,4,5,6 = −1, σ2,4,5,1,3 = −1, σ2,3,5,4,6 = −1, σ3,5,6,1,2 = −1, σ1,3,6,4,5 = −1, σ1,4,6,2,3 = −1, only the
solution shown in Figure 12, which is the preferred configuration in practice, is valid. This solution
is isolated after processing 7 boxes (1 solution, 3 empty, and 3 intermediate boxes). These boxes are
represented in Figure 13. The solver effectively takes advantage of the orientation constraints since the
number of processed boxes significantly reduces when taking them into account. Previous approaches
either analytical or numerical would produce the same result with or without orientation constraints
since they only consider them in a post-process stage.
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s1,5

s3,4

s2,6

s3,4

Figure 11. Two views of the boxes processed to isolate the six valid poses of the octahedral manipulator.
The solutions are the encircled tiny boxes. The initial box, i.e., the lighter red box, is reduced and split
until the six solutions are properly isolated. It can be appreciated that only few of the processed boxes
include no solution, i.e., they are empty boxes.

P1 P2

P3

P4

P5

P6

Figure 12. Solution of the direct kinematics of the octahedral manipulator obtained when considering
orientation constraints.

s1,5
s2,6

s3,4

Figure 13. Boxes processed when introducing orientation constraints in the direct kinematics problem
for the octahedral manipulator. The solution is the encircled tiny box.
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6. Conclusions

This paper extends a projection and back-projection method for solving systems of distance
constraints to consider orientation constraints as well, and provides new procedures for its three
basic steps: the projection, the range reduction, and the back-projection. The novel projection and
back-projections are based on a monotonicity analysis that avoids the overestimations introduced
when using standard interval arithmetics. The proposed procedures give an effective solver that is
conceptually simple and whose basic operations can be easily parallelized. This opens a wide range of
applications for Distance Geometry in fields such as Robotics, structural biology, nano-technology, or
network sensors.

The presented experiments prove the feasibility of the proposed method, but it can be improved
in many directions. For instance, several (combinations of) projections can be used in each problem,
but not all of them contribute equally to the range reduction. Thus, it is our objective to further analyze
the projection procedure to characterize the best projections.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/7/1096/s1.
The Matlab implementation of the method presented in this paper is available as a supplementary material
attached to this paper.
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