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Abstract. Social robots are expected to adapt to their users and, like
their human counterparts, learn from the interaction. In our previous
work, we proposed an interactive learning framework that enables a user
to intervene and modify a segment of the robot arm trajectory. The
framework uses gesture teleoperation and reinforcement learning to learn
new motions. In the current work, we compared the user experience with
the proposed framework implemented on the single-arm and dual-arm
Barrett’s 7-DOF WAM robots equipped with a Microsoft Kinect camera
for user tracking and gesture recognition. User performance and work-
load were measured in a series of trials with two groups of 6 participants
using two robot settings in different order for counterbalancing. The ex-
perimental results showed that, for the same task, users required less
time and produced shorter robot trajectories with the single-arm robot
than with the dual-arm robot. The results also showed that the users
who performed the task with the single-arm robot first experienced con-
siderably less workload in performing the task with the dual-arm robot
while achieving a higher task success rate in a shorter time.
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1 Introduction

Expectations from social robots are high, since they must successfully assist the
users with daily tasks while maintaining their engagement in interaction over
extended periods of time [1]. One way to achieve this is by enabling the robots
to learn from the interaction with the users [2]. In this work, we studied the
interaction of lay users when asked to modify previously learned tasks of single-
arm and dual-arm robots (experimental setup is shown in Fig. 2). There is usually
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a strict division between the tasks that require one or two arms, however, we
compare the same aspects of the two robot settings and the effects that a previous
user experience with one setting may have on another. User performance was
quantitatively evaluated in terms of user workload, task success rate and task
execution time. The presented results are expected to provide future developers
an insight into the challenges associated with the interaction design for lay users
of such robots.

1.1 Relevant Work

Service robotics is a continuously growing field in various application domains
[3]. Special attention is given to healthcare domain, where socially interactive
assistant robots help patients with the recovery and compensate for increased
costs of care and lack of nursing staff [4], [5]. Service robots are built for specific
task and their functionality is defined with a set of skills necessary to perform
them. Some studies show that specific types of users such as older adults prefer
robot assistance over human assistance for tasks related to manipulating objects
[6]. In this work, we tackle the problem on the level of trajectory adaptation and
the proposed robot displacement tasks were used to evaluate the user experience.

Many challenges are associated with single-arm and dual-arm robots placed
in human environments [7]. Some studies compared the two robot settings for
manipulation tasks [8], but they did not involve robot learning from interaction.
Learning from Demonstration (LfD) is a widely used framework for robot learn-
ing [9]. A single demonstration is often not sufficient and some refinements must
be performed often through exploration in simulation or with a physical robot.
Repeating a demonstration of the entire task is not always necessary, especially
if the task is long or complex. In our previous work, we proposed an interactive
learning framework that enables a user to select and modify a task segment [10]
but this framework has never been evaluated in the experiments with users.

LfD methods often rely on robot vision to track and follow the user during
a demonstration [11]. Gestures are commonly applied to initiate, stop or switch
between robot tasks, but also give insight into the intended user behavior. Var-
ious methods for gesture recognition from RGB cameras have been proposed in
literature [12]. In our previous work, we showed that the recognition of pointing
gestures from depth images can be applied to real-time mobile robot guidance
[13]. Here, the concept of visual robot guidance is implemented on robot manip-
ulators and a Reinforcement Learning (RL) algorithm is applied to produce an
improved robot motion segment from a series of user interventions. Our study
compares the user experience with single-arm and dual-arm robots that use the
previously proposed framework.

2 Algorithms

The proposed framework has two components: interaction and learning, however,
only the interaction component was analyzed in this study. The user intervention
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algorithm that allows users to modify the initial robot trajectory relies on the
gesture recognition algorithm for switching between different robot states and
hands motion following algorithm for robot teleoperation. The algorithms were
implemented in C++ using the Robot Operating System (ROS) framework. A
detailed description of the algorithms can be found in [10].

2.1 Robot Control

In order to allow the robot to correctly mimic the human motion, we used a
similar framework as in [14] (see Fig. 1), where the tracking and gesture recogni-
tion algorithms provided desired poses, which were transformed to desired joint
positions that satisfy the kinematics constraints by using an Inverse Kinemat-
ics (IK) algorithm [15]. Desired joints positions are provided at a different rate
than the control loop’s execution rate, therefore a dynamic system was used to
interpolate the missing values. In order to store the trajectory, we record equally-
spaced Cartesian goal points xt sent to the robot, and thus we could reproduce
the user’s hands motions by sending the same sequence of the desired points
xt, t = 1..Npoints. Given the joint position reference, computed by the IK al-
gorithm over the user-generated Cartesian commands, a compliant feed-forward
controller that combines a friction model with a PID error compensation was
used to generate torque commands, as in [16]. The compliant controller makes
the robot safer in case of an unexpected physical contact with the user or the
surrounding objects.

2.2 Gesture Recognition and Motion Following

User tracking was implemented using the OpenNITMand NiTETMopen source
libraries. The position of the user’s joints was provided in the camera frame
of reference, which was used for both gesture recognition and hands motion
tracking. No transformation of the joints positions to the robot frame of reference
was necessary because joints relative displacements were used.

Switching between two robot states, ”EXECUTE” and ”FOLLOW”, was
initiated by by raising the right hand. A voice command could have been used
instead of gesture recognition, however, we decided to use this simple implemen-
tation to avoid possible deployment issues. Moreover, the initial tests showed
no considerable effect in terms of delay when stopping the robot at a desired
position.

Fig. 1: Robot control diagram
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Fig. 2: A user guiding dual-arm robot using hands motions tracked by Kinect
camera. Left: the initial trajectory is shown in green. Right: red arrows represent
the motions of both user hands and robot end-effectors in the teleoperation mode.

Hand-motion following consisted of tracking the position of each hand and re-
producing the motion in real time with the corresponding robot’s end-effector in
a two-dimensional horizontal plane above the tabletop, as shown in Fig. 2. When
switching to the ”FOLLOW” state, the robot would store the initial position of
a user’s hand p0 = (x0, y0) and the position of the corresponding end-effector,
i.e. the cut point pcut = (xcut, ycut). All subsequent displacements of a hand
were then reproduced by the end-effector according to following:

pgoal = pcut + (phand − p0) (1)

where phand = (xhand, yhand) is the new hand position detected by the camera
with respect to the initial hand position, and pgoal = (xgoal, ygoal) is the new
goal sent to the robot’s end-effector.

2.3 User Intervention

The implementation of the proposed user intervention is shown in Algorithm
1. The user was expected to observe the robot while performing the task, stop
it at a desired position by raising the right hand and then, within the next 2
seconds, place his or her left hand (single-arm task) or both hands (dual-arm
task) in a pose similar to holding a wheel when driving a car. All subsequent
user’s hands motions were then tracked and reproduced by the robot. To stop
the intervention, the user would once more raise the right hand and relieve the
control back to the robot. This action would also store the robot end-effector
position as the final point of the modified segment.

A 2s delay was introduced (see line 6 in Algorithm 1) to allow the user to
place the hands in a comfortable starting pose. Initial trajectory points were
indexed and had associated timestamps to always ensure the identical execution
of the trajectory. Cut and connect points were stored with their indexes. The cut
point was stored as the trajectory point in which the robot was found when the
user raised the right hand for the first time. The calculation of the connect point
required additional computation, because the users were obviously not able to
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Algorithm 1 User intervention

1: set state to ”EXECUTE”;
2: go to first trajectory point;
3: while in ”EXECUTE” state and not end of trajectory do
4: go to next trajectory point;
5: if hand raised then
6: set state to ”FOLLOW”; // after a 2s delay
7: store trajectory cut point;
8: while in ”FOLLOW” state do
9: follow user’s hands;

10: if hand raised then
11: set state to ”EXECUTE”;

12: end if
13: end while
14: find closest trajectory connect point;

15: end if
16: end while

precisely bring back the robot to it’s initial trajectory after modifying its seg-
ment. Therefore, the connect point was computed as the trajectory point that
was closest to the point where the user relieved the control back to the robot,
which occurred during the second raise-hand gesture. In the first experiment this
calculation is performed for a single-arm robot; however, in the second experi-
ment involving a dual-arm robot, the connect points are computed for each arm
and the index of the one closer to the corresponding end-effector was selected
for both arms.

The result of the user intervention is a new robot trajectory made of the
unmodified trajectory segment preceding the cut point, a modified trajectory
segment between the cut and connect points, and the final unmodified trajectory
segment that follows after the connect point.

3 Methodology

3.1 Hardware

The proposed algorithms were implemented on two Barrett’s 7-DOF Whole Arm
Manipulator (WAM) robots (see Fig. 2). A first-generation Microsoft Kinect
camera, which was used for user tracking, has a detection range from 0.8m to
4m with a vertical viewing angle of 43◦ and the horizontal viewing angle of 57◦.
It provides depth images at the resolution of 640 × 480 pixels at the maximal
frame rate of 30fps. A desktop PC with Ubuntu 12.04 was used in this work,
and it was powered by an Intel quad-core Q9550 @ 2.83GHz CPU with 4GB of
RAM.
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3.2 Experimental Setup

User tests were performed with a group of 12 participants, a mixed group of 6
female and 6 male adults of age between 25 and 42. All participants had a uni-
versity degree (7 engineers, 1 computer scientist, 1 physicist, 1 astrophysicist, 1
biologist, and 1 pharmacist) and no previous experience in robotics. Each partic-
ipant performed 10 trials of each experiment. The participants were divided into
two subgroups of 6, applying different order of experiments for counterbalancing.

Each participant was asked to perform two experiments, which consisted of
the same task but for different robot settings1, i.e. a single-arm and dual-arm
robot. Before the experiments, the researcher conducting the study described
the WAM robot and the Microsoft Kinect camera features, and the experiment
procedure to the participant. The procedure consisted of: 1) researcher’s demo
of the interaction with the dual-arm robot, 2) test trial by the participant, 3)
two experiments performed by the participant, and 4) filling of the questionnaire
about the performed experiments. The participants were assured that they were
not within the robot workspace and that the experiments were safe. The re-
searcher was present during the experiments to monitor the correct functioning
of the robot, but he was seated behind the user and did not interfere.

In the first experimental setup a single-arm robot was programmed to per-
form a linear motion at a constant height above the table, from the point
A1 = (0.5m, 0.4m) to the point B1 = (0.5m,−0.4m) in the robot reference
frame. An empty plastic bottle was placed as an obstacle on the table at the point
C1 = (0.5m, 0m). Without a user intervention, the bottle would be knocked over
by the robot. It was explained to the user that the goal of the experiment was
to minimally modify the initial robot trajectory such that the robot end-effector
avoids collision with the bottle.

In the second experimental setup, both robot arms simultaneously performed
the same task described for the single-arm robot, by moving along the parallel
lines above the table. The first robot followed the linear trajectory between the
points A1 and B1, while the second robot followed the linear trajectory between
the point A2 = (0.5m,−0.4m) and the point B2 = (0.5m, 0.4m), defined in
each robot’s frame of reference, respectively. Two plastic bottles were placed
on the tabletop at the points C1 and point C2 = (0.5m, 0m). As for the first
experiment, the goal was to guide the robot end-effectors around the bottles. In
both experiments, the robot end-effectors had fixed orientation facing downwards
and their distance from the tabletop was constant during the whole experiment.

3.3 Performance and Workload Measures

The following metrics were used to assess the performance and the workload of
the participants: task success, task completion time, trajectory length, and the
NASA-TLX questionnaire.

Task success was measured as a function of knocked down obstacles during
the task execution, and was computed as follows:

1 Additional material at: http://www.iri.upc.edu/groups/perception/adapt2
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Si,1 = (1−Nob) · 100%,∀i = 1 . . . 10
Si,2 = (1−Nob/2) · 100%,∀i = 1 . . . 10

(2)

where Si,1 and Si,2 are the task success values for the single-arm and dual-arm
robot tasks, respectively, Nob is the number of knocked down obstacles, and i is
the number of the trial. Higher task success values were indicators of a better
performance.

The task completion time was the total time that one or both robots needed
to reach the end point of the manipulation task. Lower completion times were
indicators of a better performance.

The robot trajectory length was computed as the sum of distances between
the Cartesian trajectory points in the horizontal (x, y) plane of the robot frame
of reference:

Di,1 =
∑N

k=2

√
(xk − xk−1)2 + (yk − yk−1)2,∀i = 1 . . . 10 (3)

where xk and yk are the k-th trajectory point coordinates in the robot frame
of reference, N is the number of trajectory points, and i is the number of the
trial. In case of the dual arm task, the trajectory length was computed as a
mean of trajectories’ lengths from both robot arms. Shorter trajectories were an
indicator of a better performance.

Participants completed the raw NASA-TLX questionnaire after each exper-
iment. The questionnaire enables the collection of six dimensions of workload
ranging from 0 to 100, and was used to assess the overall participant workload
when performing the experiments, similarly as in [13]. The overall workload is
computed as the average of the above-mentioned six dimensions.

3.4 Data Analysis

A two-way repeated measure ANOVA analysis was conducted on two within-
subject variables (number of trials and robot setting), using order of experiments
as between-subject variable. The number of trials was divided in ten levels and
the robot setting in two levels (single arm and dual arm). Statistical significance
was computed for all three performance metrics described in Section 3.3. The
effect on the overall participant workload was computed in the two-way repeated
measure ANOVA test using the robot setting as within-subject variable and the
order of experiments as between-subject variable. We considered the results as
significant for p < 0.05.

4 Results and Discussion

4.1 Performance Analysis

The results of the first ANOVA test show that there was a statistically signifi-
cant effect of the robot setting on the task completion time, F (1, 10) = 12.779,
p = 0.005, and robot trajectory length, F (1, 10) = 7.97, p = 0.018. In case of
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Fig. 3: Effect of the robot setting on: (a) task completion time, and (b) trajectory
length. Error bars represent the standard error of the mean.

the interaction with the dual-arm robot, the participants needed more time to
complete the task (Fig. 3a) and also guided the robots along longer trajectories
(Fig. 3b). This could be explained by the fact that, in case of the dual-arm robot,
the attention of the participants was divided between two arms, which reduced
speed and accuracy of the robot guidance.

The between-subject analysis showed that the order of experiments had a
statistically high significant effect on the task success, F (1, 10) = 12.214, p =
0.006, and a statistically significant effect on the task completion time, F (1, 10) =
5.348, p = 0.043, which is an indicator of the learning effect from previously
using the robot regardless of the initial robot setting; it also demonstrates user’s
ability to adapt when switching from single-arm to dual-arm robot setting, and
vice-versa. The robot trajectory length was not affected by the order in which
experiments were performed.

The results also show that there was a statistically high significant effect of
the number of trials on the task completion time, F (9, 90) = 2.881, p = 0.005,
regardless of the order in which the experiments were performed, which again
indicates the user’s ability to learn over time to more efficiently interact with
the robot. The number of trials did not have a statistically significant impact on
task success and robot trajectory length.

4.2 Overall Workload

The analysis of the interaction of the within-subject variable and the between-
subject variable, i.e. the order of experiments and the robot setting, shows a sta-
tistically significant joint effect on the participants’ overall workload, F (1, 10) =
5.482, p = 0.041. It can be noted from the overall workload mean values shown
in Fig. 4 that the participants experienced less initial workload if the first ex-
periment was performed with a single arm; however, the workload drop was also
lower during the second experiment using the same robot setting. But when
the experiments started with the dual-arm robot the initial workload was much
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Fig. 4: Effect of the interaction of the robot setting and the order of experiments
(Order = 1: starting with 1 robot; Order = 2: starting with 2 robots) on the
overall workload. Error bars represent the standard error of the mean.

higher and the workload drop was more drastic during the second experiment,
indicating that participants felt a huge relief for moving from a more difficult
condition. It should also be noted that in both cases the second experiment pro-
duced less workload than the first experiment, which indicates the existence of
the user’s learning factor.

5 Conclusion

The study compared the performance and the workload of a group of lay users
interacting with a single-arm and dual-arm robots performing the motion for
the same task. The experiments were designed to evaluate several aspects of the
user experience with the two robot settings. Although the experimental setup
involved a simple trajectory adaptation task, it demonstrated that lay users
with no background in robotics were able to successfully perform the task and
improve over time while reducing the overall workload. The proposed approach
can be extended to other application domains and more complex tasks, such as
assisting the users in the activities of daily living, with either one or two robot
arms, which will be a part of future work. Finally, the results suggest that a user
could be introduced to interaction with a dual-arm robot by initially interacting
with only one robot arm.
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