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Centralized and Distributed Command Governor
Approaches for Water Supply Systems Management

Francesco Tedesco, Carlos Ocampo-Martinez, Senior Member, IEEE, Alessandro Casavola and Vicenç Puig

Abstract—This paper evaluates the applicability of Com-
mand Governor (CG) strategies to the optimal management of
Drinking Water Supply Systems (DWSS) in both centralized
and distributed ways. It will be shown that CG approaches
provide an adequate framework for addressing the management
of these large-scale interconnected systems in the presence of
periodically time-varying disturbances (water demands) that can
be anticipated by using time-series forecasting approaches. The
proposed centralized and distributed CG schemes are presented,
discussed and compared when applied to the management of
DWSS considering the same set of operational goals in all cases.
The paper illustrates the effectiveness of all strategies using the
Barcelona DWSS as a case study and highlighting the advantages
of each approach.

Index Terms—Optimisation-based control design, command
governor, distributed control, drinking water networks, industrial
applications

I. INTRODUCTION

DRINKING water supply systems (DWSS) are of
paramount importance for the life in modern societies.

They are used for transferring water from production plants
to consumers and their service is expected to be dependable
and economically sustainable. From a dynamical systems point
of view, DWSS are large-scale interconnected multivariable
systems subject to several constraints related to the physical
and operational limitations of reservoirs and actuators, and
continuously varying customer demands (disturbances), which
generally show a periodic behavior. The growing complexity
of these networks, i.e., their size, the existing constraints on
the information structure, the presence of model non-linearities
and uncertainties and the requirement for higher performance
make their management costly to be solved in real time. As a
result, the corresponding control design problem has become
an increasingly important environmental and socio-economic
research topic worldwide.

Different approaches have been reported in the literature
to cope with the operational control problems for DWSS.
As discussed in [1], during the last years optimal opera-
tion of DWSS has been addressed by a wide variety of
methods starting from heuristics and expert systems to more
advanced control algorithms, as e.g. a variety of optimal
control schemes or more recently, Model Predictive Control
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(MPC). In particular, the MPC framework as introduced in [2]
is considered to be quite adequate for the optimal management
of DWSS because of the possibility of considering constraints
and multiple control objectives, see [3]. Examples of some of
the aforementioned methods are reported in [3], [4], [5], [6],
[7], [8], [9], among many others.

A further family of constrained control strategies based
on the same receding horizon paradigm used in MPC is
that of Command Governors (CG). A CG unit is a non-
linear static module added to an asymptotically stable plant
in charge of modifying, whenever necessary, the prescribed
command signal when its unmodified application would lead
to constraint violations and, in turn, possibly loss of stability.
This modification is typically achieved by solving on-line at
each time instant a constrained optimisation problem, whose
constraints take into account future system predictions.

The use of CG is easily motivated in many practical
industrial applications where only algorithms with reduced
computational complexity are allowed. Moreover, in many
cases it is possible to provide optimal setpoints only to
existing regulatory controllers, which is the task performed
by CG strategies [10]. In [11], a preliminary centralised CG
solution (CCG) for the optimal management of DWSS has
been proposed and compared with a centralised MPC scheme.
Centralised solutions require to have a global dynamical
model of the DWSS. Additionally, all measurements should
be available in one place to estimate all network states and
determine all control actions to be executed by actuators.
However, when dealing with large DWSS, these conditions
are difficult to be met because collecting all measurements in
one location is not possible or because a centralised high-
performance computing unit is not at disposal. Moreover,
centralised implementations scale poorly when the size of a
DWSS increases, requiring the complete readjustment of the
controller every time the DWSS is updated. Thus, the cost of
setting up and maintaining a monolithic centralised controller
could be prohibitive. An effective choice to overcome these
difficulties is the usage of either decentralised or distributed
approaches, where the global control system is decomposed in
a set of local controllers that are responsible of the supervision
of each subsystem. Recent research following these ideas have
been collected in [12].

In this paper, distributed versions of the CG approach
are proposed for the optimal management of DWSS as an
alternative to the CCG. In order to apply these distributed
strategies, the DWSS should be split into several subsystems,
each of which is locally controlled [13]. The main work on
distributed CG strategies is based on a non-cooperative non-
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iterative game theoretical approach [14]. There a sequential
scheme has been considered, where only one local controller is
allowed to update its control actions at each sampling time and
according to a fixed order, while all others continue applying
their previous computed commands. The main advantage of
this scheme is the low complexity and communication rates
required for its implementation, significantly lower than other
distributed approaches, e.g, those based on negotiation mecha-
nisms. However, the above scheme could be quite conservative
since the local controllers need to wait for several time instants
before they can update their commands. In order to overcome
this drawback, in the same work a more efficient implemen-
tation of the basic sequential CG is introduced, where at each
step the commands of all local controllers are sequentially
computed within the same sampling time according to a
prefixed order. Moreover, in [15], a novel scheme has been
presented where local controllers in the network are considered
to belong to particular groups (turns). Then, this improved
strategy exploits the fact that local controllers that are not
in the same group can simultaneously update their control
actions. Then, at each time instant on the basis of a round-robin
policy, all local controllers belonging to a group are allowed to
update simultaneously their commands while agents in other
groups continue applying their current commands. Following
the same lines of these works, a distributed non-iterative CG
(DNI-CG) strategy is proposed in this paper, where agents are
grouped into turns and where the entire decision process ends
up within few sampling steps.

In [16], preliminary results of the design of the DNI-
CG solution for the optimal management of DWSS has
been proposed, presenting promising results considering the
behaviour of such systems. In this paper, the further distributed
iterative CG approach presented in [17], here referred as DI-
CG, has been considered for supervision of the DWSS. In
this case, the agents select their control action by performing
an iterative decision procedure involving the resolution of
several optimization problems. The main benefit related to
the proposed class of distributed iterative CG strategies is the
ability to achieve Pareto optimal coordination performance not
only in steady-state conditions but also during transients.

Therefore, the main contribution of this paper relies on the
evaluation of the applicability of both distributed and central-
ized CG strategies when considering the optimal management
of a large-scale DWSS. From the obtained results, several
relevant new issues have arisen such as the performance
that can be achieved considering the management control
objectives and the operational/physical constraints associated
to the DWSS as well as the modification of standard CG for-
mulations to deal with periodically time-varying disturbances.

The remainder of the paper is organized as follows. The
optimal management problem for DWSS is stated in Section II
outlining the most common operational goals considered. The
proposed centralised CG approach is presented and discussed
in Section III while, in Section IV, the distributed implemen-
tation is described and explained, both within the framework
of DWSS optimal management. In Section V, results obtained
for the Barcelona DWSS case study are presented including
comparisons with the considered approaches. The simulations

results have been performed on a water network model that
is much larger than that considered in [16]. This fact implies
considering a larger amount of data not only related to the
newer and more complex topology of the proposed case
study but also related to the exogenous signals (disturbances)
represented here by the water demands. Moreover, given the
different size of the case study in this journal paper, the results
are totally new as expected. This clarification arises due the
fact that the interactions between elements for the larger-
scale system surely imply different behaviours for the system
states and inputs, yielding to different conclusions about the
performance of the proposed approaches in the closed-loop
topologies. Finally, some conclusions and future research paths
are given in Section VI.

II. DWSS OPERATIONAL CONTROL PROBLEM STATEMENT

A. Control-oriented Modelling

For completeness of exposition, DWSS modelling approach,
already reported by [9] is recalled. In general terms, a DWSS
system is represented by a directed graph G(V ,E), with a set
of vertices V composed of ns sources, nx storage elements,
nq intersection nodes and nd sinks, and a set of edges E
that consists of directed links (pipes). For these systems,
water flows along the links by using nu flow actuators (i.e.,
pumps and valves), while is stored into reservoirs (or tanks).
Moreover, water is taken from exogenous sources (that feed
the overall network) with the aim of satisfying the customer
demand (considered for the control system as disturbances).
Complementary, the model considers operational constraints
on its variables given by storage capacity and flow rate ranges.

Defining the system states x ∈ Rnx as the water volumes
into the storage elements, the vector of commands u ∈Rnu as
the water flows through actuators and the additive disturbances
d∈Rnd as the water demand flows, the DWSS control-oriented
model is stated as the the following set of linear discrete-time
difference-algebraic equations (DAE):

x(k+1) = Ax(k)+Bu(k)+Bdd(k), (1a)
0 = Euu(k)+Edd(k), (1b)

where (1a) corresponds with the dynamics of storage tanks, the
algebraic equations (1b) describe the network static relations
(i.e., mass balance at junction nodes) and k ∈ N denotes the
discrete time. Likewise, A, B, Bd , Eu, Ed , are the time-
invariant matrices of suitable dimensions describing the net-
work topology.

Together with the model in (1), the following set of hard
state and input constraints described in a convex polytopic way
are defined:

X , {x(k) ∈ Rnx |Gx(k)≤ g} ⊂ Rnx ∀k, (2a)

U , {u(k) ∈ Rnu |Fu(k)≤ f} ⊂ Rnu ∀k, (2b)

where G ∈ Rcx×nx , g ∈ Rcx , F ∈ Rcu×nu , f ∈ Rcu , being cx
and cu the amount of state and input constraints, respectively.
Complementary and looking for water supply reliability, the
following safety state constraints are defined:

x(k)≥ dnet(k) ∀k, (3)
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where dnet ∈Rnx is the vector of (possibly time-varying) lower-
bounds on water storages (expressed in m3) necessary to avoid
water stock-outs.

B. Model decomposition

Given the model in (1) and constraints (2)-(3), a suitable
system decomposition towards the application of the DCG
approach proposed in this paper should be performed. The
system partitioning seeks for achieving benefits such as the
reduction of computational complexity or the system modu-
larity while keeping the control performance of the centralised
solution or, at least accepting a level of degradation.

This paper uses the partitioning algorithm proposed in
[13], which automatically returns a set of compositional non-
overlapped subsystems by splitting the corresponding graph
G(V ,E) according to certain policies and criteria.

Therefore, the system (1) plus constraints (2)-(3) is decom-
posed in M , |N | subsystems collected in the set N , which
are output decentralised and input coupled. The model for the
i-th subsystem Si, for i ∈ {1, . . . ,M}, is expressed as

xi(k+1) = Aixi(k)+Bsh,iui(k)+Bd,idi(k), (4a)
0 = Esh,iui(k)+Ed,idi(k), (4b)

where matrices Esh,i and Esh,i have suitable dimensions de-
pending on the number of shared inputs of subsystem Si. For
simplicity, constraints

xmin,i ≤ xi(k)≤ xmax,i, ∀k (5a)
umin,i ≤ ui(k)≤ umax,i, ∀k, (5b)

correspond to a special case of the more general classes (2a)
and (2b). Moreover, from (3) yields

xi(k)≥ dnet,i(k). (6)

C. Control Objectives

The main management goal for a water supply system relies
on fully satisfying the water demands of its customers while, at
the same time, optimizing all operational objectives collected
altogether into a multi-objective optimal control problem.
According to [3], some of the most common operational goals
for the management and control of a DWSS are:
• Economic Objective: consists in providing a reliable wa-

ter supply while minimising both water production and
transport costs.

• Safety Objective: consists in guaranteeing the availability
of enough water (within the storage tanks) such as its
underlying stochastic demand can be properly satisfied.

• Smoothness: consists in operating the supply systems
under smooth control actions (avoiding abrupt changes
in pumps and valves).

The economic and smoothness goals can be achieved by
minimising the following cost functions, respectively:

Ji
E(k), ‖(αααi

1)
Tui(k)‖1,Wi

e,1
+‖(αααi

2(k))
Tui(k)‖1,Wi

e,2
, (7a)

Ji
∆U (k), ‖∆ui(k)‖2

2,Wi
u
, (7b)

where Ji
E ∈ R≥0 takes into account the water production cost

denoted by ααα1 ∈ Rnu and the water pumping cost denoted
by ααα2 ∈ Rni

u . The latter cost may be time varying according
to the variable electric tariff. On the other hand, Ji

∆U ∈
R≥0 represents the penalisation of control signal variations
∆ui(k) , ui(k)−ui(k−1), which is included to ensure a
smooth actuators operation and, at the same time, to extend the
lifetime of such devices. Here, ‖ · ‖p,W denotes the weighted
p-norm and Wi

e,1, Wi
e,2, Wi

u are diagonal matrices that weight
each decision variable within the associated control objective.

Regarding the safety objective, it is reached by satisfying
the safety constraints (3), which, in order to avoid numerical
infeasibilities, can be conveniently reformulated as the follow-
ing soft constraint

xi(k)≥ xi
s(k)−ξξξi(k)≥ 0, ∀k, (8)

where xi
s ∈ Rni

x is a vector of safety-volume thresholds in
m3 (conveniently determined according to the management
company policies related to the DWSS), and ξξξ∈Rnx represents
the amount of volume going down from the desired thresholds.
Hence, the cost functions Ji

S ∈ R≥0, defined as

Ji
S(k), ‖ξξξi(k)‖2

2,Wi
x
, (9)

are consequently stated, with Wi
x being the corresponding

weighting matrix related to the prioritisation of this control
objective. A proper selection of the inputs of vector xi

s should
be carried out since they affect the conservativeness and the
sub-optimality of the overall control problem solution.

D. Control Problem Statement

Finally, by merging all the elements described in previous
subsections, the overall control problem related to a DWSS
consists in the achievement of the system operational goals
(i.e., their minimization), subject to the system model and
physical/operational constraints. More formally, Problem 1
below can be stated.

Problem 1: The control problem related to a DWSS consists
in determining at each time instant k command inputs ui(k),
i = 1, ...,M along with volume relaxations ξξξi(k), i = 1, ...,M
that minimize (7) and (9) for the i-th subsystem according to
the model in (4) and constraints in (5), (6) and (8).

III. CENTRALISED CG STRATEGY FOR DWSS
OPERATIONAL CONTROL

In this section, Problem 1 has been addressed by resorting
to the well known CG method [10]. Because of its natural
capability to handle in a systematic manner hard constraints
on inputs and state-related variables, the CG approach seems to
be quite suitable for solving Problem 1 in either a centralized
manner or distributed manner (see Section IV).

In the centralized case, the CG scheme here considered is
depicted in Figure 1. There, a unique CG device is in charge
of accomplishing a supervision task on the DWSS consisting
of satisfying time-by-time the water demand while minimizing
the operative and other costs subject to operative constraints.
In particular, at each time k, the command u(k) is computed
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Figure 1. CG Scheme

as the best approximation of the desired command reference
r(k) under the following pointwise-in-time constraints:

c(k) ∈ C ,∀k (10)

where
c(k), Cx(k)+Lu(k), (11)

and C is a convex set and C, [IT
nx ,0

T
nu ]

T and L, [0T
nx ,I

T
nu ]

T .
For the problem of interest, the set C is defined as

C (xs),

(c,ξξξ) ∈ R(nx+nu)×(Rnx )

∣∣∣∣∣∣∣∣∣

 G 0
0 F
−Inx 0

c≤

 g
f

ξξξ−xs


and
ξξξ−xs ≤ 0

 ,

(12)
where matrices G,F and vectors g, f are the same as in (2).

From a mathematical point of view the CG action relies on
the selection, at each time step of a virtual command u(l|k)≡
w, ∀l, whose constant application over a semi-infinite horizon
l ∈ [0, ∞), from the initial state x(k), guarantees constraints
fulfilment. More formally, the command w is chosen in order
to prevent that the future predictions (virtual evolutions) of the
c-variable along the virtual time l under the action of w from
the initial state x (at virtual time l = 0), i.e.,

c(l,x,w,d),C

(
Alx+

l−1

∑
j=0

Al− j−1 (Bw+Bdd)

)
+Lw, (13)

violate constraints c(l,x,w,d) ∈ C ,∀l ∈ Z+.
In order to take into account the algebraic-equations (1b),

the following set is introduced:

W (d), {w ∈ Rnu |E1w+E2d = 0}. (14)

In the case of a constant disturbance d(l|k) = d, w is selected
as follows:

w ∈ V (x,d),
{

w ∈W (d)|
∃ξξξ(l) such that (c(l,x,w,d),ξξξ(l)) ∈ C (xs),∀l ∈ Z+} .

It is worth mentioning that, if A is strictly Schur, the set
V (x,d), ∀x ∈ Rnx , is convex and finitely determined, viz.
there exists an a-priori known integer l0 (see [18]) such
that if c(i,x,w,d) ∈ C (xs), i ∈ {0,1, . . . l0}, then c(i,x,w,d) ∈
C (xs), ∀l ∈ Z+.

Finally, the CG design problem is solved by selecting at
each time instant k a command u∗(k) = w∗, with w∗ solution
of the following convex optimisation problem:

w∗, arg min
w∈V (x(k),d)

M

∑
i=1

k+Hp−1

∑
l=k

[
Ji

E(l)+Ji
S(l)+Ji

∆U (l)
]
,ri(l) = 0,

(15)

where Ji
E(k) , ‖(αααi

1)
T(wi − ri(k))‖1,We,1+ ‖(((αi

2(k))
T(wi −

ri(k))‖1,We,2 .
Notice that r(k) = 0,∀k (and hence u(k) = 0,∀k) would

provide a target vector of commands that would produce the
lowest cost amongst all command policies. However, the con-
stant command vector u(k) = 0,∀k is usually not admissible
and the CG is used to compute, instant by instant, the best
admissible approximation of r(k) = 0,∀k given the consid-
ered disturbances and constraints, usually achieving command
sequences u(k) > 0. When this sequence of commands is
applied, optimized DWSS supervision operations are expected.

Whenever the disturbance predictions are time-varying (that
is actually of interest in this paper), a more general CG
formulation is needed. In this work we address this aspect and
introduce a CG scheme where the commands u(i|k) are chosen
in a set V depending on the entire disturbance sequence
d−→(k), [d(0|k), ...,d(l0|k)]. Such a set V takes the form

V (x, d−→(k)) ,
{

w−→|{w(l) ∈W (di)} s.t. ∃ξξξ(l),
(c(l,x,w(l),di(l)),ξξξ(l)) ∈ C (xs)} ,

(16)
∀i ∈ {0,1, ..., l0}.

Then, a problem similar to (15) can be solved in this case
and the obtained solution is the sequence

w∗−→, arg min
w−→∈V (x, d−→(k))

M

∑
i=1

k+Hp−1

∑
l=k

[
Ji

E(l)+Ji
S(l)+Ji

∆U (l)
]
,ri(l) = 0,

(17)
where the notation u∗−→(k) = w∗−→ denotes a command sequence
of Hp not necessarily constant samples whose only the first
one will be applied according to the RHC philosophy.

IV. DISTRIBUTED CG STRATEGIES FOR DWSS
OPERATIONAL CONTROL

The centralised scheme described in previous section would
require a central computational facility with access to all
system information. On the contrary, in this section we are
interested in the implementation of M computational nodes,
each one with restricted information about the whole system.

In this case Problem 1 is solved by distributing the DWSS
control/supervision task among the set N of M agents that
have to locally compute a command sequences ui(k). For this
reason, it is of use to recast the discrete DAEs in (4) in these
new expressions:

xi(k+1) = Aixi(k)+Biui(k)+ ∑
j∈Ni

Bi ju j(k)+Bd,idi(k),

(18a)

0 = Eu,iui(k)+∑
j∈Ni

Eu,i, ju j(k)+Ed,idi(k), (18b)

where the command ui(k) is managed by the i-th agent while
all the other flows u j(k) by a related j-th agent each, all
belonging to the set Ni of neighboring agents for the i-th
agent. In order to consider a limited information scope for
all agents, the notion of neighborhood of a given agent i is
required, which is given in the definition below.

Definition 1: (Neighborhood of the i-th agent) The neigh-
borhood of the i-th agent is defined as the set of all other
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agents j whose decision variables u j are involved with ui in
some constraints and have a direct communication link with
node i. �

As an immediate consequence of Definition 1, the sets of all
commands u j associated to the i-th agent can be characterised
in the following way:

[u]i , {All subvectors u j of u such that j ∈Ni}. (19)

More formally, each agent at each time k is instructed
at selecting the local command ui(k), on the basis of the
measured state xi(k) and external input signals u j(k) and di(k),
as the best approximation of the local desired reference ri(k).
Moreover the following pointwise-in-time constraints have to
be satisfied:

ci(k) ∈ Ci. (20)

In particular,

ci(k), Cxi(k)+Liui(k), (21)

where Ci is a convex set, Ci , [IT
ni

x
,0T

ni
u
]T and Li , [0T

ni
x
,IT

ni
u
, ]T .

For the considered problem, the set Ci is defined as

Ci(xi
s),


(ci,ξξξi) ∈

R(ni
x+ni

u)×(Rni
x )

∣∣∣∣∣∣∣∣∣∣∣∣∣


Ii 0
−Ii 0
0 Ii
0 −Ii
−Ini

x
0

ci≤


xmax,i
xmin,i
umax,i
umin,i

ξξξi−xs,i


and
ξξξi−xs,i≤0


.

(22)
Following the same lines as in the previous section, here

the following local optimisation problem is defined for each
agent:

w−→
∗
i, arg min

w−→i
∈Vi(xi(k),[ u−→(k)]i, d−→i)

k+Hp−1

∑
l=k

[
Ji

E(l)+ Ji
S(l)+ Ji

∆U (l)
]
,

ri(l) = 0, (23)

with

JE,i(k) , ‖(ααα1,i)
T(wi− ri(k))‖1,Wi

e,1

+‖(ααα2,i(k))T(wi− ri(k))‖1,Wi
e,2
.

The above problem is aimed at selecting, at each time step,
an open-loop virtual constant command sequence ui(l|k)≡wi,
in such a way that the future predictions (virtual evolutions) of
the ci-variable along the virtual time l under a constant virtual
command ui(l|k)≡wi from the initial state xi (at virtual time
l = 0), i.e.,

ci(l,xi,wi, [u]i,di),

C

(
Al

ixi+
l−1

∑
j=0

Al− j−1
i

(
Biwi+ ∑

j∈Ni

B j,iu j+Bd,idi

))
+Liwi,

(24)
do not violate constraints ci(l,xi,wi, [u]i,di) ∈ Ci,∀l ∈ Z+. In
order to take into account the algebraic equations (1b), the
following set is introduced:

Wi([u]i,di),
{

w ∈ Rni
u |Ei

u,iwi

+ ∑
j∈Ni

Eu, j,iu j(k)+Ed,idi = 0
}
. (25)

In the case of time-varying disturbance predictions, com-
mands ui(l|k) need to be selected in a set that depends on the
entire disturbance sequence di−→(k) , [di(0|k), ...,di(l0|k)] and
has the following form:

Vi(xi, [ u−→ j(k)]i, d−→i(k)),
{

w−→i(l)|{wi(l) ∈Wi(di(l))}
s.t. ∃ξξξi(l), (c(l,xi,wi(l), [u(l)]i,di(l)),ξξξi(l)) ∈ C (xs,i),
∀l ∈ {0,1, ..., l0}} .

(26)
Because the above set can be represented by a finite number

of inequalities of the type

hi(w−→i|[ u−→]i,xi, d−→i)≤ 0

for the purpose of this paper, it is convenient to redefine
Problem (23) in the following quite general form:

minwi−→
∈IRni fi(w−→i)

s.t. hi(w−→i|[ u−→]i,xi, d−→i)≤ 0.
(27)

A. Distributed Non-Iterative CG (DNI-CG)

The task introduced above is here addressed by resorting
to the non-iterative optimisation procedure presented in [15],
where agents that do not share any coupling constraint can
update their control moves in parallel without affecting the
feasibility retention. To this aim, agents are clustered into
particular subsets here denoted as turns

Definition 2: (Turn) A turn T ⊂ A is a subset of non-
neighboring nodes, i.e., ∀i, j ∈ T such that i 6= j, j /∈Ni (none
of them is a neighbor of the others). �

Following the ideas of [15], [14], the above definition is
here exploited to design a distributed control strategy where
the computation of all commands is performed, at each time
instant, by means of a sequential procedure involving turns of
agents. In particular, the simultaneous computation of the local
commands ui(k) is allowed only to agents belonging to the
same turn. All the other agents await until their turn become
active according to a precise order arranged beforehand. This
approach requires that
• a communication network linking neighbouring agents

exists and it is modelled as a graph (communication
graph);

• a sequence of turns T1,T2, ...Tq that covers completely
the communication graph has been determined.

Roughly speaking, at each time k, for each turn, agents carry
out the following basic actions:

1) receive finite sequences u j(l|k), l = 0,1, ..., l0 of com-
puted flows from previous updating neighboring agents
and u j(l|k−1), l = 0,1, ..., l0 from next updating neigh-
bouring agents;

2) compute ui(k), l = 0,1, ..., l0 according to the minimisa-
tion of a proper optimisation program;

3) transmit ui(l|k), l = 0,1, ..., l0 to neighbouring agents;
4) apply ui(0|k).
This procedure can be recast in the following pseudo-code

shown in Algorithm 1.
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Algorithm 1 (DNI-CG)

At each time k
1: set cnt = 1
2: while cnt ≤ q do
3: for i ∈ Tcnt do . parallelisation
4: receive u j(l|k − 1), l = 0,1, ..., l0 from previous

updating neighbours
5: receive u j(l|k), l = 0,1, ..., l0 from previous updat-

ing neighbours
6: compose [ u−→] j

7: compute u∗i (k) as solution of (27)
8: transmit u j(l|k), l = 0,1, ..., l0 to the neighbours
9: apply ui(k) = u∗i (0|k)

10: end for
11: cnt← cnt ++
12: end while

B. Distributed Iterative CG (DI-CG)
In this section, the above stated distributed CG supervision

problem is solved through iterative approach presented in [19].
It has been shown in [17] that, unlike the above described non-
iterative procedure, the proposed class of distributed iterative
CG strategies is able to achieve Pareto optimal coordination
performance not only in steady-state conditions but also during
transients.

1) Distributed Optimization based on Penalty Methods: In
this section, the distributed optimization method presented in
[19] is recalled and it will be used to solve in a distributed
way the above stated CG problem. To this end, consider for
each i-th agent the following augmented cost function, related
to problem (27), reinforced by the penalty function Pi:

Fi(w−→i,βi|[ u−→] j,xi, [ d−→] j) , βi fi(w−→i)+Pi(w−→i|[ u−→]i,xi)

= βi[ fi(w−→i)+
1
βi

Pi(wi|[ u−→]i,xi])],
(28)

where βi ≥ 0 is a local penalty parameter.
By using the above approach, local optimisation problems

for each agent can then be defined as follows:

min
ui∈IRni

Fi(w−→i,βi|[ u−→]i,xi, [ d−→]i), (29)

with the optimal solution denoted by

w−→
∗
i , argmin

w−→i
Fi(w−→i,βi|[ u−→]i,xi, d−→i). (30)

According to [19], it is possible to show that, for a local
optimisation, the values of Fi and Pi decrease as βi decreases.
As a consequence, each agent can use the local βi as a
selection tool to achieve possibly less constraints violation
(and indirectly, more cooperation) without resulting in an
increase in Fi(w−→i,βi|[ u−→]i,xi, d−→i).

At each iteration, βi are all decreased by the same factor
λ ∈ (0,1), i.e.,

βi(1) = λβi(0),∀i ∈ A ,
...

βi(p+1) = λβi(p) = λpβi(0),∀i ∈ A .

(31)

Moving from these considerations, an algorithm that com-
bines local subsystem optimisations with a bargaining scheme
between subsystems can be implemented. Such a scheme uses
iterative optimisations locally, where each agent i solves a
sequence of local programs involving only its neighbourhood
Ni. In particular, at each iterate it optimises the cost (29) by
a local selection of βi, which is then made aware to all other
agents j ∈Ni.

During the evolution of the distributed optimisation process,
the subsystems are actually negotiating: during the p-th itera-
tion they propose a solution w−→

(p)
i on the basis of [w−→]

(p−1)
i

and receive a counter offer [w−→
(p+1)]i computed by taking

into account w−→
(p)
i when the other agents in the neighborhood

change their individual moves. The selection of βi gives each
subsystem a way to "bargain": for large values of βi the
resulting solution provides minimal constraints satisfaction; as
βi decreases, the constraints satisfaction (and indirectly the
cooperation) increases.

Below, a pseudo-code implementing the algorithm for
the generic agent i with neighborhood Ni is reported in
Algorithm 2.

Algorithm 2 (Distributed Optimisation Routine)

INPUTS: xi, [u]−→i, u−→i

OUTPUTS: u−→
∗
i

initialisation:
1: p← 0, Ci← 0, w−→

(0)
i ← u−→i, [w−→]

(0)
i ← [ u−→]i

main:
1: if Ci == 0 then
2: if p > 0 then
3: receive w−→

(p)
j from each j ∈Ni

4: w−→
(p)
j ← w−→

(p−1)
j for agents that have notified con-

vergence
5: compose [w−→]

(p)
i

6: end if
7: select βi(p+1) = λβi(p)
8: w−→

(p+1)
i ←argminFi(w−→

(p)
i ,βi(p+1)|[wi−→]

(p)
i , x−→i, d−→i)

9: ∆Fi(p + 1) ← Fi(w−→
(p)
i ,βi(p)|[wi−→]

(p)
i , x−→i, d−→i) −

Fi(w−→
(p+1)
i ,βi(p+1)|[wi−→]

(p)
i , x−→i, d−→i)

10: if ∆Fi(p)< ε then
11: Ci← 1
12: notify local convergence to Ni
13: end if
14: p← p+1
15: transmit w−→i

(p) to Ni
16: go to main
17: else
18: w−→

∗
i ← w−→

(p)
i

19: end if

The above described formulation allows one to present the
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main properties of the DI-CG approach in Algorithm 3 when
executed at each time instant by all agents.

Algorithm 3 (Distributed Iterative CG Algorithm (DI-CG)
- Agent i)

At each time k
1: receive u−→ j(k−1), from each j ∈Ni

2: build up vectors [ u−→(k−1)]i
3: compute u−→i(k) by means of Algorithm 2 with inputs

xi(k), [ u−→(k−1)]i, u−→i(k−1)
4: apply ui(0|k)
5: transmit u−→i(k) to Ni

V. SIMULATION RESULTS

A. Case Study Description

The case study proposed in this paper is the drinking water
supply network of Barcelona (Spain), called in the sequel as
the Barcelona DWSS [3]. In this network, water is taken from
both superficial and underground sources (i.e., wells), provid-
ing together an inflow of about 7 m3/s. The main supply comes
from Llobregat, Ter, and Besòs rivers, which are regulated
by dams with an overall capacity of 600 hm3. Each water
source is limited, implying different water prices depending on
water treatments and legal extraction canons. Currently, there
are four drinking water treatment plants (WTP) and several
underground sources (wells) that can provide water through
pumping stations. The reader is referred to [3] for further
details of DWSS modelling and specific insights related to
the case study of this paper. The case study model consists
of 67 tanks and 121 actuators, these latter divided into 46
pumps and 75 valves. Moreover, the network has 88 water
demand sectors and 16 nodes. Both the demand episodes
and the network calibration/simulation setup are provided by
AGBAR1. These water demands are characterised/modelled by
patterns of water usage and can be forecasted by using time-
series models, neural networks, among other methods [20],
[21].

B. Closed-loop Setup

Considering [13], the control-oriented model of the
Barcelona DWSS is decomposed into six subsystems, as de-
picted in Figure 3 using different colours. All reported results
have been obtained by considering four-days water demand
scenarios (with 1 hour of sampling time), and Hp = l0 = 24
hours given the periodicity of the water demands. The prioriti-
sation of control objectives in (7) and (9) has been determined
by weights We,1 = 0.9, We,2 = 0.5, Wx = 0.2 and Wu = 0.1,
following a exhaustive trial-and-error tuning procedure. The
closed-loop system has been simulated by using the same

1Aguas de Barcelona, S.A. (AGBAR) is the company that manages the
drinking water supply and distribution in Barcelona (Spain).

S
1

S
3

S
4

S
2

S
5

S
6

Figure 2. Turns partitioning

model used to design the controller but fed with real water de-
mands. The network model has been calibrated and validated
by using real data provided by AGBAR. Regarding the DNI-
CG approach, it is worth to mention that agents are grouped
into 3 turns as depicted in Figure 2: T1 = {Agent 4} (blue),
T2 = {Agent 1} (red), T3 = {Agent 2,Agent 3,Agent 5,Agent
6} (green).

All simulations have been undertaken by using the Yalmip
interpreter [22] and the CPLEX solver, all under Matlab c© 8.2
environment, running on an Intel c© Core i5-3330 machine with
3.3 GHz and 8 GB RAM.

C. Results, Comparison and Discussion

The results achieved by the CG-based approaches2 are
shown in Table I. From these results, it can be seen that the
iterative distributed approaches achieve a quite similar perfor-
mance with respect to the one obtained with the centralized CG
scheme. Likewise, the DI-CG approach achieves better perfor-
mance when compared with the DNI-CG approach since the
DNI-CG does not envisage any information exchange among
the agents during the optimization being a non-cooperative
scheme.

Table I
COMPLETE BREAK-DOWN OF ECONOMIC COSTS FOR THE DIFFERENT

APPROACHES

DAY 1 DAY 2 DAY 3 DAY 4

WATER COST
CG 28.73 32.05 32.46 32.71

DNI-CG 32.25 33.45 35.40 35.56
DI-CG 30.04 32.91 33.58 33.81

ELECTRIC COST
CG 26.31 26.31 27.15 27.29

DNI-CG 32.45 31.18 29.91 29.87
DI-CG 26.92 27.13 27.11 27.22

TOTAL COST
CG 55.04 58.93 59.60 60.05

DNI-CG 64.7 64.63 65.31 65.43
DI-CG 56.96 60.04 60.74 61.08

2Costs in Table I are given in economic units rather than real values (Euro)
due to confidentiality reasons.
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Figure 3. Partitioning of the Barcelona DWSS

Figures 4 and 5 show the comparison of tank volume
evolutions and a water flow though a valve when considering
the proposed CG approaches. The highlighted areas for all
figures (in cyan colour) delimit the time intervals with the
lowest electric costs (night hours).

Notice that all approaches try to fill the tanks up during
the night, period when the energy is cheaper as seen in
Figure 4. On the other hand, Figure 6 shows the different
usage of the available water sources according to each CG
approach proposed. In particular, the DNI-CG is not able
to fully exploit the lower price sources as the other two
approaches do. Such a behavior cannot be improved by acting
on the available weights because in the DNI-CG scheme,
each water source is governed by a different agent that works
by minimizing its own local cost without any attempt of
coordinating the solutions with the other agents, as, on the
contrary, is accomplished in the centralized and the DI-CG
schemes. For the sake of completeness, Figure 7 provides a
closer look at the convergence of Algorithm 2 performed under
the action of DI-CG. In particular, the iteration process at time
k = 11 for the input u25 is depicted along with the evolution
of the parameter β5. Note that the input during the iteration
process converges to a feasible value.

As expected, the different management behaviours produced
by the proposed approaches are confirmed by the results

Table II
ECONOMIC COSTS COMPARISON WITH DIFFERENT SCENARIOS

Parameters Economic Cost

We1 We2 Wx Wu CG DNI-CG DI-CG
0.9 0.5 0.2 0.1 233.62 260.07 238.32
0.9 0.5 1 0.1 274.45 303.15 279.98
0.9 0.5 0.2 0.8 269.44 299.94 274.85
0.5 0.9 0.2 0.1 238.88 265.27 243.09

collected in Table I. Specifically, the total cost achieved by
both DCG and DI-CG are quite similar and better than the
performance achieved by using DNI-CG.

Notice also that, although all simulations have considered a
four-days scenario, the closed-loop system reaches its steady
state behaviour at the end of the second day. After that, the
behaviour becomes periodical and a single-day evaluation can
be considered as performance indicator.

In order to motivate the choice of the tuning weights within
the design of the multi-objective predictive controller, Table
II presents a sensitivity analysis performed by changing such
values and evaluating the total economic cost related to all
four simulation days.
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VI. CONCLUSIONS

This paper evaluates the application of Command Governor
(CG) strategies for the operational control of DWSS in both a
centralized and distributed way, discussing the effectiveness
and advantages of both strategies. The proposed CG ap-
proaches are shown to be suitable for optimal management of
DWSSs because they allow one to consider the relevant effect
of persistent and periodical disturbances (water demands)
over the state evolutions of the network and their marginal
stability feature. The Barcelona DWSS has been considered
as the case study for the undertaken assessment analysis.
From these results, it can be seen that iterative distributed
approaches may achieve a performance that is quite close to
that corresponding to the centralized CG scheme. In particular,
the DI-CG approach achieves better management performance
when compared with the DNI-CG approach. However, this
improvement is achieved at the cost of larger computational
times because of the iterative nature of the DI-CG scheme.
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Figure 6. Comparison of inflows from the main water supply sources: (top)
Abrera (u25), (middle) Ter (u58), (bottom) Llobregat (u104)
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