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Abstract

Variable geometry trusses are composed, in general, of unit cells which can be modeled as bars
connected by spherical joints. Under mild conditions, it has been shown that the only feasible
cells are topologically equivalent to bipyramids. Unfortunately, using standard formulations,
the closed-form position analysis of bipyramids is not a trivial task. Actually, it has only been
achieved for bipyramids with up to 7 vertices, whose closure polynomial has been shown to
be of order 24. In this paper, using a distance-based formulation and a kinematic inversion for
fans of tetrahedra, the problem is solved for bipyramids with up to 11 vertices, whose closure
polynomial is of degree 896. No other position analysis problem leading to such a high-order
closure polynomial has been previously solved.
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1. Introduction

A truss is a structure where each element, typically a bar, only supports tension or com-
pression forces because it is connected to other bars through what are assumed to be multiple
spherical joints [1], although in some cases the joints may be separated in the actual construc-
tion [2, 3]. While rigid trusses have been widely used in construction, passive mobile trusses are
commonly used, for instance, as shock absorbers. The advent of automation opened the possibil-
ity to build active trusses, i.e., trusses which can actively vary their geometry as needed [4]. The
motion of such devices is commonly achieved by having actuated bars with variable length. Ac-
tually, the number of such bars gives the number of degrees of freedom of the device. Arbitrary
variable geometry trusses may be defined but, to facilitate their design, analysis, construction,
and control, they are typically built with repetitions of a given unit cell. A mechanism composed
of several unit cells can have a large workspace, like a serial robot, but at the same time the high
stiffness of a parallel one. This is why variable geometry trusses are sometimes considered a
generalization of the serial/parallel robots [5]. Due to their exceptional stiffness to weight ratio,
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Table 1: The cells traditionally considered as the building blocks of variable geometry trusses.

Truss Hexahedron Octahedron Decahedron Dodecahedron

Order
(N) 1 2 3 4

Vertices
(N + 4) 5 6 7 8

Faces
(2N + 4) 6 8 10 12

Edges
(3N + 6) 9 12 15 18

Spherical
joints

(5N + 8)
13 18 23 28

Quadratic
equations
(3N + 3 )

6 9 12 15

Polynomial
degree
(N2N)

2 8 24 64

References [14] [15], [3] [16] [17]

their structural simplicity, and their shape versatility, variable geometry trusses have a myriad
of potential applications including robot arms [6], hyper-redundant manipulators [7], flight sim-
ulators [8], payload vibration reduction systems [9], tools to manipulate large payloads [10],
morphing wings [11], space devices [12] or civil engineering structures [13].

The design of novel variable geometry trusses rely on having a complete kinematics charac-
terization of their constituent cells. The larger the set of cells whose position analysis is solved,
i.e., the set of cells whose assembly modes can be obtained solely from their edge lengths, the
larger the options available to the designer. The motion capabilities and the ways to actuate a cell
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increase with its number of bars, but this also complicates its position analysis.
It was shown in [5] that, under mild conditions, the only feasible cells in variable geome-

try trusses are topologically equivalent to bipyramids, i.e, polyhedral resulting from joining two
n-gonal pyramids at their bases (see Table 1). Note, thought, that unit cells must not be de-
composable in combinations of simpler unit cells. Thus, the bipyramid of order 1 in Table 1,
i.e., the hexahedron, cannot be properly considered a unit cell since it can be separated into two
tetrahedra. We include it in the discussion because it will be the basic element used to derive the
univariate closure polynomial of higher order bipyramids.

The position analysis of bipyramids can be addressed using numerical techniques such as
those based on continuation [18, 19], or interval analysis [20, 21]. However, closed-form solu-
tions in the form of univariate closure polynomials are, in general, preferable because they offer
more information on the problem, such as an upper bound on the number of assembly modes, or
the possible structure of the singularity set. Closed-form solutions are typically obtained using
elimination techniques [22] where a univariate closure polynomial is obtained applying algebraic
manipulations, sometimes driven by intuition, on a set of equations resulting from an algebraic
formulation of the problem. Thus, the first step to solve the problem is to obtain a good formula-
tion.

A straightforward formulation of the position analysis of bipyramids results from assigning
coordinates to three vertices defining a face, and leaving all other vertices’ coordinates as vari-
ables. These variable coordinates are obviously constrained by the edge lengths which translate
into quadratic equations relating them. The result is a large sparse system of equations from
which it is not easy to obtain a univariate resultant without introducing extraneous factors [23].
As an alternative, ad-hoc approaches for particular cells permit obtaining more compact formula-
tions by introducing position and angular variables. In this case, the former variables are usually
put in terms of the latter, and the tangent half-angle substitution is used to obtain a reduced
system of algebraic expressions.

Unfortunately, even with compact formulations, the elimination process gets rapidly involved
as the order of the bipyramid increases. Therefore, up to now, only closed-form solutions for the
octahedral [15, 3] and the decahedral bipyramids [16] are available. For these two cases, it
has been shown that the univariate closure polynomials are of degree 8 and 24, respectively.
The following bipyramid in complexity, the dodecahedral bipyramid of order 4, has only been
analyzed using numerical techniques [17].

In this paper, the position analysis problem is solved for bipyramids up to order 7 using a
coordinate-free distance-based formulation and a kinematic inversion for fans of tetrahedra (a
sequence of tetrahedra sharing a common edge). The presented method starts by finding the
distance between the end-vertices of a fan of k tetrahedra, i.e., its vertices of degree 3. Then, a
univariate closure polynomial for a (k−1)-order bipyramid is obtained using a kinematic inver-
sion. The procedure is surprisingly simple, and, from our point of view, its ability to obtain a
closure polynomial without using any kind of variable elimination is remarkable.

This paper is organized as follows. Section 2 shows how to obtain the distance between the
end-vertices of a tetrahedral fan with an arbitrary number of tetrahedra. Then, Section 3 uses this
result to derive a univariate closure polynomials for bipyramids using a kinematic inversion. Sec-
tion 4 solves the position analysis of bipyramids up to order 7, and, finally, Section 5 summarizes
and discusses the main contributions of the proposed approach.
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Figure 1: In the fan of two tetrahedra (P1P2P3P4 and P1P2P4P5) depicted on the left, the squared distance between
its end-vertices, s3,5, can be expressed as a 2-valued function of the edge lengths in the fan. By chaining this operation
twice, the squared distance between end-vertices of the fan of three tetrahedra (P1P2P3P4, P1P2P4P5 and P1P2P5P6)
on the right can be obtained as a 4-valued function of all involved edge distances. If an edge connecting the end-vertices
of the fan (represented in dotted red) is added and the common edge (represented in solid cyan) is removed, the result is
a bipyramid.

2. The Distance Geometry of fans of tetrahedra

The valid distances between a set of points can be characterized using the theory of Cayley-
Menger determinants [24, 25]. The Cayley-Menger bi-determinant of two sets of points, Pi1 , . . . , Pin
and P j1 , . . . , P jn , is defined1 as

D(i1, . . . , in; j1, . . . , jn) =

∣∣∣∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 si1, j1 . . . si1, jn

1
...

. . .
...

1 sin, j1 . . . sin, jn

∣∣∣∣∣∣∣∣∣∣∣∣ , (1)

where sk,l stands for the squared distance between Pk and Pl. If the two sets of points are the
same, then D(i1, . . . , in) = D(i1, . . . , in; i1, . . . , in) is called the Cayley-Menger determinant of the
involved set of points.

The Cayley-Menger determinant is proportional to the squared volume of the simplex spanned
by points Pi1 , . . . , Pin . Thus, in three dimensions, any Cayley-Menger determinant involving
more than 4 points necessarily vanishes. In particular, for the fan of two tetrahedra depicted in
Fig. 1-left, we have that

D(1, 2, 3, 4, 5) = 0, (2)

1An alternative common definition (see for instance [24]) includes a constant factor, which is dropped here to simplify
the formulation.
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which yields a quadratic expression in any of the involved distances. Following the procedure
detailed in [26], this expression permits expressing one of the squared distances, say s3,5, as a
function of the other distances as

s3,5 = −
1

D(1, 2, 4)

(
D(1, 2, 3, 4; 1, 2, 4, 5)

∣∣∣∣
s3,5=0

±
√

D(1, 2, 3, 4) D(1, 2, 4, 5)
)
, (3)

where D(1, 2, 3, 4; 1, 2, 4, 5)|s3,5=0 denotes the Cayley-Menger bideterminant D(1, 2, 3, 4; 1, 2, 4, 5)
with s3,5 set to 0.

To lighten the notation, and assuming that only s1,2 and s3,4 are left as variables, (3) will be
written as

s3,5 = Ψ3,1,2,4,5(s1,2, s3,4). (4)

Then, if we have the fan of three tetrahedra depicted in Fig. 1-right, we conclude that

s3,6 = Ψ3,1,2,5,6(s1,2, s3,5)
= Ψ3,1,2,5,6(s1,2,Ψ3,1,2,4,5(s1,2, s3,4)). (5)

By iterating this reasoning, if we have a fan of tetrahedra with m vertices, m > 4, the distance
between its end-vertices can be expressed as the following 2(m−4)-valued function:

s3,m = Ψ3,1,2,m−1,m(s1,2, s3,m−1)
= Ψ3,1,2,m−1,m(s1,2,Ψ3,1,2,m−2,m−1(s1,2, s3,m−2))

...

= Ψ3,1,2,m−1,m(s1,2,Ψ3,1,2,m−2,m−1(s1,2, · · · ,Ψ3,1,2,5,6(s1,2,Ψ3,1,2,4,5(s1,2, s3,4)) · · · )), (6)

Next, using a kinematic inversion, this formula is used to obtain closure polynomials for bipyra-
mids.

3. Deriving closure polynomials for bipyramids

In a bipyramid, s3,4 and s3,m in (6) are known and we want to obtain the values of s1,2 compat-
ible with these fixed distances. This operation can be seen as a kinematic inversion. Kinematic
inversion is the process of fixing different links in a mechanism (or assuming that any link other
than the rigid links is fixed). It is a good method of generating some new mechanisms and it is
very often used in mechanism analysis [27]. To perform this inversion, the first step is to clear
the square roots in (6). As radicals will appear nested, clearing them will consist in an iterative
process starting from the outer one. At each step of this process, the expressions involving a
radical will have the general form

α0 + α1
√

r + α2

(√
r
)2

+ α3

(√
r
)3

+ · · · = 0, (7)

where r and αi are symbolic expressions. This equation can be rewritten as

(α0 + α2r + α4r2 + . . . ) +
√

r (α1 + α3r + α5r2 + . . . ) = 0, (8)

which can be unfolded into two equations, one for each sign of
√

r. Since we are interested in
the roots of both equations, we obtain their product, which can be written as

(α0 + α2r + α4r2 + . . . )2 − r (α1 + α3r + α5r2 + . . . )2 = 0, (9)
5



which does not include the radical any more.
While clearing radicals as explained above introduces no extraneous roots, one cannot expect

to obtain the minimal degree polynomial due to the presence of singularities in the formulation.
Indeed, each function Ψ3,1,2,i−1,i, i = 5, . . . ,m, in (6), introduces a dividing term of the form
D(1, 2, i− 1), which vanishes when P1, P2, and Pi−1 are aligned. If this happens, the fan of tetra-
hedra can be divided in two parts which can freely rotate about the axis defined by P1P2. These
degenerated cases have to be considered separately from the general analysis. Assuming that the
fan of tetrahedra does not degenerate, i.e., that D(1, 2, i − 1) , 0 for i = 5, . . . ,m, these factors
can be removed from the final expression. This can be simply performed by iteratively dividing
the expression obtained after clearing radicals by them until the remainder is not null. This fi-
nally leads to the sought-after minimum degree univariate closure polynomial of the bipyramid
of order N = m − 4 in the squared distance between its apices.

Observe that, given a valid configuration, its mirror projection defines another valid configu-
ration because they both are defined by the same inter-point distances. Thus, each real solution
of the obtained univariate polynomial defines at least two valid spatial configurations for the
corresponding bipyramid. All valid configurations can be computed by assigning a valid set
of coordinates to a reference triangle, say P1, P3 and P4, and then, using trilateration, we can
obtain 2 sets of possible coordinates for P2, 4 for P5, 8 for P6, etc. Therefore, we will obtain
2N sets of possible coordinates, either real or imaginary. Only the real solutions yield feasible
configurations.

4. Results

Next, we apply the presented method to solve the position analysis of bipyramids. Irre-
spective of the actually actuated edges in each application, for a given instance of the position
analysis problem, segments P1Pi, P2Pi, P jP j+1, and P3Pm, with 2 < i ≤ m, and 2 < j < m, have
fixed length. In the examples analyzed next, such lengths are randomly generated. To this end,
random coordinates are assigned to the vertices of the bipyramids and the required distances be-
tween them are then used as input to the position analysis. This procedure as well as the method
presented in this paper has been implemented in Maple 15 and run on an Intel Core 7 at 3Ghz,
with 12 Gb of RAM. This implementation can be found as multimedia material attached to this
paper.

If we start with the position analysis of a bipyramid of order one, then (6) reduces to (4), that
is,

s3,5 = Ψ3,1,2,4,5(s1,2, s3,4). (10)

Then, since in this case s3,4 is known, the above equation, using (3), can be rewritten as

s3,5 =
Φ1(s1,2) ±

√
Φ2(s1,2)

Φ3(s1,2)
, (11)

with Φ1(s1,2), Φ2(s1,2), and Φ3(s1,2) symbolic expressions in s1,2. This equation can be arranged
as

Φ1(s1,2) − s3,5 Φ3(s1,2) ±
√

Φ2(s1,2) = 0, (12)

which, after clearing radicals, yields

Φ2(s1,2) − (Φ1(s1,2) − s3,5 Φ3(s1,2))2 = 0. (13)
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Figure 2: Two valid configurations resulting from the position analysis of the analyzed bipyramid of order 1. The other
two are mirror configurations with respect to the plane defined by the reference triangle in red.

Using the random data generated as explained above, we have that

Φ1(s1,2) = s2
1,2 − 6.9 s1,2 + 0.34,

Φ2(s1,2) = 0.99 s4
1,2 − 13.92 s3

1,2 + 50.35 s2
1,2 − 12.17 s1,2 + 0.59,

Φ3(s1,2) = 0.15 s2
1,2 − 1.69 s1,2 − 0.10,

s3,5 = 3.26.

Then, substituting these expressions in (13) yields

0.76 s4
1,2 − 12.57 s3

1,2 + 48.48 s2
1,2 − 12.69 s1,2 + 0.59 = 0.

Finally, after dividing the above right hand side polynomial by the singularity factor

D(1, 2, 4) = s2
1,2 − 10.64 s1,2 + 0.64, (14)

we obtain the minimum degree closure polynomial

s2
1,2 − 5.75 s1,2 + 1.20. (15)

As explained above, each root of this polynomial leads to two possible configurations of the
bipyramid. In this case both roots yield real configurations. Figure 2 shows two of them. The
other two are symmetric with respect to plane defined by P1, P3, and P4, used as a reference
triangle.

The coefficients of the closure polynomial are computed in exact rational arithmetics and,
thus, the accuracy on the solutions depends uniquely on the method used to determine the roots
of this polynomial.

To verify the results, let us define the error function

E(s1,2) =
Φ1(s1,2) ±

√
Φ2(s1,2)

Φ3(s1,2)
− s3,5. (16)
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Figure 3: Plot of the closure polynomial (in dashed black), and the two values of the error function (in blue and green).
Observe how their roots coincide.

N te tr t f dc ts nr tc nc tb tk
1 0.12 0.00 0.00 2 0.02 2 0.02 4 98 0.05
2 0.13 0.00 0.00 8 0.05 6 0.02 4 1835 1.16
3 0.14 0.00 0.00 24 0.01 16 0.16 16 - 7.51
4 0.38 0.03 0.04 64 0.07 36 0.47 24 - 38.55
5 0.61 1.32 0.83 160 0.85 102 2.73 68 - 152.34
6 0.92 36.11 17.14 384 15.49 224 9.05 112 - 421.16
7 1.57 953.25 327.05 896 371.19 476 23.39 140 - 961.51

Table 2: Results obtained for the position analysis of bipyramids up to order 7. All times are given in seconds. Execution
times over 2000 seconds are not given. See text for details.

The roots of this 2-valued function must coincide with those of (15). Figure 3 shows the plot
of (15) (in dashed black) and that of (16) (in blue and green). Roots indeed coincide.

Alternatively to the process described above, one can use state-of-the-art numerical solvers
such as Bertini [19] or the CuikSuite [28] to directly obtain the sets of valid coordinates. The
former is a continuation-based solver and the latter is based on linear relaxations. Both solvers
are applied on the standard formulation of the problem, based on point coordinates, as detailed
in the Introduction. As expected, both solvers obtain the same four sets of coordinates as those
obtained using the presented method.

Now, we can proceed using the same sequence of operations as above to solve the position
analysis of bipyramids up to order 7. Table 2 summarizes the results. For each order of the
bipyramid, N, the following data are given:

te: time taken to obtain the symbolic closure expression;
tr: time taken to clear the square roots;
t f : time taken to remove the singular factors;
dc: the degree of the closure polynomial;
ts: time taken to determine the roots of the closure polynomial;
nr: number of real solutions;
tc: time taken to generate coordinates from the roots;
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Figure 4: Plots of the 2N -valued error functions (in different colors) and the univariate closure polynomial (in black
dashed line) for bipyramids of order N=2 (top), 3 (middle), and 4 (bottom). The plots of the closure polynomial have
been non-linearly scaled to fit them in the ranges of the error functions (as only their roots are relevant here). Similar
plots have been obtained for bipyramids with order up to 7, but the details are obviously harder to visualize.
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Figure 5: Zoom-in on the right part of the plot in Fig. 4-bottom showing the coincidence between the roots of the
24-valued error function (represented by lines in different colors) and those computed using the obtained closure polyno-
mial (represented by the black dashed line).

nc: number of valid coordinate sets;
tb: time taken by Bertini to obtain the valid coordinate sets;
tk: time taken by CuikSuite to obtain the valid coordinate sets.

Figure 4 shows the plots of the error functions for bipyramids of order 2, 3, and 4. Figure 5
shows a zoom-in on the right extreme of the last plot, where it can be verified the coincidence
between the roots of the closure polynomials and those of the corresponding error functions.
Finally, Figs. 6 and 7 show some valid configurations for the solved position analyses.

Despite Bertini and Cuik are compiled and highly optimized solvers written in C, the sym-
bolic approach introduced in this paper is significantly more efficient. In the case of Bertini, the
number of paths to track using continuation grows with 2m+3 thus becoming impractical for this
problem. Bertini is actually well-suited for problems involving a moderate number of variables
and equations, even if they are of high degree. The CuikSuite, on the contrary, is specially tai-
lored for large problems with equations of low degree. While results show that the presented
symbolic approach becomes impractical for the position analysis of bipyramids of order higher
than 7, Cuik remains as the only numerical alternative for solving such problems. The limiting
factor for the presented approach is memory usage due to the symbolic manipulation of high-
order polynomials in rational arithmetics. This is specially relevant when clearing radicals.

5. Conclusions

Variable geometry trusses can be seen as composed of bar-and-joint cells that have the topol-
ogy of bipyramids. In the previous literature on this kind of trusses, the available closed-form
solutions to the position analysis of these constituent cells were obtained on a case-by-case ba-
sis and limited to those having up to 7 vertices. In this paper, we have presented a unifying
procedure that generates closed-form solutions in general, independently of the number of ver-
tices. Most surprisingly, this result is obtained without relying on variable eliminations. As an
example, we have solved a case that leads to a closure polynomial of degree 896. Up to our
knowledge, no other position analysis problem leading to such a high-order closure polynomial
has been previously solved in closed-form.
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Figure 6: Two valid configurations for the analyzed bipyramid of order 2. The two mirror configuration with respect to
the plane defined by the reference triangle in red are also valid configurations not represented here. The problem solved
here is equivalent to that of solving the forward kinematics of the octahedral manipulator.

Figure 7: Eight of the sixteen valid configurations for the analyzed bipyramid of order 3. The other eight configurations
result from obtaining the mirror symmetric ones to these with respect to the plane defined by the reference triangle in
red.

11



The presented procedure can obviously be applied to solve the position analysis of rigid
graphs other than those with the topology of bipyramids. For instance, in [29] it is applied to
solve the forward kinematics of some parallel robots. Identifying the family of graphs to which
this technique can be applied is certainly a point that deserves to be investigated.
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