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Abstract— The leak localisation methodologies based on
data and models are affected by both uncertainties in the
model and in the measurements. This uncertainty should
be quantified so that its effect on the localisation methods
performance can be estimated. In this paper, a model-based
leak localisation methodology is applied to a real District
Metered Area using synthetic data. In the generation process
of the data, uncertainty in demands is taken into account.
This uncertainty was estimated so that it can justify the
uncertainty observed in the real measurements. The leak
localisation methodology consists, first, in generating the
set of possible measurements, obtained by Monte Carlo
Simulation under a certain leak assumption and considering
uncertainty, and second, in falsifying sets of nodes using the
correlation with a leak residual model in order to signal
a set of possible leaky nodes. The assessment is done by
means of generating the confusion matrix with a Monte Carlo
approach.

I. INTRODUCTION

A significant interest has been generated by leaks in
water distribution networks (WDN), due to the financial
cost borne by utilities, potential risks to public health and
environmental burden associated with wasted water and
energy. Thus, technologies for locating leaks have been
developed. They range from ground-penetrating radar to
acoustic listening devices [4]. [14] reviews the leakage
assessment, detection, localisation and control methods. A
review of transient-based leak detection methods is offered
in [2] as a summary of current and past work. The use of
sensor data from telemetry and mathematical models for
real-time monitoring of water networks allows detecting
and diagnosing possible abnormal situations, such as leak-
ages. [16] proposes the use of sensitivity matrix for the
leak location in WDN. Following this idea, a model-based
leak location method was applied with satisfactory results
in a District Metered Area (DMA) situated in Barcelona
[11].

The accuracy of a leak localisation method is an im-
portant issue for the industry. This accuracy has to be
assessed depending on the sensors available. [10] presents
an accuracy assessment to be applied before the leak
location. Some DMAs may only have measurements in the
inputs. However, the lack of data is not the only handicap
that a good accuracy in leak localisation faces. Actually,
uncertainty in the model seems to be the main influence
on accuracy. Uncertainty propagates through the use of
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these models to the decision taken. Key uncertainties in
WDN modelling are considered in [6], where promising
approaches for quantifying and reducing uncertainty are
reviewed. Uncertainty in WDN modelling may be divided
in two categories [5]: aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty in demands is the main
objection of the end users when using hydraulic models
([9]). Xu et al. [16] studies the reliability of a network
based on the uncertainty in demands, roughness and tanks
levels. The probability distribution of these parameters are
estimated and validated by Monte Carlo (MC) simulation
using a linear model. The normal distribution of the
parameters generate, through the corresponding linearised
model, a normal distribution of pressures. They alert of the
difficulties of using the linearised model when the demand
characteristics change and propose a modification creating
different working points.

The paper is organized as follows: Section II presents the
problem statement and the case study. The methodologies
applied are described in Section III. In Section IV the
results when applied to a real DMA with synthetic data are
shown. Conclusions obtained are discussed in Section V.

II. PROBLEM STATEMENT

Given a model-based methodology for leak detection
and localisation, the performance assessment must take
into account the uncertainty both in the models and the
measurements. Moreover, the resolution of the sensors may
generate sets of undistinguishable leaks even in the absence
of uncertainty.

In general, a DMA has its inputs monitored, both flows
and pressures. This is the actual case in the Barcelona
WDN where, in addition, some inner pressure measure-
ments are used to set the model boundary conditions
together with the demand distribution, based on registered
water and the total demand provided by flow sensors at the
network inputs. The pressure values obtained by sensors in-
stalled within the DMA present a relevant dispersion. This
dispersion includes uncertainties from different sources.
The main source of uncertainty is the demand distribution
[9]. Thus, the reproduction of these uncertainties is done
by means of introducing uncertainty in the demand model
in the simulation [11].

Once the uncertainty can be reproduced, the expected
residuals in different conditions are generated by MC sim-
ulations. This approach was compared with the analytical
generation of the zonotopes in an academic example in [3].
Then, the leak localisation methodology is applied.

The goals that this work aims to achieve are:



1) Obtain the undistinguishable leak models in the
DMA given the sensor resolution.

2) Obtain the residual shape of the different leak models
given the observed uncertainty.

3) The number of models/nodes that are signalled as
leaky when the leak localisation methodology is
applied.

A. Case study

In this work, a DMA located in the Barcelona area
is used as a case study. In order to simulate the DMA
isolated from the water transport network, the boundary
conditions (i.e. pressure and flow measurements from the
network) are fixed. Generally, pressure is fixed using a
reservoir and the overall demand is obtained as the sum of
the inflow distributed through the DMA. The total inflow
is distributed using a constant coefficient (base demand)
in each consumption node. Hence, all the consumptions
are assumed to share the same profile, whilst the billing
information is used to determine the base demand of each
particular consumption. A good estimation of the demand
model is paramount for the real case application.

The DMA considered here (Fig. 1) is called Canyars
and is located at the pressure level 80 within the Barcelona
water transport network. This DMA has nn = 694 nodes
and nl = 719 links, and delivers water to the end
consumers by means of a single input point.

Fig. 1. Canyars DMA

Three sensors have been installed within the DMA [1].
The resolution is 0.1 mwc (meters of water column) for
the pressure sensors. The simulated leak is of 10 l/s. The
number of realisations for the MC simulatons is N = 1000.

III. METHODOLOGY

Synthetic data are generated by simulation of the real
DMA model including the uncertainty. First the methodol-
ogy to calibrate the demand distribution and its associated
uncertainty is reviewed in this section and so is the leak

localisation methodology. Finally, the assessment method-
ology is presented.

A. Demand calibration and uncertainty simulation

The demand components model [15] has been consid-
ered due to its capability of representing different demand
behaviours depending on the pressure in the consumers
area. This model uses a set of calibrated demand compo-
nents to modulate the nodal demands in the network model.
The representation of each of the nd nodal demands is
defined as:

di(qin) =
bdi∑nd

j=1 bdj
· qin ·

nc∑
j=1

(αi,j · cj) (1)

with

αi,1 + αi,2 + · · ·+ αi,nc = 1 for i = 1, ..., nn (2)

The memberships αi,j of each nodal demand to each
demand component are defined through the sensitivity
analysis presented in [15] and bdi is the weight of node
i extracted from the quarterly users bills. The values of
the nc demand components can be calibrated through any
optimization method with the objective of minimizing the
errors in the calibrated model predicted variables. This
calibration process assures implicitly that the total inflow
is equal to the sum of demands:

qin =

nn∑
i=1

di (3)

The resulting calibrated demand components include
uncertainty boundaries that have been computed by means
of the First-order Second-moment (FOSM) model. During
the simulation tests, these uncertainty boundaries have
been used to generate an equivalent predicted uncertainty
in variables as in the real network measurements. Thus,
the components cj of equation (1) are modified in each
simulation by a percentage (βj(k)) randomly choosen
within the uncertainty interval for that component (δcj):

cj(k) = (1 + βj(k))cj − δcj < βj(k) < δcj (4)

The set of all demands produced with this uncertainty
is D ⊂ <nn and the realisation generated for the MC
simulation is D̂ = {dj |dj ∈ D j = 1, ..., N}.

When a leaky scenario is simulated a certain value of
leak is assumed (f0). Then the equation (3) becomes:

qin =

nn∑
i=1

di + f0 (5)

A new set of demands, assuming the leak f0 is present
and there is uncertainty in the demand distribution,
Df0 ⊂ <nn is defined and so is its sample set D̂f0 =
{dl|dl ∈ Df0 l = 1, ..., N}. Equations (3) and (5) are
fulfilled by means of normalisation.



B. Leak localisation review

We review the leak location methodology that is going
to be assessed. This methodology is based on the one
presented in [11]. Given the network boundary conditions
hS in the form of heads in some nodes, as well as the total
inflow qin ∈ <, the flows in the input pipes and the heads
in the nodes of the network can be computed. A vector
y = (y1 . . . yny ) of ny additional measurements from the
network is also available. In the absence of leakage, the
total inflow qin is distributed among the network nodes
according to a given demand pattern. The demands of the
nodes are represented by a vector d = (d1, . . . dnn

) with
nn equal to the number of nodes in the network.

Given the boundary conditions, the computation of a
prediction ŷnf for a non-leakage scenario is denoted by

ŷnf = gnf (qin,hS,d(qin)) (6)

where ŷnf ∈ <ny , gnf : <×<nh×<nd → <ny , hS ∈ <nh

and d ∈ <nd . Subscript nf indicates non-faulty, i.e. non-
leakage scenario. The difference

r = y − ŷnf (7)

that quantifies the consistency of the measurement with the
model prediction is called a residual. We will also call it
observed residual to distinguish it from predicted residual
as it will be seen later. If there is no uncertainty in model
(6), the absence of leakage implies r = 0.

In a leakage scenario, only the possibility of one leak
of nominal value f0 in an unknown node of the network
is considered. Consider the nn predictions ŷfi , each one
corresponding to a leak of nominal value f0 in node i

ŷfi = gfi(qin,hS,d(qin − f0), f0) i = 1 . . . nn (8)

where ŷfi ∈ <ny , gfi : <×<nh ×<nd ×< → <ny , hS ∈
<nh , d ∈ <nd and f0 ∈ <. Subscript fi indicates a faulty
scenario consisting of a leak in node i. The differences

r̂fi = ŷfi − ŷnf (9)

are the predicted residuals for the nominal leak f0. If
there is no uncertainty in model (8) and the value of the
unknown leak to be located is small enough, then the
dependency of the observed residual r can be supposed
to be approximately linear with the leak magnitude f

r = r̂fi ·
f

f0
+ e i = 1 . . . nn (10)

where e represents the error due to the uncertainties
and the linear approximation. Because of linearity of r
in f , if vectors r̂fi are linearly independent, then each
r̂fi characterizes a different leak. Therefore a correlation
measure to test linear dependency between r and r̂fi can
be used to select the most consistent leak with r. Thus the
selected leak is the one maximizing the correlation measure

ρ(r, r̂fi) =
rT · r̂fi (11)

where ‖ . ‖ denotes the norm associated to the vector
dot product. In this work the 2 norm is used. Note that
if (10) has additive uncertainty, then the selection of r̂fi
by maximizing the correlation measure ρ gives the least
squares solution of (10).

Given that there is a leak in node i of nominal value f0,
uncertainty in demands means that we only know that:

d(qin − f0) ∈ Df0 . (12)

We use (9) with ŷfi generated by (8) and considering
(12) to bound the residual with the set

r ∈ Rfi i = 1 . . . nn

where Rfi ⊂ <ny is the set of possible residuals in leak
scenario i considering uncertainty in demands. In particular
r̂fi ∈ Rfi .

To see the effect of this uncertainty on the location
procedure, we restrict ourselves to the case when there is a
leak of nominal value f0. The evaluation of the correlation
measures in (11) for all the residuals r in a set R gives a
collection of intervals [ρ](R, r̂fi)

[ρ](R, r̂fi) =
{

rT · r̂fi
‖ r ‖ ‖r̂fi‖

: r ∈ R
}

(13)

As was proposed in [3] a straightforward way to transmit
the uncertainty from demands to the residuals through
the pressures is to generate a set of possible demand
realisations D̂f0 . As the cardinal N of this set increases,
the coverage of the set Df0 ⊂ <nn improves. Once the
sampled set of possible demands D̂f0 is generated, sets
R̂fi ⊂ <ny i = 1, ..., nn that are sampled sets of Rfi are
obtained applying (7) to leak pressure samples obtained by
non-linear models (8) considering demand values of D̂f0 .

Once the sampled sets of possible residuals for each leak
are generated, the correlation interval bounds ρ

i,i
and ρi,i

between the uncertain set Rfi and nominal hypothesis fi

[ρ](Rfi , r̂fi) = [ρ
i,i
, ρi,i] (14)

can be approximated using (13) and R̂fi as

ρ
i,i

= min
r

ρ(r, r̂fi)

subject to r ∈ R̂fi

(15)

Bound ρi,i can be obtained using (15) but replacing
min by max. If we assume that the actual leak is fi the
correlation of the residual r with r̂fi must be inside this
interval.

C. Leak localisation algorithm

A new location algorithm based on a falsification pro-
cess is proposed. Given the nn nominal leak hypothesis
r̂fi , correlation boundaries ρ

i,i
, ρi,i and actual residual

r, Algorithm 1 uses a falsification process to provide
the possible leak locations consistent with the considered
demand uncertainty.

As a result of Algorithm 1, vector leak contains 1 for
those leak hypothesis assigned with leak.‖ r ‖ ‖ ˆrfi ‖ 



Algorithm 1 Leak localisation algorithm
Require: r̂fi , ρi,i, ρi,i i = 1, ..., nn and r

leak=ones
for i = 1...nn

compute ρ(r, r̂fi)
if ρ(r, r̂fi) < ρ

i,i
or ρ(r, r̂fi) > ρi,i

leak(i)=0
end

end
return leak

   

Fig. 2. Memberships of nodes to each demand component in Canyars
network considering the three available sensors. Each representation of
the network depicts a grayscale map with the membership of each node
to a particular demand component: the darker the node in the map, the
higher the membership of the node to the demand component. The sensor
with the highest sensitivity to variations in each demand component is
also depicted in each map

D. Performance assessment

The assessment of the leak localisation methodology
under the demand uncertainty is performed creating a
confusion matrix for N realisations of each leak (row). The
matrix is created applying the leak localisation methodol-
ogy and counting the number of assignations to each leak
hypothesis (column). If no confusion is present the matrix
should be diagonal full of N values. In order to keep the
characteristics of a confusion matrix when more than one
model matches one is taken randomly so that the sum of
the rows of the matrix is N. The numbers that appear in the
diagonal and their comparison with the maximum number
in each row are studied in order to acknowledge whether
the algorithm may give good results in a real scenario.

IV. RESULTS

The results presented in this work has been generated
by synthetic data with a real DMA model. Three demand
components have been defined as indicated in Section
III-A. Figure 2 depicts, in each of the network maps,
the membership of each node to a particular demand
component: the darker the node, the higher the membership
to that component. Each map in Figure 2 also includes the
location of the sensor with the highest sensitivity to the
component drawn.

A. Nominal Residuals, distinguishable leaks

Residuals generated by simulation showed that there
were only 169 distinguishable nominal leak hypothesis due
to the sensors’ resolution. Even though the oversampling
(10 minutes samples are merged each hour) enhances their
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Fig. 3. Projection of the three residuals for the nominal leak hypothesis
r̂fi i = 1...169 in Canyars
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Fig. 4. Histogram of the cardinals of the models

resolution [7]. Figure 3 shows the projection of the three
residuals for all the nn = 694 nodes. Only nm = 169 are
different. Hereinafter only the distinguishable nodes/leak
hypothesis are taken into account.

Figure 4 shows the Histogram of cardinality of the new
leak hypothesis. All they have cardinal below 30 nodes
except hypothesis 4 and 20 which will further be analyzed.

B. Uncertainty propagation

Including the uncertainty in the demand model the
residuals are no more deterministic. The propagation of the
uncertainty using the MC simulations produce a discrete
(due to the sensor resolution) set of residuals. They are
generated for the nm = 169 possible leaky scenarios.

Figures 5 and 6 compared the projections for the three
residuals for two distinguishable leak hypothesis (40 mwc
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Fig. 5. Projection of the three residuals for the non-leaky scenario (o)
and leak hypothesis 40 R̂f40 (*) with uncertainty in Canyars
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Fig. 6. Projection of the three residuals for the non-leaky scenario (o)
and leak hypothesis 150 R̂f150 (*) with uncertainty in Canyars

and 150 mwc) and the projections of the non-leak scenario.

Once all the 169 sets of residuals are generated the lower
and upper bounds for the correlation with equation (15)
and its equivalent for the upper bound. Then, Algorithm 1
can be used to assign the consistent leak hypothesis.

C. Confusion Matrix

The confusion matrix is generated with 1000 new MC
simulations for each leak scenarios. The representation of
such matrix is impossible and useless. Therefore the diag-
onal of the confusion matrix compared with the maximum
value in the corresponding row is presented in figures 7.

The number of leak hypothesis that get 80% or more
assignments than the actual leak hypothesis and the cor-
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Fig. 7. Diagonal of Confusion Matrix and maximum value in the
corresponding row and difference of these values for falsification
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Fig. 8. Number of distinguishable leak hypothesis with 80% or more
assignements of the actual hypothesis

responding number of nodes are presented in figure 8 and
equivalently in figure 9 for the 50% of assignments.

V. CONCLUSIONS

In this paper, a new leak localisation method in WDN
using pressure measurements and models has been pro-
posed. The leak localisation method is based on a falsifi-
cation algorithm that provides the leak hypothesis consis-
tent with actual pressure measurements. Leak hypothesis
consider the uncertainty in node demands using Monte
Carlo simulations. In order to assess the performance
of this Algorithm, a confusion matrix is generated. This
matrix contains the number of assignments out of the
realisations (using MC) of each leak scenario for each
leak hypothesis. When the algorithm is applied to a real
DMA, the resolution of the sensors implies that not all
leaks are distinguishable leaks. Nevertheless the number of
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Fig. 9. Number of distinguishable leak hypothesis with 50% or more
assignements of the actual hypothesis

distinguishable leak hypothesis implies a reasonable car-
dinal in each set. When the confusion matrix is generated
the diagonal that corresponds to the actual leak hypothesis
has the maximum number of assignments. If the number
of assignments is relaxed, i.e. taking those leak hypothesis
with 80% or more of the assignments of the actual one, the
number of nodes included does not overcome 120 nodes
out of 690. Thus, the localisation process reduces in these
cases the search region in 83%. If the threshold of number
of assignments is set to 50% the number of nodes involved
is the same because the rest of the hypothesis are never
assigned. It stands even for the two leak hypothesis with
greatest cardinal that are not confused with other leak
hypothesis. This results shows that the one step algorithm
may not assign to the actual hypothesis but a multiple
step algorithm may provide a reasonable search region that
includes the actual leak. As a future work, this multiple
step algorithm will be developed and applied to real date.
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[8] Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., and
Peralta, A. (2011b). Methodology for leakage isolation using pres-
sure sensitivity analysis in water distribution networks. Control
Engineering Practice, 19(10), 1157-1167.

[9] Pérez, R., Nejjari, F., Puig, V., Quevedo, J., Sanz, G., Cugueró, M.,
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