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Abstract

This paper proposes a new method for leak localization in water distribution

networks (WDNs). In a first stage, residuals are obtained by comparing pressure

measurements with the estimations provided by a WDN model. In a second

stage, a classifier is applied to the residuals with the aim of determining the

leak location. The classifier is trained with data generated by simulation of the

WDN under different leak scenarios and uncertainty conditions. The proposed

method is tested both using synthetic and experimental data with real WDNs

of different sizes. The comparison with the current existing approaches shows a

performance improvement.

Keywords: Water distribution networks, leak localization, fault diagnosis,

model-based methods, data-driven methods, Barcelona WDN.

1. Introduction

Water leaks in a water distribution network (WDN) can cause significant

economic losses in fluid transportation leading to increase reparation costs that

finally generate an extra cost for the final consumer. In many WDN, losses due

∗Corresponding author.
Email address: vicenc.puig@upc.edu (Vicenç Puig)

Preprint submitted to Control Engineering Practice December 12, 2016



to leaks are estimated to account up to 30 % of the total amount of extracted

water [1]. This is a very important amount in a world struggling to satisfy water

demands of a growing population [2, 3, 4, 5].

The traditional approach to leakage control is a passive one, whereby the leak

is repaired only when it becomes visible. Recently developed acoustic instru-

ments [6] allow to locate also invisible leaks, but unfortunately, their application

over a large-scale water network is very expensive and time-consuming. A viable

solution is to divide the network into District Metered Areas (DMA), where the

flow and the pressure at the input are measured [7, 1], and to maintain a perma-

nent leakage control-system: leakages in fact increase the flow and decrease the

pressure measurements at the DMA entrance. Various empirical studies [8, 9]

propose mathematical models to describe the leakage flow with respect to the

pressure at the leakage location. Best practice in the analysis of DMA flows

consists in estimating the leakage when the flow is minimum. This typically

occurs at night, when customers’ demand is low and the leakage component is

at its largest percentage over the flow [1]. Therefore, practitioners monitor the

DMA or groups of DMAs for detecting (and then repairing) leakages by analyz-

ing the minimum night flow, and also employ techniques to estimate the leakage

level [1]. However, leakage detection may not be easy, because of unpredictable

variations in consumer demands and measurement noise, as well as long-term

trends and seasonal effects.

Several works have been published dealing with leak location methods for

WDN (see [10] and references therein). For example, in [11], a review of

transient-based leak detection methods is offered as a summary of current and

past work. In [12], a method is proposed to identify leaks using blind spots based

on previously leak detection that uses the analysis of acoustic and vibrations

signals [13], and models of buried pipelines to predict wave velocities [14]. More

recently, [15] have developed a method to locate leaks using Support Vector Ma-

chines (SVM) that analyzes data obtained by a set of pressure control sensors

of a pipeline network to locate and calculate the size of the leak. Another set

of methods is based on the inverse transient analysis [16, 17]. The main idea of

2



this methodology is to analyze the pressure data collected during the occurrence

of transitory events by means of the minimization of the difference between the

observed and the calculated parameters. In [18, 19], it is shown that unsteady-

state tests can be used for pipe diagnosis and leak detection. The transient-test

based methodologies use the equations for transient flow in pressurized pipes

in frequency domain and then, information about pressure waves is taken into

account too.

Model-based leak detection and isolation techniques have also been studied

starting with the seminal paper of Pudar [20] which formulates the leak detec-

tion and localization problem as a least-squares parameter estimation problem.

Unfortunately, the parameter estimation of water network models is not an easy

task [21]. The problem of leak localization in WDNs can be addressed as a par-

ticular case of the general problem known in the literature as the problem of

Fault Detection and Isolation (FDI) in dynamic systems [22]. However, the

model of a DMA leads to a non-explicit model that can only be solved using

numerical methods and limiting the applicability of most of the current FDI

approaches that make an explicit use of the model. Moreover, there exist a

high coupling of residuals and leaks plus a reduced number of sensors that as a

result they complicate the isolation task. For this reason specific fault diagnosis

methods for leak localization should be developed. A first contribution in this

line can be found in [23, 24] where a model-based method that relies on pressure

measurements and leak sensitivity analysis is proposed. This methodology con-

sists in computing on-line residuals, i.e. differences between the measurements

and their estimations obtained using the hydraulic network model, and check-

ing them against thresholds that take into account the modeling uncertainty

and the noise. When some of the residuals violate their threshold, the residuals

are matched against the leak sensitivity matrix in order to discover which of

the possible leaks is present. Although this approach has good efficiency under

ideal conditions, its performance decreases due to the nodal demand uncertainty

and noise in the measurements. This methodology has been improved in [25]

where an analysis along a time horizon has been taken into account and a com-
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parison of several leak isolation methods is presented. It must be noticed that

in cases where flow measurements are available, leaks could be detected more

easily since it is possible to establish simple mass balance in the pipes. See for

example the work of [26] where a methodology to isolate leaks is proposed using

fuzzy analysis of the residuals. This method finds the residuals between the

flow measurements and their estimation using a model without leaks. However,

although the use of flow measurements is feasible in large water transport net-

works, this is not the case in water distribution networks where there is a dense

mesh of pipes with only flow measurements at the entrance of each District

Metering Area (DMA). In this situation, water companies consider as a feasible

approach the possibility to installing some pressure sensors inside the DMAs,

because they are cheaper and easier to install and maintain.

In this paper, a new approach for leak localization in WDNs is presented.

This methodology is used once the leak has been detected by means of the

analysis of the nightly water demands of the DMA that is used for detecting

and estimating the leakage level [1], and after the application of the sensor

validation and reconstruction described in [27]. The approach combines the

use of pressure models and classifiers. Following a model-based methodology

successfully tested in [23] and [24], a pressure model of the considered WDN is

used in a first stage to compute residuals, i.e. differences between the measured

(sensors) and estimated (model) values of the water pressure in nodes of the

network, that are indicative of leaks. In a second stage, a classifier is applied to

the obtained residuals with the aim to determine the leak location. This on-line

scheme relies on a previous off-line work in which the network model is obtained

and the classifier is trained with data generated in extensive simulations of

the network. These simulations consider leaks with different magnitudes in all

the nodes of the network, differences between the estimated and real consumer

water demands and noise in pressure sensors. The underlying idea is to obtain

a classifier able to distinguish the leak location independently of the unknown

real leak magnitude and the presence of uncertainties associated to the water

demands and the pressure measurements.
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The rest of the paper is organized as follows. Section 2 presents the back-

ground on model-based fault leak localization methods based on sensitivity anal-

ysis and highlights their limitations. Section 3 presents in detail the proposed

method. Section 4 details the application of the method to three WDNs of dif-

ferent sizes and provides a comparison with other well-established approaches.

Finally, Section 5 draws the main conclusions of the work and introduces some

potential extensions.

2. Background

2.1. Principle of model-based leak location approaches

Model-based approaches aim to locate leaks in a water distribution network

by comparing pressure measurements with their estimations obtained using the

hydraulic network model. Usually, this methodology is used for locating leaks

in a given leak size range defined by the water network management company.

The minimum size is related to the sensor resolution and modelling/demand

uncertainty and the maximum size is defined as the value such that the leak

behaves as burst and the leak can be seen in street. Model-based leak local-

ization methods are based on comparing the monitored pressure disturbances

caused by leaks at certain inner nodes of the DMA network with the theoreti-

cal pressure disturbances caused by all potential leaks obtained using the DMA

network mathematical model [24]. This comparison uses the residual vector,

r ∈ Rns that is determined by the difference between the measured pressure at

inner nodes where sensors are installed

r(t) = p(t)− p̂o(t) (1)

where p ∈ Rns , and the estimated pressure at these nodes obtained using the

network model considering a leak-free scenario, p̂o ∈ Rns

The size of the residual vector r, ns, depends on the number of inner pres-

sure sensors installed in the DMA. In recent years, some optimal pressure sensor

placement algorithms have been developed to determine which pressure sensors
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have to be installed inside the DMA such that with minimum economical costs

(number of sensors), a suitable performance regarding leak localization is guar-

anteed, see [23], [28], [29] among others.

The number of potential leaks, f ∈ Rnn , is considered to be equal to the

number of DMA nodes nn, since from the modeling point of view, as proposed

in [23] and [24], leaks are assumed to be in these locations.

2.2. Limitations of sensitivity analysis approaches

Most of the model-based leak localization approaches rely on the sensitivity-

to-leak analysis [23, 24] where the theoretical pressure disturbances caused by

all potential leaks are stored in the leak sensitivity matrix Ω ∈ Rns×nn (with

as many rows as DMA inner pressure sensors, ns, and as many columns as

potential leaks (DMA network nodes, nn)). Then, leak isolation is based on

matching the residual vector (1) against the columns of the sensitivity matrix

using some metrics (see [25] for details). The leak sensitivity matrix can be

mathematically formalized as follows

Ω =


∂p1

∂f1
. . . ∂p1

∂fnn

...
. . .

...
∂pns

∂f1
· · · ∂pns

∂fnn

 (2)

where each element Ωij measures the effect of the leak fj in the pressure pi of

the node where the inner pressure sensor i is located. However, in practice, it is

extremely difficult to calculate Ω analytically in a real network because a water

network is a large scale problem described by a multivariable non-linear system

of equations which may also be non-explicit. Thereby, the sensitivity matrix is

generated by simulation of the network model approximating the sensitivity Ωij

by

Ωij =
p̂ifj − p̂i0

fj
(3)

where p̂ifj is the predicted pressure in the node where the pressure sensor i

is placed when a nominal leak fj is forced in node j and p̂i0 is the predicted
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pressure associated with the sensor i under a scenario free of leaks [23]. Then,

repeating this process for all nn potential faults the approximation of the sen-

sitivity matrix is obtained.

Another difficulty of the leak sensitivity approach is that the practical eval-

uation of (3) depends on the nominal leak fj [30, 31]. If the real leak size is

different from the nominal one, the real sensitivity will be different from the

one computed using (3). Moreover, the sensitivity is also affected by the nodal

demand uncertainty [32] since it is not measured but estimated using histori-

cal records of water consumption and using the aggregated DMA consumption

pattern. These uncertainties will lead to worsen the leak localization results

obtained using the the leak sensitivity approach. The approach proposed in

this paper aims to overcome these difficulties.

3. Proposed method

3.1. A mixed model-based/data-driven FDI approach

Two main types of approaches used to face the FDI problem are the model-

based and the data-driven approaches, both with their advantages and draw-

backs [33]. Model-based FDI methods rely on the generation and evaluation

of residuals. A residual is a computable (on-line) expression derived from the

system model that evaluates close to zero in absence of faults and that deviates

from zero in response to some of the faults. The design (off-line) of a model-

based FDI system typically relies on the manipulation of a system model that

includes the effect of faults, with the aim of obtaining a set of residuals that

are sensitive to the faults in such a way they can be distinguished. In par-

ticular, some of the methods proposed in the literature try to obtain a set of

residuals with each one of them sensitive to a different subset of the considered

faults (structured residuals), since then fault isolation is straightforward under

a Boolean framework. Other methods try to obtain residual vectors that fol-

low different directions according to the presence of different faults (directional

residuals) and fault isolation is solved under a geometric framework. The main
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drawback in the application of model-based methods is that a deep knowledge

of the system operation (physical equations) and an important modeling effort

(estimating the model parameters) are required.

On the other hand, data-driven approaches do not need a priori knowledge

(model) about the monitored system since they directly use experimental data.

Assuming that the faults affect some observable system variables and that his-

toric data is available, the fault isolation problem can be formulated as a pattern

recognition problem. If the available data is labeled, i.e. each observation of the

symptoms is known to be obtained under a given faulty situation, then fault

isolation can be formulated as a classification problem. If not, fault isolation

can still be formulated as a clustering problem. The main drawback of using

a data-driven approach is that the designed fault isolation system will only be

able to deal with faults that have been previously experimented by the mon-

itored system. In practical applications, the available data can be limited to

a subset of the possible faults that the system can experiment and that are of

interest. An additional drawback when using a classification approach is that

it may be difficult or even not possible to guarantee a correct labeling of the

available data.

The method for leak localization proposed in this paper can be considered

as a mixed model-based/data-driven FDI method. The method uses a model

of the monitored water network to generate pressure residuals. The model

is implemented in the Epanet [34] hydraulic simulator1 which is the standard

simulation tool in water distribution networks and it is the software used for

the company responsible of the Barcelona WDN management. These are the

reasons why EPANET has been chosen as hydraulic simulator in this paper.

The obtained residuals are raw residuals that do not facilitate a straightforward

fault isolation under a Boolean or geometric framework. The reasons for this is

that all the leaks affect to some extent to all the residuals and that there is a

high level of uncertainty: the leak size is unknown, the nodal demands are also

1There exists other hydraulic simulators, for a review see [35].
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unknown and have to be estimated and, finally, measurements are affected by

noise. Due to this, it is proposed to use these raw residuals to feed a classifier.

It must be noticed that in this context the use of the classifier do not suffer

the problems associated to purely data-driven methods, since availability of the

simulator allows to generate complete data sets that cover all possible faults

and that are perfectly labeled.

3.2. Basic architecture and operation

The method for on-line leak localization proposed in this paper relies on

the scheme depicted in Figure 1, based on computing pressure residuals and

analyzing them by a classifier. Residuals are computed as differences between

measurements provided by pressure sensors installed inside the DMA and es-

timations provided by a hydraulic model simulated under leak-free conditions.

The hydraulic model is built using the Epanet hydraulic simulator by consider-

ing the DMA structure (pipes, nodes and valves) and network parameters (pipe

coefficients) and it is assumed to be able to represent precisely the WDN be-

havior after the corresponding calibration process using real data. However, it

must be noticed that the model is fed with estimated water demands (typically

obtained by the total measured DMA demand dWDN and distributed at nodal

level using historical consume records) in the nodes (d̂1, · · · , d̂nn
) since in prac-

tice nodal demands (d1, · · · , dnn) are not measured (except for some particular

consumers where Automatic Metering Readers (AMRs) are available). Hence,

the residuals are not only sensitive to faults but also to differences between the

real demands and their estimated values. Additionally, pressure measurements

are subject to the effect of sensor noise v and this also affects the residuals.

Taking all of these effects into account, the classifier must be able to locate the

real leak present in the WDN, that can be in any node and with any (unknown)

magnitude, while being robust to the demand uncertainty and the measure-

ment noise. Finally, it must be noticed that the operation of the network is

constrained by some boundary conditions (for example the position of internal

valves, reservoir pressures and flows) that are known (measured) and that are
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taken into account in the simulation and that can also be used as inputs for the

classifier.

d1 

WDN 

WDN  
model 

…
 

…
 

li 
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Figure 1: Leak localization scheme.

3.3. Methodology description: off-line training

The application of the architecture presented in Figure 1 relies on an off-line

work whose main goal is to obtain a classifier able to distinguish the potential

leaks under the described uncertainty conditions. In particular, the method

proposed in this paper considers an off-line design based on the following stages:

• Modelling - A model for the WDN is obtained, calibrated and implemented

in Epanet. The model is basically built by taking into account the network

structure and by applying flow balance conservation and pressure loss

equations, see [23, 24] for details.

• Data generation - The model implemented in Epanet is extensively used to

generate data in the residual space for each possible fault and for different
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operating and uncertainty conditions.

• Grouping - Nodes for which the effects of leaks in the residual space are

similar are aggregated in groups of nodes before training the classifier.

• Classifier training and evaluation - The classifier is first trained to perform

the classification process by using the training data, a subset of the initial

data set, then it is applied to the validation data set in order to estimate

its performance.

3.3.1. Data generation

The data generation stage is critical since the availability of representative

data is a necessary condition for obtaining a good classifier. Since the data that

can be obtained from the real monitored WDN can be really limited, the way to

obtain a complete training data set is by using the hydraulic simulator. Hence,

training data, and also validation data, is generated by applying the scheme

depicted in Figure 2, similar to the one presented in Figure 1 but with the main

difference of substituting the real WDN by a model that allows to simulate the

WDN not only in absence but also in presence of faults.

The presented schemed is exploited in order to:

• Generate data for all possible leak locations, i.e. for all the different nodes

in the WDN (f̄i, i = {1, 2, ..., nn}).

• For each possible leak location, generate data for different leak magnitudes

inside a given range (f̄i ∈ [f−i , f
+
i ]).

• Generate sequences of demands and boundary conditions that correspond

to realistic typical daily evolution in each node.

• Simulate differences between the real demands and the estimations com-

puted by the demand estimation module ((d̄1, ..., d̄nn
) 6= (d̂1, ..., d̂nn

)).

• Take into account the measurement noise in pressure sensors, by generat-

ing synthetic Gaussian noise (ν̄).
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Figure 2: Data generation scheme.

3.3.2. Node grouping

If the described leak localization methodology is directly applied to a real

WDN, it may be observed that the leaks in some nodes cannot be distinguished.

This is mainly due to the present uncertainty, i.e. to the unknown value for the

leak magnitude, to the differences between the real and the estimated water

demands in the nodes and to measurement noises. But even in absence of un-

certainty, the leaks in some nodes can be indistinguishable. This is for instance

the case when some nodes are located in a same branch of the network and none

of these nodes are equipped with a pressure sensor.

Since leaks in some nodes can not be distinguished because they present a

very similar leak signature, a node grouping prior to the classifier training is

proposed. Nodes whose leaks present very similar effect in pressure sensors will

be grouped in the same class creating a composed class. In particular, nodes i

and j will be grouped in the same class if it is satisfied the following condition

12



1

24

24∑
t=1

‖r0i (t)− r0j (t)‖ <
γ
∥∥r̄0∥∥
100

(4)

where r0i (t) and r0j (t) are the nominal pressure residuals at time t obtained after

introducing a leak in nodes i and j with the same nominal conditions (ṽ = 0,

d̃(t) = d̂(t) and fi = fj = f0), and r̄0 is the daily average pressure residual

computed as

∥∥r̄0∥∥ =

∑nn

i=1

∑24
t=1 ‖r0i (t)‖

24nn
(5)

and γ is a predefined threshold.

3.3.3. Classifier training and evaluation

After the grouping process, the data is divided into training and validation

data sets that will be used in the associated stages. The training stage is a

learning from examples procedure where the input is the (labeled) training data

set and the result is a classifier that must be able to correctly classify new data

instances. This generalization ability of the obtained classifier is checked in the

validation stage, in which the classifier is applied to the validation data set and

performance indexes are computed.

The details of the training stage are particular of the type of classifier used.

The results presented in this paper have been obtained by using the well known

k-Nearest Neighbor (k-NN) classifier [36]. This classifier is said to be a type of

lazy classifier since the training stage is limited to the recording of the training

data set and all the required computations are deferred until the classifier is

used to classify new data instances (see details in Section 3.4.1).

The evaluation of classifiers normally relies on the use of the confusion matrix

Γ, that summarizes the results obtained when the classifier is applied to the

validation data set. Applied to the leak localization problem and using the

associated terminology, the confusion matrix is a square matrix with as many

rows and columns as nodes in the network (potential leak locations), where each

coefficient Γij indicates how many times a leak in node i is recognized as a leak
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in node j. Table 1 illustrates the concept of the confusion matrix applied to

leak localization (in general, to fault isolation).

Table 1: Confusion matrix Γ

f̂1 · · · f̂i · · · f̂nn

f1 Γ1,1 · · · Γ1,i · · · Γ1,nn

...
...

...
...

...
...

fi Γi,1 · · · Γi,i · · · Γi,nn

...
...

...
...

...
...

fnn
Γnn,1 · · · Γnn,i · · · Γnn,nn

In case of a perfect classification, the confusion matrix is diagonal, with

Γii = m, for all i = 1, · · · , nn, being m the size of the validation data set.

In practice, non-zero coefficients will appear outside the main diagonal. For a

leak in node i, the coefficient Γii indicates the number of times that the leak

is correctly identified as f̂i, while
∑nn

j=1 Γij − Γii indicates the number of times

that is wrongly classified. The overall accuracy (Ac) of the classifier is defined

as

Ac =

∑nn

i=1 Γii∑nn

i=1

∑nn

j=1 Γij
(6)

Accordingly to the previous paragraphs, the confusion matrix is normally

used to compute a set of performance indexes about the behavior of the classifier.

In this paper, as it will be presented later, the confusion matrix is also used to

complement the classifier in order to obtain better leak localization results (see

details in Section 3.4.2).

3.4. Methodology description: on-line leak location

Once the classifier has been validated, it can be used on-line to localize

leaks. According to Section 3.2, the classifier can be directly used to estimate

the presence of leaks by applying it to the instantaneous values for the computed

residuals. However, this strategy may provide limited results in presence of a
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high level of uncertainty. This suggests the use of a temporal reasoning that

takes into account not only the instantaneous values for the residuals but all the

values in a time horizon. The basic operation of the used k-NN classifier and

the details of the proposed temporal reasoning strategy are presented below.

3.4.1. The k-NN classifier

One of the well accepted and established methods for classification is the

k-Nearest Neighbors (k-NN) algorithm [36] which is available in most of the

numerical packages (e.g. Matlab, R, etc.). Its basic version works as follows.

When a new data realization has to be classified, the distances 2 to all the

instances in the training data set are computed. Then, the k nearest neighbors

are selected and a voting procedure is applied, where each neighbor votes for its

own class and the class with more votes is chosen as the associated class for the

new data instance. The process is illustrated in Figure 3, where a value k = 3

is used and the new data instance is associated to the class C3 since two of the

three minimal distances are associated to training instances in that class.

x1 

x2 

C1 

C2 

C3 

d1 

d2 

d3 

Figure 3: The k-NN algorithm.

The use of a value for k bigger than one improves the robustness against

outliers (with k = 1 the class of the nearest neighbor is selected, which seems

a good choice, but the obtained classifier is really sensitive to outliers). On

2Typically, the Euclidean distance is used, but many other options are available.
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the other hand, the value for k must be smaller than the minimum number of

instances associated to a single class inside the training data set.

3.4.2. Temporal reasoning

If the uncertainty in the demands, leak magnitude or the noise level are large

then the direct application of the classifier can provide poor leak localization

results. This also happens when other ways of evaluating the pressure residuals

are used (as the ones described in Section 2). To smooth the effect of demand

uncertainty, leak magnitude and noise, typically the analysis of the residuals

evolution is performed in a time horizon, i.e. the values for the residuals in the

last N time instants are considered [37].

Under the framework proposed in this paper, a simple temporal reasoning

can be based on taking into account the estimations provided by the classifier

inside the time horizon and applying a voting scheme, concluding that the can-

didate leak is located in the node that more times has been selected by the

classifier.

A second and more sophisticated option could be to use the information con-

tained in the confusion matrix. Hence, at each time instant t, when the classifier

is providing a leak in node j as an explanation for the values for the residuals

in the current time instant t, the whole column j of the confusion matrix is

stored. This column provides an estimation of the probabilities p(fi|f̂j), i.e. the

probabilities of a leak being present in node i when the classifier is indicating

that the leak is in node j, according to the available information available for

current time instant t. Then the sum of column vectors stored along the time

horizon N t−N + 1, · · · , t is computed. In the obtained vector, the position of

the coefficient with highest value indicates the most probable fault according to

the information provided by the data in the whole time horizon t−N+1, · · · , t.

3.5. Summary

For a better understanding of the whole proposed methodology, Figure 4

summarizes graphically its main steps. Both off-line design and on-line leak
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localization procedures described in previous sections are included. Moreover,

the connections between both procedures are made clear: the hydraulic model

(Epanet model), the classifier and the confusion matrix resulting from the mod-

eling, training and evaluation modules of the off-line procedure are provided to

the on-line procedure in order to perform the residual generation, classification

and the temporal reasoning operations.

Note that in this figure a sensor validation/reconstruction and leak detec-

tion modules have been added. Although the implementation of these modules

is out of the scope of the paper (as discussed in the introduction), they are

necessary in the on-line procedure and they have been included in the figure for

completeness. If the sensor validation/reconstruction module detects one sensor

fault and it is not possible to reconstruct the measurement, the off-line design

process, discarding the faulty sensor, is executed again. On the other hand, the

leak detection module detects if a leak is present in the system and triggers the

leak localization procedure proposed in this paper.

4. Case studies

In this section, three DMA case studies of increasing size and complexity

(Hanoi, Limassol and Nova Icària) are introduced to assess the performance of

the proposed methodology.

For these DMAs, leaks are considered that could appear in any of the demand

nodes. The known variables are the input pressures and flows of the networks

(reservoir boundary conditions) and some pressures in inner nodes of the DMAs

where sensors would be located (see [28, 29, 31] for details about optimal sensor

location). It is considered that the demand pattern is known for all demand

nodes but with some uncertainty as proposed in [32]. The leak magnitude

is assumed to be unknown but bounded by a known interval (minimum and

maximum leak magnitudes). Finally, noise in pressure sensors is considered

too.

For the three DMAs, leak localization results under different uncertainty
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Figure 4: on-line and off-line schemes of the proposed approach

scenarios and obtained by using artificial (generated by simulation) data are

presented and discussed. Moreover, for the last (and biggest) DMA the results

of localizing a real leak are also presented.

4.1. Hanoi case study

The Hanoi DMA network in Vietnam, depicted in Figure 5, consists of one

reservoir, 34 pipes and 31 nodes. Two pressure sensors placed in internal nodes

14 and 30 have been considered (see [28] for more details).

The process of grouping leaks in composed classes (Section 3.3.2) has been

18



carried out considering the satisfaction of condition (4), with γ = 0.5 and f0 =

50 [l/s]. In result, two composed leak classes have been obtained. These two

composed classes are depicted in Figure 5 and summarized in Table 2. On

the other hand, the number of non-composed (single node) classes is 22. The

composed classes obtained in this DMA show that using a reduced number of

inner pressure sensors, some leaks could not be distinguished since they present

an effect in the residuals very similar according to condition (4).
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Figure 5: Hanoi topological network.

Table 2: Groups not separable in Hanoi Network.

Composed classes

Groups Number of single classes Single classes

Group 1 4 9, 10, 11, 12

Group 2 3 19, 20, 21

In order to illustrate the performance of the proposed methodology under

the effect of the different sources of uncertainty, three different studies have been
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carried out under the following associated conditions:

• The leak magnitude is considered to be unknown but inside the range

between 25 and 75 [l/s] (0.84 and 2.51 % of the total amount of water

demanded, which is 2991.1 [l/s]).

• Pressure measurements are affected by Gaussian noise with an amplitude

of ± 12.5 % of the mean value of all pressure residuals.

• For each node, the instantaneous demand is unknown but inside the in-

terval given by an uncertainty of ± 5 % around the nominal demand (es-

timated according to the node demand pattern and the monthly demand

average).

For each study, a training data set and a validation data set have been gen-

erated by taking into account 200 and 50 samples (pressure residual vectors

computed every hour) respectively for each possible leak location (i.e. for each

node in the network). The residuals generated for training in the leak uncer-

tainty study are depicted in Figures 6a and 6b, where different colors are used to

identify the residuals obtained for different leak locations. Those residuals show

the directional effect of the leak magnitude in the residuals, that is exploited by

some leak localization approaches (see [25] for details). The residuals consid-

ered in the noise study are shown in Figure 7, where it can be seen a variation

around the nominal residuals (leak size of 50 [l/s]) due to the presence of noise

in pressure measurements. Finally, Figure 8 shows the training residuals in the

demand uncertainty study, which present a similar effect as the noise study but

with larger variation.

The results obtained by the proposed method in the three different studies

have been compared with the ones obtained using the leak-sensitivity analysis

with the angle metrics proposed in [25] and summarized in Section 2. For this

purpose, the sensitivity matrix (2) has been computed using (3) considering

nominal leak conditions in every demand node (ṽ = 0, d̃ = d̂ and fi = 50 [l/s]

i = 1, ..., nn). The results obtained by using the two methods, in both cases

20
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Figure 6: Residual space with leak uncertainty in Hanoi network (different colors for different

leak locations).
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Figure 7: Residuals space with noise in Hanoi network (different colors for different leak

locations).

considering only one sample in the leak location diagnosis (N = 1), are sum-

marized in Table 3. The values presented in the table correspond to the overall

accuracy Ac defined in (6). As it can be seen, both methods provide good per-

formances in the leak uncertainty case thanks to the linear directional variation

of most of the residuals for this kind of uncertainty. In the case of noise in pres-
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sure measurements, the method proposed in this paper performs significantly

better. This is because the classifier can handle more efficiently the dispersion

produced by noise in measurements. The same occurs when demand uncertainty

is considered.

Table 3: Leak location results (overall accuracy Ac) for Hanoi network with N = 1.

Classifier Angle

Leak uncertainty 99.29 99.81

Noise 96.97 88.32

Demand uncertainty 43.48 30.26

The results obtained by the proposed method using a time horizon of N = 24

(that is, considering residual vector computed in the last 24 hours) and the

confusion matrix, as described in Section 3.4.2, are summarized in Table 4.

As it can be noticed, there is an improvement in performance achieved in all
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uncertainty cases, but especially in the demand uncertainty case.

Table 4: Leak location results (overall accuracy Ac) for Hanoi network with N = 24.

Classifier

Leak uncertainty 100

Noise 100

Demand uncertainty 89.95

Finally, the effect of the horizon length N in the performance of the proposed

method considering demand uncertainty is shown in Figure 9. As it is expected,

the accuracy increases with the time horizon length N . And it can be observed

that it reaches a steady state value when N is around twenty four (hours). This

justifies the use of a time horizon corresponding to one day. This is in agreement

with the results already presented in [25].
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Figure 9: Classifier accuracy versus time horizon length N in Hanoi network, considering

demand uncertainty.
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4.2. Limassol case study

The Limassol DMA network in Cyprus, shown in Figure 10, consists of

one reservoir, 239 pipes and 197 demand nodes. Three pressure sensors that

are placed following an optimal sensor placement described in [38] have been

considered. In particular, the pressure sensors are placed in nodes 2, 146 and

152.

The process of grouping nodes has been carried out as in the Hanoi case

study with a γ = 0.5 in (4). A number of 38 composed classes and 105 non-

composed classes have been obtained. The composed classes are presented in

Table 5. Composed classes 12, 18, 19 and 29 that group four or more nodes are

highlighted in Figure 10.
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Figure 10: Limassol topological network.

For the Limassol network, a single study has been carried out by analyzing

the effect of the combination of the three types of uncertainties already consid-

ered for the Hanoi network. In this study, the leak range has been considered

between 3 and 5 [l/s] (0.61 and 1.02 % of the total amount of water demanded,

which is 492.24 [l/s]), the noise amplitude in pressure measurements has been

considered as the ± 5 % of the mean value of all residuals and the demand
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Table 5: Groups non-separable in Limassol Network.

Composed classes

Groups Single classes Groups Single classes

Group 1 9, 124 Group 20 83, 84

Group 2 18, 129 Group 21 92, 94

Group 3 20, 195 Group 22 98, 130

Group 4 21, 88 Group 23 99, 105

Group 5 22, 23 Group 24 100, 102

Group 6 29, 33 Group 25 106, 108

Group 7 36, 44 Group 26 110, 111

Group 8 37, 46 Group 27 112, 113

Group 9 38, 45 Group 28 114, 115, 118

Group 10 47, 48 Group 29 116, 117, 132, 133

Group 11 49, 50 Group 30 136, 137

Group 12 55, 59, 61, 62 Group 31 142, 148

Group 13 57, 64, 65 Group 32 143, 144

Group 14 58, 63 Group 33 150, 191

Group 15 60, 67 Group 34 154, 155

Group 16 69, 70, 186 Group 35 156,158

Group 17 71, 72, 77 Group 36 157, 159

Group 18 73, 74, 75, 76 Group 37 168, 171, 173

Group 19
78, 79, 80, 81,

82, 188
Group 38 169, 170, 177
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uncertainty has been considered as the ± 5 % of the nominal demand value.

The sets of data for training and validation have the same size as in the Hanoi

case study (200 and 50 samples, respectively).

As for the Hanoi network, the obtained results by applying the proposed

method improve as the horizon length increases. The effect of the window

length in the accuracy is shown in Figure 11. In particular, an 86.86 % of

accuracy is reached when N = 24. On the other hand, Figure 12 shows the

effect of the window length in the “Average Topological Distance”, which is the

average distance obtained from the minimum number of nodes between the

node or group of nodes classified and the node or group of nodes where the leak

belongs in any diagnosis and their unit is [nodes]. As it is expected, the average

topological distance decreases with the increase of N , and a value around 0.2 is

obtained for N = 24.
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Figure 11: Accuracy versus time horizon length N in Limassol network.
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Figure 12: Average topological distance versus time horizon length N in Limassol network.

4.3. Nova Icària case study

The Nova Icària network, shown in Figure 13, is one of the DMA networks

which form the Barcelona WDN. This network consist in 1520 nodes, 1646

pipes, two reservoirs and two valves, each one after the reservoirs with the aim

of maintain a certain pressure level. Inside the network, the pressures measured

by five sensors installed in nodes 3, 4, 5, 6 and 7 are known, together with the

flow entering the DMA and the set points for the valves.

As with previous network examples, some leak localization studies have been

carried out in simulation. But additionally, a real case is studied. For this real

case, experimental data captured under normal network operation and under

the presence of a real leak is used. The leak was created by the water company

that operates the network by opening a fire hydrant. The experiment took

place on December 20, 2012 at 00:30 h and lasted around 30 hours with a leak

size about 5.6 [l/s], being the total demand of water in the range between 23.5

and 78 [l/s] approximately. Additionally, data captured in a normal operation

scenario of five days before the leak scenario was also obtained. For more details
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Figure 13: Nova Icària topological network.

see [24]. The sampling time of all data sensors is 10 minutes. In order to

decrease the effect of uncertainties, the average value of every six samples has

been considered every hour, i.e. 30 and 120 hourly samples are available for the

leak and normal operation scenarios. An accurate Epanet model of the Network

and node demand estimations were provided as well.

First, the system has been simulated considering the operating conditions of

the fault-free scenario (input flow, boundary conditions and demand distribu-

tions). The differences between the 120 hourly samples of the five inner pressure

sensors and the pressures estimated by the hydraulic model have been used to

estimate the real uncertainty of the network (demand uncertainty, modeling

errors and noise in the measurements).

On the other hand, nominal hourly leak residuals r0i (t), i = 1, . . . , nn, t =

1, . . . , 24 have been computed as the difference of the estimated pressures in

the five inner sensors in a leak scenario and the ones estimated in the normal

operation. These nominal hourly residuals have been used in the process of

grouping nodes with a γ = 0.5 in (4). As a result of the grouping process,

the 1520 nodes have been grouped in 1035 groups. The groups with five or
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more nodes are highlighted in Figure 13, where it is possible to see “dark zones”

(mostly in branches) in the network where the leak hardly can be separated

from a multitude of nodes given the placement of the five inner sensors.

A leak localization k-NN classifier (with k = 3) has been trained and vali-

dated. The inputs of the classifier are: the five pressure residuals, the flow that

enters the DMA and the two set points of the valves. The data used in the

training and validating processes are the 24 samples of nominal hourly residuals

directly and adding the real uncertainty (120 samples): 96 samples for training

and 48 for validation.

Given the size of this network and the limited number of sensor deployed

inside the network, it is not realistic to expect a high degree of accuracy when

the proposed diagnosis tries to locate the leak in the exact node, so the average

topological distance is a more illustrative indicator to show how good the method

performs. Taking into account the 1035 groups obtained in the grouping process

and using a time horizon withN = 24, the average topological distance is around

7 (as it can be seen in Figure 14), a small value compared to the network size.
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Figure 14: Average topological distance versus time horizon length N in Nova Icària network.

Finally, the data of the real leak scenario has been applied to the trained
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classifier. Figure 15 shows the result of the proposed method after applying 24

hourly samples: the classifier indicates that the leak is in node 3 while the real

leak is in node 996. The topological distance between these two nodes is 13

nodes, while the geographical linear distance is around 184 meters. For this real

leak, the application of correlation method ([24]) provides as node candidate

the node 1036 (this result is also shown in Figure 15), which is at a distance of

17 nodes and 222 meters of the real leak location.
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Figure 15: Comparison of different leak location methods in Nova Icària network.

5. Conclusion

This paper has proposed a new method for leak localization in WDNs that

combines the use of pressure models with classifiers. Following a model-based

methodology, a model of the considered WDN is used in a first stage to compute

pressure residuals that are indicative of leaks. In a second stage, a classifier is

applied to the obtained residuals with the aim of determining the leak location.

This on-line scheme relies on a previous off-line work in which the model is ob-

tained and the classifier is trained with data generated in extensive simulations
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of the network under leak conditions. These simulations consider leaks with

different magnitudes in all the nodes of the network, differences between the

estimated and real consumer water demands and noise in pressure sensors. The

proposed method has been compared with a previous leak localization method

described in the literature through their application to three DMA case studies

of different size and complexity obtaining satisfactory results.

The proposed approach has been developed assuming a single fault (leak).

The extension to multiple faults is possible but it would require to train the clas-

sifier for the different possible multiple leak combinations considered. However,

this could be very time consuming. Thus, as a further research more efficient

methods to cope with the problem of multiple leaks will be adressed. More-

over, other type of classifiers will be considered that allow as e.g. to discover

automatically from the structure of the network the leaks that present the same

signature clustering them in the same group. Moreover, the extension of the

proposed method to the case of faults evolving in time will be developed.
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