Determining plane curve singularities from its polars
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Abstract

This paper addresses a very classical topic that goes bdeksitto Plicker: how to understand a plane curve
singularity using its polar curves. Here, we explicitly stmct the singular points of a plane curve singularity
directly from the weighted cluster of base points of its pgldn particular, we determine the equisingularity class
(or topological equivalence class) of a germ of plane curgenfthe equisingularity class of generic polars and
combinatorial data about the non-singular points sharettidy.
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1. Introduction

Polar germs are one of the main tools to analyze plane cungeilsirities, because they carry very deep ana-
lytical information on the singularity (see [21]). This lslstill true for germs of hypersurfaces or even germs of
analytic subsets of" (see for instance [29], [30], [21], [20], or [13]). There leaveen lots of #orts in the liter-
ature with the aim of distinguishing which of this informaiiis in fact purely topological. One of the first steps
in solving this problem was settled more than thirty years lag Teissier in [29]. There, he introduced the polar
invariants, which in the planar case can be defined from tieesaction multiplicity of the whole curwewith the
branches of a generic polar, and he proved that they areagigal invariants of. This result has been generalized
by Maugendre in [22] and by Michel in [24], where the role ofgrs is played by the Jacobian germs of planar
morphisms and finite morphisms from normal surface singidar respectively. The problem of relating a curve
to its polars, and vice versa, is the motivation of lots ofsleal and recent works. Among these let us quote the
works of Teissier [29, 30], Merle [23], Kuo and Lu [17]¢gland Teissier [20], Eggers [10]¢l-Michel and Weber
[18, 19], Casas-Alvero [4, 5], Giney [13], Delgado-de la Mata [8], GaeeBarroso [14], and Gara-Barroso and
Gonalez-Ferez [15].

In this work we consider the classical topic of understagdimplane curve singularityusing its polar curves.
The study of the contact between a reduced plane curve siriguhnd its polars goes back at least taidRer,
in 1837, in the framework of proving the global projectivéiéier formulae [26]. This motivated later in 1875
the work of Smith [27], which is considered to be the first iviigg local results on the contact between a germ
of plane curve and its polars. The question addressed ip#puer of determining a plane curve singularity from
its polars implies solving two problems. The first one is toate the right invariant, entirely computable from
the polars, which determines the singular pointg ¢dr its topological equivalence class), and this was sobyed
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Casas-Alvero in [6, Theorem 8.6.4], in the way we will explaext. The second problem is to explicitly construct
the singular points of from this invariant, which is still open and is the scope a tlork.

Regarding the first problem, the above mentioned polar iats are computable from two polar curves taken
in different directions (see Lemma 4.3), or equivalently from tleéggived cluster of base points of the Jacobian
system, and they could be a starting point. In fact, Merlevgtbin [23] that for an irreducibléthe polar invariants
and the multiplicity do determine its equisingularity daddowever, this does not hold in general and there are
examples of reducible non-equisingular curves with theesamaltiplicity and the same set of polar invariants (see
[6, Example 6.11.7]). Another possibility could be to calesithe topological class (or the singular points) of
a generic polar, but it turns out that this analytic invariearries not enough topological information about the
singularity. As Casas-Alvero showed in [6, Theorem 8.60f has to consider a slightly sharper invariant: the
weighted cluster of base points of the polarg pivhich solves the first problem. Indeed, the underlyingtelus
consists of the singular points of the generic polars plasihn-singular points shared by generic polars (or by all
polars, if we are considering the notion of “going virtuatyough a cluster” of infinitely near points, as it will be
explained in Section 2.1).

The second problem of giving the singular pointg &fom its polars is still open. In fact, Casas-Alvero’s proof
of Theorem 8.6.4 in [6] is highly non-constructive, and rioghis said about the relation between both objects.
Only for an irreduciblef the answer follows easily from the explicit formulas givenMerle in [23].

The aim of this work is to present an algorithm which expljcitecovers the weighted cluster of singular
points of a plane curve singularity directly from the bas@nfsoof its polar germs. Recognizing thefdrence
in difficulty, this could be interpreted as a sort of local versiothef known, quite elementary fact in algebraic
geometry that the proper singular points of plane projectilgebraic curves are exactly the proper base points
of its polar curves. In particular, the algorithm appliesdtscribe the equisingularity class of a germ of plane
curve (by giving this information combinatorially encodieg means of an Enriques diagram) from the Enriques
diagram which encodes the equisingularity class of a gemelar enlarged by some extra vertices representing
the simple (non-singular) points shared by generic polasswe will show, these extra vertices are only relevant
for recovering the polar invariants. Once the polar invasaare computed as a previous step in Lemma 4.3, our
procedure shows in which way the equisingularity classi{erdingular points) of generic polars determines the
equisingularity class of the curves. Furthermore, our @agin applies for any pair of polars infidirent directions,
regardless whether they are topologically generic or examstverse ones (see Corollary 4.11). As an additional
value, our algorithm gives a quite clear and neatljedent proof of Casas-Alvero’s Theorem 8.6.4 of [6]. We
address the problem by reinterpreting it in terms of themhebplanar analytic morphisms, recently developed in
[7], and a careful and ingenious use of these new techniqueddes us to construct our new proof.

Falling on the same stream of recovering the equisingylatiéss of a germ of plane curve from invariants
associated to polars, but starting form fetient setting, there are the works by Eggers and byi&&arroso. In
[10], Eggers proves that the generic polar enriched withptilar invariants corresponding to each of its branches
determine the equisingularity (topological) type of theveu Hence the starting data include some information
about the topological type of the curve, and it is crucial how which polar invariant correspond to each branch
of the polar, since the permutation of two polar invariants/rgive diferent topological types of curve (as shown
in [10] or [14]). In [14, Theorem 6.1], Gata-Barroso proves that thgartial polar invariantsof a plane curve
and the multiplicities of its branches determine the eqgisiarity type of the curve. Partial polar invariants are
defined from the intersection multiplicity of each branckf efith the branches of a generic polar. Hence, in order
to have the partial polar invariants at the beginning, oreelag¢o know some information about the topological type
of £ (the number of branches, their multiplicity, and their istction with each branch of the polar). Our work,
instead, does not take for granted any knowledge of ther@igiurves, and its equisingularity type is computed
entirely from the polars.

This paper is structured as follows. In Section 2 we give geguon the tools used all along the work, recalling
definitions and facts about infinitely near points, polamgeof singular curves and germs of planar morphisms.
We then relate our problem about polar germs to the theoryamfgp analytic morphisms and close the section
with a short sketch of the algorithm giving the solution. 8@t 3 contains the technical results needed to solve
the problem, which we believe are interesting on their ovis divided into two parts. The first part is devoted
to the study of the growth of some rational invariariggp), associated to the equisingularity class of the curve,
independently of its polars. The behaviour of these invasidnas been studied by several authors, but always
considering only pointp lying on £. However, we need to take into account also points which ddi@on the
curve, as well as some refined versions of the known resulisdiots of the curve. Therefore, we have developed
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some generalizations that, although not particularly ssirmy, are new and essential for our work. The second
part studies the relation between these topological iautsi the values,(¢) of the curve and some invariants,
the multiplicitiesn, and the heightsn,, of the morphism associated to a generic polar. Finally,gotiSn 4 we
develop the results which build up our algorithm and apptyp i& paradigmatic example of Pham and to a more
complicated curve with several branches, some of them wiherthan one characteristic exponent, illustrating
how the algorithm works.

AcknowledgementThe authors thank F. Dachs-Cadefau for the implementafitimeaalgorithm.

2. Preliminaries and translation of the problem to a morphiam

In this section we introduce the notations and conceptsateedthe development of the results of this work.
We start recalling some notions about infinitely near poietguisingularity of plane germs of curve and base
points of linear systems, followed by some results relatiregn to polar germs. Next we expose a brief review
of the theory of planar analytic morphisms developed by €#daero in [7], explaining how our problem fits
in that context. The last part of the section is a short oesvwf the main ideas behind our algorithm to solve
the problem. For the sake of brevity, we have kept this seatierely descriptive, and the reader is referred, for
instance, to [6, Chapters 3, 4 and 6] and [7] for further detai proofs.

2.1. Infinitely near points.

From now on, suppos® is a smooth point in a complex surfaBge and denote by = Osp the local ring at
O, i.e. the ring of germs of holomorphic functions in a neighiimod ofO. We denote by the set of points
infinitely near to O(including O), which can be viewed as the disjoint union of all exceptiaigsors obtained
by successive blowing-ups abo®e The points inS will be calledproperpoints in order to distinguish them from
the infinitely near ones. Given amye No, we denote byr, : S, — S the minimal composition of blowing-ups
that realize as a proper point in a surfa&g, and byE, the exceptional divisor obtained by blowing ppn S,
which is also called it§irst neighbourhoodThe setNg is naturally endowed with and order relatisidefined by
p < g(resp.p < g, readingp precedes pjif and only if g € N, (resp.q € Np — {p}).

A function f € O defines algerm of) curve¢ : f = 0 at O, whosebranchesare the germs given by the
irreducible factors off. The germ¢ is irreducible if and only if its equation is irreducible. the sequel, we will
implicitly assume that all the curves ameduced(i.e. they have no multiple branches). Timeiltiplicity of £ at
O, ep(¢), is defined to be the order of vanishing of the equaticat O. From now on consider thgt: f = 0
is a given curve aO. For anyp € No we denote by, @ npf = 0 its total transformat p, which contains a
multiple of the exceptional divisor of,,. If we subtract these components we obtaindtit transformgp, which
might be viewed as the closureﬂgl(f —{0O}). Themultiplicity and thevalueof ¢ at p are defined respectively as
ep(é) = ep(gp) andvp(é) = ep(£p). We say thap lies onég if and only if e,(¢) > 0, and we denote bivo(¢) the set
of all such points. A poinp € No(¢) is simple(resp. multiple) if and only if e,(€) = 1 (resp.ey(¢) > 1). In the
casef is irreducible No(€) is totally ordered and the sequence of multiplicities ia4mcreasing.

Given two germs of curve, £ without common components, its intersection multipligityD can be computed
by means ofNoether’s formulgsee [6, Theorem 3.3.1]) as

[Edo= D> eep). 1)

PENO(§)NNo({)

Given p < g points infinitely near tdO, q is proximateto p (written @ — p) if and only if g lies on the
exceptional divisoE,. A point p is free (resp. satellitg) if it is proximate to exactly one point (resp. two points),
and these are the only possibilities. Note thhat p impliesq > p, but not conversely.

Definition 2.1. We say that q isatellite ofp (or p-satellitd if g is satellite and p is the last free point preceding q
(cf. [6, Section 3.6]).

Proximity allows to establish thegroximity equalities

NGEDIG] o)

a-p
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and the following relation between values and multiplesti

Vp(€) = €p() + Y val©). ®)

pP—q

A point p € No(¢) is singular(on¢) if it is either multiple, or satellite, or precedes a satelpointg € No(¢).
Equivalently,p € No(¢) is non-singular if and only if it is free and there is no skilpointq € No(¢), 4 > p.
The set of singular points @&f weighted by the multiplicities or the values &fat them is denoted bg(¢). Two
curvesé, ¢ areequisingularif it exists a bijectiony : S(¢) — S(¢) (called anequisingularity preserving the
natural orderg, the multiplicities (or values) and the proximity relat®nlt is known that two such curves are
equisingular if and only if they are topologically equivaién a neighbourhood dd (seen as germs of topological
subspaces df? = R%). Thus,S(¢) determines the topological class of (the embedding ofptirees.

The set of singular points of a curve is a special case of egfwed) cluster. Alusteris a finite subse c Ng
such that ifp € K, then any other poing < p also belongs td&. A weighted clustetX = (K, v) is a clusterK
together with a functior : K — Z. The numbew, = v(p) is thevirtual multiplicity of p in K. Two clusters
K, K" aresimilar if there exists a bijectionsfmilarity) ¢ : K — K’ preserving the ordering and the proximity. In
the weighted case we also impaséo preserve the virtual multiplicities.

A cluster can be represented by means dEariques diagran{[11, 12]), which is a rooted tree whose vertices
are identified with the points iK (the root corresponds to the origh) and there is an edge betweprandq if
and only if p lies on the first neighbourhood gfor vice-versa. Moreover, the edges are drawn accordingeto th
following rules:

o If gis free, proximate t@, the edge joiningp andq is curved and ifp # O, it is tangent to the edge ending
atp.

e If pandq (qin the first neighbourhood gu) have been represented, the rest of points proximageito
successive neighbourhoods gfre represented on a straight half-line starting and orthogonal to the
edge ending a.

In the weighted case, the vertices are labeled with thetmaimultiplicities.

Another usual way to represent a cluskers thedual graphof the exceptional divisor ofx : Sk — S, the
composition of the successive blow-ups of every poirKint is another tree, which has one vertex corresponding
to each exceptional curve gk (and hence, to each poipte K), and two vertices are joint by an edge if and only
if the corresponding exceptional curves interse@in It is naturally rooted at the vertex corresponding@tcand
the choice of this root induces a partial orderiagn K (different than the natural orderirg that later plays an
important role.

Both the Enriques diagram and the dual graph may be usedtesesyt the equisingularity class of a cuéve
One starts with the representation®¢), and then one add an edge for each branohé, starting at the vertex
corresponding to the last singular point rand without end. In the Enriques diagram these edges aredurv
and in the dual graph they are usually arrows (pointing ouhefgraph). We will call these graplasigmented
Enriques diagram or dual graph.

A curve¢ goes throughD with virtual multiplicity vo if eo(£€) > vo, and in this case theirtual transformis
& = & — voEo. This definition can be extended inductively to any pginé K whenever the multiplicities of the
successive virtual transforms are non-smaller than theationes. In this case it is said thgagoes (virtually)
throughthe weighted clustefC. If moreovere,(¢) = v, for all p € K, it is said that¢ goes throughK with
gffective multiplicities equal to the virtual onedt might happen that there is no curve going through a given
weighted cluster with féective multiplicities equal to the virtual ones, but wheerth exists such a curve the
cluster is said to beonsistent Furthermore, if this is the case, there are curves goingugirK with effective
multiplicities equal to the virtual ones and missing anytéirsiet of points not itk. Equivalently, K is consistent if
and only ifv, > Zq_m vq for all p € K, which resembles the proximity equalities (2). In this ¢adle diterence
Pp =Vp— Zq_,pvq is theexcesf K at p, andp is dicritical if and only if pp, > 0. Finally, we say thaf goes
sharplythrough’ if it goes throughK with effective multiplicities equal to the virtual ones and furthere it has
no singular points outside. All germs going sharply through a consistent cluster adleced and equisingular (cf.
[6, Proposition 4.2.6]), or more generally, germs goingglyahrough similar consistent clusters are equisingular
Moreover, if¢é goes sharply througfC andp € K, ¢ has exactlyp, branches going through and whose point in
the first neighbourhood gf is free and does not belong ka

4



Definition 2.2. Given pe No, we denote b§<(p) the (irreducible weighted cluster) consisting of the psigk p
such thafo, = vp = 1andpq = 0 for every g< p. Thus, germs going sharply throug(p) are irreducible, with
multiplicity one at p, and its (only) point in the first neigihirhood of p is free and non-singular.

Based on Noether's formula, it is possible to define the satetion number of a weighted cluster with a curve,
or even two clusters, as

[K.E =K =) vpepld) and  [KK1= > v

peK peKNK’

In particular, the self-intersection of a weighted clussedefined as® = - V4.

The main example of weighted cluster is the clu®&r(L) of base points of a linear family of curves
without fixed part (i.e., the curves ifi have no common component). It has multiplicity = min{epg(¢) | € € L}
at the origin, and the multiplicities at the infinitely neanits are computed inductively considering the virtual
transforms o € L. All germs in L go virtually throughBP(L), and generic ones go sharply through it, miss any
fixed finite set of points not iBBP(L), and in particular are reduced and have the same equianitgutlass. In
the particular case is a pencil, any two such germs share exactly the poinBRfY), and the self-intersection
BP(£L)? coincides with the intersection of two distinct germsfn

2.2. Polar germs and its base points.

In this section we remind the basic definitions and facts aipolar germs of curve. We will assunge f = 0
is a non-empty, reduced, singular germ of curvé®atA polar of £ is any germ given by the vanishing of the
jacobian determinant

o9 _| % %
P f : = X y = O 4

with respect to some local coordinatesy() atO, whereg defines a smooth germat O. The equation (4) actually
defines a curve unlegsis a multiple ofn (in this case the determinant vanishes identically), whiehassume
not to hold from now on. We might even suppose thé not a component of, since in this case the polar is
composed by; and the polar of — . A polar istransversef the curver is not tangent t@&. The set of polar
curves obtained in this way does not depend on the choiceasfitmtes ([6, Remark 6.1.1]), but it does actually
depend on the equatioin and not only on the curvéitself ([6, Remark 6.1.6]). However, this is not a problem
because we are interested in intrinsical properties of tter gurves depending only ghnamely properties of its

jacobian idea) defined asl(¢) = (f, ‘;—;, %) c O. This ideal does not depend on the choice of the equdtiam
&, and carries very deep information about the singularity.dhdeed, it was shown by Mather and Yau in [21]
that two germg, &, areanalytically equivalenif and only if the rings0/J(¢1) andO/J(&;) are isomorphic.

The jacobian ideal defines a linear systgi¥) called thgacobian systerof £. Although all the polars belong
to the jacobian system, the converse is not true. Howeverygerm in the jacobian system of multiplicigy(¢)—-1
is indeed a polar curve. ifis reduced and singular, its jacobian ideal is not the wholp@, its jacobian system is
without fixed part, and hence its generic members are redarnggo sharply through its weighted cluster of base
pointsBP(7(£)) (hence they are equisingular and, furthermore, theyeslldtheir singular points). This motivates
the following

Definition 2.3. Let¢ be a polar of a reduced singular curée We say that is topologically generidf it goes
sharply through BR7 (£)).

The weighted clusteBP(7(¢)) is difficult to compute from its definition, but it can be shown (cf8]2nd [6,

Corollary 8.5.7]) that it coincides witBP (%L %) the weighted cluster of base points of the pencil spanned by
the partial derivatives of any equation §f But base points of pencils are easy to compute (see fomiosttne
algorithm in [2]).

The clusteBP(J(£)) is deeply related to the cluster of singular pointg .oAs a first result, it contains all the
free singular points of ([6, Lemma 8.6.3]), but the most striking result is the faling

Theorem 2.4. ([6, Theorem 8.6.4]) Lef; and&, be germs of curve, both reduced and singular. Then
1. If BR(J (£1)) = BP(J(£2)), thenS(£1) = S(&2).



2. If BP(J(£1)) and BR(£2)) are similar weighted clusters, thén and &, are equisingular.

The proof of Casas-Alvero works in two steps. The first on@isetover the polar invariants (which will be
introduced below), and the second step is a procedure iimgply careful tracking of the Newton polygon of the
iterated strict transforms of a generic polar under blowipgHowever, the major drawback of this proof is that it
throws no light on the connection between the singular gafiboth objects: germ of curve and generic polars.

Our aim is to give a precise description of the relation betwihe singular points of the curve and those of its
generic polars. This will provide a new alternative proofiltieorem 2.4. As a previous step we will also recover
the polar invariants, but in contrast, our algorithm willgjia diferent proof of the second step, avoiding the use of
the Newton polygon and the tracking of the polars after ssgige blowing-ups.

A classical tool to study the relation between a germ and dlarpcurves are the polar invariants. These
invariants were introduced by Teissier in [29], where hevpdbthat they are topological invariants é€tlosely
related to its (transverse) polar curves. A pginé No(¢€) is arupture pointof ¢ if either there are at least two
free points or¢ in its first neighbourhood, op is satellite and there is at least one free point¢an its first
neighbourhood. Equivalently is a rupture point if and only if the total transforfp has three dferent tangents.

In the augmented dual graph &f(¢), rupture points correspond to vertices with three or mooédant edges
(counting the arrows). We denote #8Y¢) the set of rupture points @ More generally, ifp € Mo is a free point,
RP(£) denotes the subset of rupture pointg @fhich are either equal tp or p-satellite. Note that all rupture points
are singular, and also all maximal singular points are meopoints.

For anyp € No, takeyP to be any irreducible germ of curve going througland whose point in the first
neighbourhood op is free and does not lie af) and define the rational number

€271 _ [£K(P)]
eo(r?) ~ vo(K(p))

which is independent of the choice pt and will be callednvariant quotient at p Thepolar invariantsof £ are
the invariant quotient$(q) at the rupture pointg € R(£). Note that they (as well as the invariant quotients) can
be computed from an Enriques diagramépfand hence are topological invariantséofin fact, it was shown by
Merle in [23] that if¢ is irreducible, its equisingularity class is determinedteymultiplicity at O and by its polar
invariants. Polar invariants have an interesting topaalgneaning which was given byél.Michel and Weber in
[19].

We have defined the polar invariants without any mention tarpgerms. Its relation to polar germs is given
by the next

I(p) = l<(p) = (6)

Proposition 2.5. ([6, Theorems 6.11.5 and 6.11.8]) Let= Py(£) be a transverse polar of a non-empty reduced
germ of curvet, and lety, ...,y be the branches af. Then

{ii'g;i])}i:l | = {l(Q)}qe‘R(f)'

,,,,,

Furthermore, if pe No(&) is either O or any free point lying o0&, the set of quotientg'(iy], for v a branch of?
going through p and missing all free points &mfter p, is just{l(q)}geres) -

2.3. Planar analytic morphisms.

We end the preliminary material summarizing some definitiand results concerning germs of morphisms
between surfaces which will be used along the paper. We nowsider two pointO € S, O’ € T lying on
two smooth surfaces. germ of morphismof surfaces at them is a morphism: U — V defined on some
neighbourhoods 0O and O’, such thatp(O) = O’. We will assume that the morphism is dominant, i.e. its
image is not contained in any curve throu@h or equivalently the pull-back morphisgi : Oro — Osp is a
monomorphism. Since the surfaces are smooth, we can attagdystems of coordinates, ) and (, v) centered
at O and O’ respectively, obtaining isomorphisrik o = C{x,y} andOro = C{u,v}. Under this isomorphisms,
we denote b)ﬁ e C[x,y] theinitial form of anyh € Oso, and byop(h) = degﬁ its order (and analogously for
h e OT,O’)-

The pull-back of germs aD’ is defined by pulling back equations, and the push-forwardlirect image, of
germs atO is defined on irreducible germs and then extended by lineaFibr an irreducible gerny at O its
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push-forwardp.(y) is defined as the image curee= ¢(y) counted with multiplicity equal to the degree of the
restrictiony, : y — o. With this definitions, it holds thprojection formula

[£.¢°(D]o = [¢:() Lo (6)

for all germs of curve atO and/ atO'.

Let (f(x,¥),9(x,y)) be the expression af in the coordinates fixed above. Thaultiplicity of ¢ is defined as
eo(¢) = N = npo = min{op(f), 00(g)}. Consider now the pencit = {Af +ug = 0}. Its fixed part® is thecontracted
germof ¢, defined byh = ged(f, g). If both % and{ are non-invertible, the variable p##t is a pencil without fixed
part whose cluster of base points is by definition ¢hester of base pointsf ¢, denotedBP(¢). The multiplicity
ep(¢p) of p at any pointp € No infinitely near toO is defined as the sum ef(®) and the virtual multiplicity of
BP(¢) at p. A point p is fundamentabf ¢ if e;(¢) > 0. The multiplicity can alternatively be extended to any
p € No as the multiplicity of the compositiop, = ¢ o, which is denoted bg(¢,) or n, if the morphism is clear
from the context. These two possible generalizations ohthiteon of multiplicity correspond respectively to the
multiplicities and the values of a curve at a point. Indebdytverify the following formula (see [7, Proposition
13.1])

e(ep) = ep(#) + Y _ gy (7
p—q

So far we have attached ¢oa weighted cluster of points infinitely near@ There is a natural way to construct
a weighted cluster of points &': the trunk ofy. Let L ={l, : @ € IP’(%:} be a pencil of lines aD, and consider its
direct imagegy, = ¢.(l,)}. All but finitely many of them may be parametrized as

(U@, V) = ) at)

i=n

wheren = ep(p) and theg; may depend on. Indeed, since is supposed to be dominant, at least one of them will
depend onr. Since the coficients of a Puiseux series determine the position of thetpgaf. [6, Chapter 5]),
all but finitely many of they, share a finite number of points with the same multipliciti€his weighted cluster
is independent of the choice of the pencil of lin€sit is denoted by~ = 7 (¢), and it is called thémain) trunk
of ¢. The smallest integean = mg such thatay, is not constant is thbeightof the trunk. These definitions can
be extended to anp € No by considering the morphisi, instead ofp. In [7, Section 10] it is developed an
algorithm to compute the trunk of any morphism from its esgien in coordinates.

The last concept we want to recall is flagobian gernor ¢. It is defined as the germ

J(p) =0,

oY) | B W

Jatg | oo
ox ay

which is a germ of curve & (the determinant does not vanish identically becausedominant). Note that when
g defines a smooth germ, the jacobian germ is a poldr.df = 0. One of the main results of [7] gives an explicit
formula to compute the multiplicities of the jacobian gemonfi the multiplicities and the heights of the trunks of
the compositegy:

Proposition 2.6. ([7, Theorem 14.1]) For any point p N, we have
m+n-2 if p=0,

ep(J@) =< mp+n,—my —ny -1 if p is free, proximate to p (8)
Mp + Np — My — Ny — My — Ny if p is satellite, prox. to pand @’.

In particular, we will use the following

Corollary 2.7. ([7, Corollary 14.4]) If p is a non-fundamental point f then my = my + e,(J(¢)) + 1if pis free
proximate to p, and my = my + My + €,(J(¢)) if p is satellite proximate to‘pand @’. In any case, f> my.



2.4. The problem.

Our aim is to give an explicit algorithm which computes theighted clusterS(¢) of singular points of a
singular and reduced germ of curgdérom the weighted cluster of base points of the jacobianesg8P( 7 (¢)).

In particular, we shall obtain a new proof of Theorem 2.4. @bieve this, we reinterpret the problem in terms of
the theory of planar analytic morphisms as follows.

Let (x,y) be a system of coordinates in a neighbourhbodf O, f an equation for the ger# andn : g = 0
a smooth germ aD such that the point on in the first neighbourhood dd is not in BP(J(¢£)) and{ = Py(f) :
‘;g(:g) = Ois atopologically generic transverse polagoNote that being topologically generic is a generic propert
ancf being transverse excludes finitely many tangent dinesttO, so the existence of suchjas guaranteed.

The key observation is that we can think of the palars the jacobian germ of the morphigm U — C?
defined ag(x, y) = (f(x.¥), 9(x, y))-

Let us first study the fundamental points @f Since we are assumingto be transverse, we know thét
andg share no factors, sp has no contracted germ. Thus the only fundamental poingsae its base points
BP(¢) = BP({&; : A1f + 229 = 0}). Note thatéjig = € andéppy = n. We haveeg(é,) = 1 for 4 # [1,0],
and sovo(BP(¢)) = 1. Since the weighted cluster of base points of a pencil isistent, this force®8P(y)
to be irreducible and to have only free points with virtualltiplicity one. Moreover, its self-intersection is
BP(¢)? = ep(¢), SOBP(¢) consists okp(¢) points lying ori. We have thus proved the following

Lemma 2.8. The fundamental points gf are exactly the first &¢) points inNo(r). In particular, there are no
fundamental points in BT (£)) but the origin O.

Combining this result with formula (7) and Corollary 2.7 wetain the following

Lemma 2.9. If p # O is either a base point off (¢) or a satellite of one of them (or more generally, it is not a
fundamental point ap), then

np=3 g
p—q
mp = My + ep() + 1if p is free, proximate to pand

my, = My + My + €p(¢) if p is satellite, proximate to‘pand @,

while for p= O we have g = 1 and my = eo(¢) = eo(¢) + 1.

2.5. The solution:; an algorithm.
The algorithm we have found to solve this problem is basethefdlowing facts. FirstlyBP(J (£)) coincides

with the weighted cluster of base points of the pené&{, % spanned by any two polars alongfdrent directions.
This allows to recover the set of polar invariants just frBR(7 (£)) (see Lemma 4.3). Secondly, although the
underlying cluster oBP (7 (£)) does not coincide with the set of singular pointstpach dicritical poind of
BP (7 (£)) corresponds to a unique rupture pofat € R (£) whose associated polar invariant is given by any
branch of a polar going througth (Proposition 4.1). Furthermore, any rupture pointafan be obtained in this
way, soBP (7 (£)) is enough to determine thetof singular points of (because every maximal singular point is
a rupture point). Finally, since the set of singular poirdeginot determine the equisingularity point of the curve
(because there are many ways to assign virtual multigith a consistent way), it is necessary to determine the
multiplicities of S (¢).

Our algorithm works then roughly as follows (see Algorithr@ fbr a precise description). In the first part, for
each dicritical poind of BP(J (£)) we compute the associated polar invarignand explicitly find the rupture
point gy by comparingly with the quotients':‘ﬁ. In the second part, after finding all rupture and singulantso

P
we determine the values éfat any singular point (which indeed coincide witl for manyp, for example for the
rupture points). This is clearly equivalent to recover thiural multiplicities of S (£€) by means of the formula (3).

Algorithm 4.9 implemented in the Computer Algebra syst&maulay 2 [16] will be available at the web

pagewww.pagines.mal.upc.edu/~alberich or upon request to authors.

3. Tracking the behaviour of the invariant quotients

In this section we develop the main technical results whiebcdbe de behaviour of the invariant quotients
I:(p) asp ranges oveNp, as well as its relation to the values(¢) and the heightsn, associated to the morphism
¢ introduced at the end of section 2.
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3.1. Growth of the invariant quotients

First of all, we need to introduce a new order relatioMp. Recall (Definition 2.2) that for ang € No, K(p)
is the irreducible weighted cluster whose last poin.is

Definition 3.1. Let q # gy be two points infinitely near to O, equal to or satellite of free points p and p
respectively. We say that @s smaller thang, (or g is bigger thang;), and denote it g < @z (or g2 > qp) if

p1 < po (with the usual order) ané{% < vag((;(gj)))) Obviously, we denote by & @, the situation in which

01 < 02 Or g1 = Qg, and similarly for @ > q;.

We introduce also the following relation between points mretucible curves.

Definition 3.2. Lety be any irreducible germ, let p be any free point and let q beegip or a p-satellite point. We
say that q ismaller thary (or thaty is biggerthan q) if pe No(y) (or equivalently g(y) > 0) and :2%3)) < zoi(yy)).
We denote it &k .

Remark 3.3. It is worth noting that the ordering: coincides with the ordering in the dual graph. More precysel
if T is the dual graph of a cluster containing @nd ¢, then q < ¢ if and only if the vertex corresponding t@ q
belongs to the minimal path from O tg.q

The following lemmas summarize the main properties of tlikeorelation<.

Lemma 3.4. Let pe Np be any free point dgferent from O, proximate to’pThen:

1. The satellite point g in the first neighbourhood of p satisfies q < p.

2. If q is a p-satellite point, the two satellite points, Q. in its first neighbourhood may be ordered as<{
01 < g < g2 < p. Moreover, every p-satellite point apfinitely near to q (resp. @) satisfies < q (resp.
q > q).

Proof. The proof follows easily from the relation between the sep-ahatellite points irk'(g) and the expansion
as a continued fraction of the quotie; ,'f,(((g))), combined with some elementary properties of continuectifras
P

(see for instance [1, Remark 2.1 and Lemma 3.5]). Altereftithe result follows immediately from the fact that
< coincides with the order in the dual graph. O

For future reference, the poigt (resp.qy) in the second case above will be calfedt (resp.seconl satellite
of g. In the first case, when there is only one satellite pqjrit will be calledfirst satelliteof p.
Itis also useful to know how a satellite point is ordered wéhpect to the two points which it is proximate to.

Lemma 3.5. Let g be a satellite point, proximate t@ gnd ¢, and assumesg< ¢,. Then

Qu <g<0Q2.

We now turn to the relation between the orderingnd the growth of the invariant quotientgp).
Proposition 3.6. Let p# O be a free point proximate to' det g be a p-satellite point and let,g- g, be either p
or another p-satellite point. Then the following inequatthold:

L@ ®
l(P') < le(on) < 1£(02).

Moreover, equality holds ife) if and only if p¢ No(¢), and equality holds irfb) if and only if there is no branch
v of £ such that g < y (bigger than q). In particular, note that equality ifa) implies equality in(b).

Proof. For any infinitely near poing € No, lety® be any irreducible curve going througfand having a free point
in its first neighbourhood which does not lie 6&nThe first inequality, as well as the characterization ofadityy
is easily obtained computing the intersectiofigf ] and [¢.y%] with Noether’'s Formula (1).

For the second inequality, l&t, .. ., & be the branches @fand expand each(q;) as

Z [£.9%] )

f (@) = & (yql

eo(vq'
9



. %] _ &Gy
For brancheg; not going throughp, we haveeo’(yql) = e;(yqz)

branches, following [1, Proposition 2.5] we can write

again by Noether's Formula. For the rest of the

(€] eq(é))? : { ep(éj) ep(r4) }
* + ey (&) min 212 =5 (10)
eo(y%) 22; eo(¢) eo(¢)) eo(r%)

and so we just need to take care of the minimum in the last sutdnia the cas "ggj)) < Z’;gzg this minimum is

the same for = 1, 2, while in the opposite case (i.e. whgn> g1) the minimum fon = 1 is strictly smaller than
for i = 2, giving strict inequality inl§) as wanted. O

Remark 3.7. Proposition 3.6 can be interpreted as follows: the functigiis monotone increasing on the dual
graph of any composition of blow-ups, and strictly incregsbver the dual graph of any subsetAd§ (£).

Also next corollary follows immediately.

Corollary 3.8. If p € No(¢) is a free point, all the polar invariantsg(q) associated to points g RP(¢) are
different.

Unfortunately, these results are not precise enough fopagposes, so we need a more sophisticated result
which deals with a particular case.

Proposition 3.9. Let ¢ be a germ of curve at O, and @ Ng any free point dferent from O. Assumé&has at
least two branches going through p, and that exactly one @fthsayy, goes through a free point in the first
neighbourhood of p. Suppose in addition that p is a non-darqaoint of y. Finally, let ge No(¢) be the biggest
p-satellite rupture point og. Then

[EK(P] -1 1
vo(K(p) vo(K(p))

Proof. The second inequality is given by Proposition 3.6, so we fjiestd to prove the first one. If we consider
decompositions as in (9) both ftu(p) andl(q), the proof of Proposition 3.6 shows that all the summanegqual
but for the one corresponding to the branchand that it only remains to check one of the following (egiéwnt)
inequalities

(02573 IS S 072575 NS S b2l BN 0250 ()<ep(7p)_ep(7°‘))
eo(?) 0P e  eOP) el  eb® " eo(yP)  eo(y?)

whereyP andy? are as in the proof of Proposition 3:8, going sharplythrough®(p), p’ is the pointpis proximate
to, and the last equality is a consequence of [1, Propositishn Now, noting that botly andyP go sharply through
K(p), we getey(yP) = ep(y) = ey (y) = 1 and the inequality in (11) becomes obvious. O

= l¢(p) - <lg(a) < 1£(p).-

11)

Remark 3.10. The hypotheses of Proposition 3.9 can be expressed in téring dual graph ofS (¢) as follows:
p correspond to a maximal vertex, and there is exactly onevacoming out from it. The point q corresponds to
the last rupture vertex in the path from O to p.

Remark 3.11. Propositions 3.6 and 3.9 are generalizations of [6, Profiosi 7.6.8], extending it to points not
necessarily lying o and giving more precise descriptions of some cases. Simgfardts can be found also in
[18], [3] and [9].

3.2. Relating the invariant quotients to the morphism

We now wish to study the relation between the invariant eumsil-(p), the valuessp(é) of £ and the multi-
plicities n, and heightsn, of the morphisms, = ¢ o 7, for the points iNBP( 7 (¢)) or satellite of them (or more
generally, for anyp € N such that'(p) N No(7) = {O}). We begin with an easy

Lemma 3.12. If p € Np belongs to BRJ(¢)) or is satellite of such a base point (or more generaf§(p) N
No(n7) = {O}), then[£.K(p)] = vp(é) andvo(K(p)) = Vp(n7) = np. In particular
_ Vp(®)
le(p) = T
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Proof. The intersection numbeé JK(p)] equals E.yP] for any yP going sharply througlp and missing any point
on ¢ in the first neighbourhood ab, and this intersection turns out to bg(¢). Indeed, ifr, : S, — Sis the
composition of blowing-ups giving rise to, theny? = mp.(l,) for some smooth curvk, at p non-tangent t@,.
Then, by the projection formula (6), we have

[69°] = [Emp(Ip)] = [75(€).1p] = [€plp] = epEp)ep(lp) = Vp(£).

For the second part, the virtual multiplicity (K (p)) may be written as the intersectiopd(p)] (because(p) N
No(n) = {0}), and thusvo(K(p)) = Vvp(n) by the same reason as above. But the valyés) also satisfy the
recursive formula of Lemma 2.9 with the same initial vafue= 1 = ep(7), and henceo(yP) = npey(yP). The
last equality is immediate. O

We now focus on the relation between the values and the tseight

Proposition 3.13. Keeping the hypothesis of Lemma 3.12, the inequal{§) \« m, holds, with equality if and only
if the total transformg, andz, at p have non-homothetical tangent cones (counting midiiigls, or equivalently,
considered as divisors onpEthe first neighbourhood of p).

Proof. The proof is based on the algorithm given in [7, Section 10¢dmpute the trunk of a morphism. This
algorithm produces a sequence of pencils whose clusterasef points have strictly increasing heights (the defi-
nition of the height of a trunk works for any multiple of aneducible cluster). It is immediate to check that the
cluster in the first step of this algorithm has height exaegly) = o(¢},(u)), and that the algorithm stops after this
first step if and only if the initial forms of},(u) andj(v) are non-homothetical, which is equivalent to the total
transformst, andn, at p having non-homothetical tangent cones. O

We are now ready to state the main results relating the valnéshe heights:

Theorem 3.14. Still keeping the hypothesis of the previous results, 1et p be the last free point preceding (or
equal to) p. Theny(£) < m,, with equality if and only if

o either p is free and there is a free point proximate to p lyimgdin particular, p lies oné),
e or p is satellite and there exists a branchéofvhich goes through’pand this branch is not smaller than p.
Equivalently, y(¢) < m, if and only if all branches of going through pare smaller than p.

Proof. Let us first consider the cagefree. By Proposition 3.13, we know thaj(¢) = mj, if and only if the total
transformst, andz, have non-homothetical tangent cones. Sipigfree, it is proximate to a single poigt Let
Eq be the germ (ap) of the exceptional divisor o, : S, — S. By definition,&p = v4(¢)Eq + Ep, and by the
hypothesis o, n, = n4Eq. S0,£, andn, have homothetical tangent cones if and only if every brarlitim & also
tangent toEy, which means that there is no free point in the first neighbood ofp lying oné. So,vy(£) = my if
and only if there is some free point in the first neighbourhobgd lying on ¢, as wanted.

Now let us deal with the casp satellite, proximate to two pointg andqg’. Assume thag < ¢, so that
g < p < g by Lemma 3.5. By definition and the hypothesis pwe haves, = v4(£)Eq + Vg (£)Egy + Ep and
1p = NgEq + Ny Eq. Letag (resp.ay) denote the multiplicity oEq (resp. Eq) in the tangent cone cffp. Thené,
andn, have homothetical tangent cones if and only if every brarﬁéfr; s tangent to eithel, or Ey (equivalently,
8 +aq = €p(¢)) and

Vg(é) + 3q _ Vg (€) + &g

nq nq’

So assumﬁg_p andr, have homothetical tangent cones, which by the previousd®itipn means that,(¢) <

mp, and takey = V“(?q+aq = % Then on the one hand we have

o= Vg(é) +ag + Vg (€) +ag V(&) + Vg (€) +65(8)  Vp(é) (D)
- Ng + Ny - Np o = 1e(P):
and on the other hand

e=l@+ 22 10)  and  a= @)+ L > 1),
q 11 q



But we have assumegl< p < ', and thus by Proposition 3.6 we hak€q) < I:(p) < l:(q’), which combined
with the above equalities implies the(p) = 1:(q) (= @) anday = 0. This in turn implies (by Proposition 3.6)
that every branch of going throughp’ is smaller tharp, as wanted, and that, = e,(£).

It remains to prove that i, andn, have non-homothetical tangent cones W@g¢) = mp), then there is some
branch of¢ going throughp” which is not smaller thap. But this case only may occur eitheraf + ay < ey(¢) or

if "“("’%a“ 2 Sre)ey (‘ma“ . In the former case there is a branchéghroughp whose point in its first neighbourhood is
free, and such a branch is not smaller tigain the latter case we can assume that ay = €y(¢) (for |f not we are

in the previous case) and then we have that the quoliép) = W fits betweerl«(q) + 2 o= "“(?:a‘*

andlg(q) + % = % Sincep < g impliesl:(p) < I:(q), we are in fact in the situation

160 + 22 < 1(p) < 1e(e) + L.
q o
Now we have to consider the cases when the second inequalilg.hif we already havé:(p) < l:(q), then
by Proposition 3.6 there exists a branch&ofjoing throughp’ and bigger tharp, as we want. If otherwise
l:(p) = 1:(0'), thenay > 0 and there is at least one branch¢afhose strict transform gt is tangent tcEy . This
concludes de proof because this branch is bigger than O

Corollary 3.15. If p is a rupture point of, then
Vp(€) = mp

Proof. Sincepis a rupture point of, there is at least one branchéfjoing through it and whose point in the first
neighbourhood if free. Such a branch clearly goes throughatst free point preceding or equalppand is not
smaller tharp. Thus, we have,(£) = m, in virtue of Theorem 3.14. O

4. Recovering the singular points from the base points of thpolars

This section presents the main result of this paper, narhelyptocedure which recovers the weighted cluster
of singular pointsS(¢) (of a singular reduced germ of curgkdirectly from the weighted clust&@P(7(¢)) of base
points of the jacobian system &f This procedure uses only invariants computable from theégHes diagram
of BP(J(¢)) (weighted with the virtual multiplicities) and hence ookthe strengths of this procedure is that it
applies also to obtain the topological clasg airectly from the similarity class dBP( 7 (£)).

4.1. Recovering rupture points

In order to recover the set of rupture poiR€&), and hence the whole set of singular points pjust from
BP(7(¢)), we argue as follows. LeD be the set of dicritical points P(7(¢)). We will show that to eacl € D
we can associate a uniquely determined rupture girg R(£) such thatl; (qq) = ¢ (d). Moreover we will see
that any rupture point is associated to some dicritical fgaithis way (see Proposition 4.1). However, the explicit
determination ofly has two main dficulties to be overcome. On one side, despite the polar aves(il:(d)}den
are computable froBP(J (¢)) (see Lemma 4.3), itis not possible to know the invariamtspnt|.(p) for whatever
p, and hence the possibility to check equalitgp) = 1¢(d) (necessary to identify the rupture poipt associated
to d) is out of reach. On the other side,qg§ happens to bgy-satellite, thergy does not necessarily belong to
BP(J(¢)). Furthermore, despite we manage to characterize thg@bieepy in terms of the invariants,, andmy,
(see Proposition 4.4), there might be mamysatellite pointsy with the same invariant quotief(d) = 1:(qq), and
some criterion to distinguisty must be found. All these ficulties are solved by a cunning use of the invariants
I:(0), ng andmy, and their properties developed in Section 3.2. More pedgisis we will exhibit, not only the
quotientsn% behave similarly enough like the invariant quotieht§g) to help findpy, but they are at the same
time different enough to distinguish between fhesatellite pointgy when the invariantk:(g) cannot (see Theorem
4.5).

Next we will develop the results that justify our procedwrbjch will be detailed as an algorithm at the end of
the section.

Proposition 4.1. Let de D be a dicritical point of BRJ(£)), and suppose s the last free point lying both ah
and%(d). Then there exists a unique rupture poigtegRP(¢£) such that }(qq) = l¢(d). Furthermore, g < d.
Moreover, any rupture point is associated to some dicritpzznt in this way.
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Proof. Lety be a branch of a topologically generic transverse polafr& going sharply through<(d) (such ay
exists because is a dicritical point ofBP(7(£)) andZ goes sharply through it). Thawy is the last free point lying
both on¢ andy, and the existence of@ € RP(¢) satisfyingl:(aq) = g—fy]) = l¢(d) is guaranteed by Proposition
2.5. Moreover, Proposition 2.5 also says that for any r@npaintq there exists a brancyt (not necessarily
unique) of¢ such thatl-(q) = % and that is satellite of the last free point lying both grandy’. So it only
remains to prove that the same brancbannot work for several rupture points, which is equivaterjprove the
uniqueness ofy.

The casgy = O is quite easy, sinc® has noO-satellite points, and thug = O is the only possibility.

For the rest of the proof assurpg # O, and suppose thai < g are two rupture points @gfequal to or satellite
of pg and such thakg(a:) = 1:(02) = 1(d). By Proposition 3.6, no branch gfcan be bigger thag;. But sinceg,
is a rupture point, there exists a branclkf gfoing throughg, and having a free point in its first neighbourhood, and
such a branch is clearly bigger thgn which leads to a contradiction. Therefore, there existsique py-satellite
rupture pointyy satisfyingl:(gq) = 1-(d).

In order to prove thaty < v, which is equivalent ta@y < d, note that we can considg'i] aslg(q'), whereq’
is the lastpy-satellite point ory (becausepq is the last free point lying both opand¢). Thenl:(qq) = 1(q’), and
again by Proposition 3.6 we obtain tlggt< ', which impliesgq < y by definition. O

Corollary 4.2. The number of rupture points of a reduced singular cufvs bounded above by the number of
dicritical points of BR7(¢)).

From now on, ifd € D is a dicritical point ofBP(J(¢)), pg Will denote the last free point lying both ghand
K (d), andqgq will stand for the rupture point associatedd@ccording to Proposition 4.1. Note th@ may be
either equal to or satellite gfy. As a particular case, D € D, thengo = O because it is the only poirt O.
However, determiningy in the casel # O, which we assume from now on, is not so easy and needs some more
work.

The first step to determing is to compute the polar invariai(da) = 1:(d) = £78) from BP(7(£)), and
we can do it thanks to the following

Lemma 4.3. If d € D s a dicritical point of BRJ(£)), then k(d) = BAIELKAL 4 g,

Proof. Lety be a branch of a topologically generic transverse pptdic going sharply througik(d). So, proving
the statement is equivalent to prove

[£y] _ [BRI(E)]
eo(7) eo(y)

By definition, there exists some equatibmf £ and some smooth gergi= 0 such that is given by the equation

262 = 0. Up to change of coordinates, we may assgreex, and thug : 57 = 0.

SinceBP(J(¢)) = BP (m af), all but finitely many germg’ of the pencil

x> oy
of of
{“ax +Bay B O}

go sharply througlBBP(7(£)) and miss the first point lying op and not inBP(7(¢)). Then, for any suclf’, we
have BP(7(£)).y] = [£’.y]. Moreover, up to a linear change of the coordingtere may assume thét : % =0.

Now, letn = ep(y) and lets(x) be a Puiseux series ¢f Thus, we have (see [6, Remark 2.6.6] for this formula
of the intersection product)

+ 1.

1:(qq) =

1= o(f(x s(ex) and £'41 = 3 o, (‘;L(x, s(ex))) .

en=1 e"=1

We may relate the summands in the two formulas as follows:

ox(f(x, s(ex))) = 1+ oy (O?Xf(x, s(ax))) =1+o0y (‘;;(x, S(ex)) + e(;:/(x, s(ax))s’(x))
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and sincey is a branch of : —y =0, the summan@i‘9f (%, s(eX))S'(X) vanishes identically. Now adding-up all these
equalities for every-th root of the unitye, we flnaIIy obtain

[£y] =n+[{y] = eo(y) + [BP(T (£)).7]
and the claim follows. O

The second step in order to determipgis to determinepy, the last free point preceding or equaldq or
equivalently, the last free point lying both grand%’(d). To achieve this we will use a property that relapggo
the polar invariant,(d):

Proposition 4.4. Let d # O be a dicritical point of BRY (£)), qq its associated rupture point (see Proposition 4.1),
and @y < qq the last free point preceding or equal tg.gLet [ < d be the last point such thahti < lg(d) and

whose next point ifi(d) is free. Then pis the next point of pin K (d). In particular, iy € BP(J (.f))

Proof. Supposepy is proximate top’. We want to show thap’ = pj as defined in the statement. Sirge< d,
we must havepy < d, and hencg’ < d. Moreover, combining Proposition 3.6 and Theorem 3.14 wainkihat
Vp (§) = my and

My
l(p) = er < 1£(0q).
o

So, among all points strictly precedidgvhose next point irf((d) is free,p’ must satisfy:—s < lg(d). We need to
show that indeeql’ is the last point with such property. L&t < p; < p2 < ... < px be the free points ifk'(d),

and for each > 1 let p{ be the point immediatly preceding. Thenpi,, is either equal to or satellite qf, and
hence Proposition 3.6 gives

(@ .
l(p)) < le(pig) < le(p) forall1<i <Kk,

where the inequalitya) is strict if and only ifp/ < p’, since this is equivalent tp; lying on¢&. In particular, the
sequencelf(p{)}ik=1 is strictly increasing up t@’, and it becomes constant after that.
Suppose now to get a contradiction tigat= p; for some 1< r < k, but that it is not the lasp; such that

my v .. .
n—z < lg(d), i.e. assume < kand:—:: < l¢(d) for somer < s < k. This implies that

m
le(p) < % < 1e(d),

but sincep; is the last free point lying both afiand%(d), it holds the equality.(ps) = 1¢(d), which leads to a
contradiction and we are done. O

Now that pqy has been determined, it only remains to know which of itsli&teoints isqy. The problem
is that there might be many points equal to or satellite opy, with the same invariant quotief(q) = 1.(d).
Moreover, although Proposition 3.6 implies tlogtis the smallest (by) such point, there is no way to determine
it explicitly from the lastpgy-satellite point inK(d). Fortunately, thepy-satellite pointsy bigger thangy and with
the same invariant are exactly the points for whigl¥) < my (Theorem 3.14), and this fact enables us to solve
this case. In other words, the heightg can distinguish between thgg-satellite points when the invarianitgq)
cannot. This fact allows us to develop an algorithm which potesgy just from the polar invariank:(d) and the
already determlnedd, by seeking the unique poinatwhich is either equal to or satellite @ and for which the
equality ™ e = lz(qq) = 1£(d) holds. In fact, it computes step by step all the intermedimtintspy = 0o < g1 <

-+ < Ok-1 < Gk = Qg (Whereg; is in the first neighbourhood af_1).
The procedure works as follows:

e Start withi = 0 andq = pg.
e While nﬁ # l¢(d) do
—If ':‘—; > l¢(d) takeq.,1 to be the first satellite af.
- If n%' < l¢(d) takeq,1 to be the second satellite qf.
14



Increasa toi + 1.
o If ’;% = I(d), end by taking = i andgg = .

Theorem 4.5. Keep the above notations. The above procedure ends afteitarfiimber of steps, and actually
computes the rupture poingq

Proof. First of all, note that sinceg is a rupture point, Corollary 3.15 implies thatd) = I.(qq) = %. Therefore,
since there are finitely many points betwggranddqg, it is enough to check that eaghactually precedegq and
that if%i = l¢(d) theng; = qq.

To see thaty < qgq for eachi we use induction on Fori = 0, we haveyy = pg, and hencejy = pg < g by
definition of pg. Now suppose we have reached the stepthe algorithm and we have to perform another step.
This means thatj < qq and mq*' # l¢(d). We know that in this casg < o4, and we claim that the poirt},;
computed by the algorithm still precedgs Indeed, sincey < g < qq andqyq is pq-satellite, the point in the first
neighbourhood of; precedingyy must be satellite. Hence, it only remains to check that tleecehmade by the
algorithm is the correct one.

o If m" < lg(d), thenlg(q;) = V“'f) T < l:(d) by Theorem 3.14. Therefore, by Lemma 3.4 and Proposition

3. 6 'the next poing;,; must be the second satellite point, for if it was the first dreeitivariantd ;(c) would
be strictly smaller thah(d) for every satellitey) > 0;.1.

o If m“' > l¢(d), then eithed(d) < I:(qi) < m*' or lg(g) < lg(d) < —*. In the former case we apply Lemma

3. 4 and Proposition 3.6 as above to see mthust be the flrst satelllte point of. In the latter case we
have thatvy (¢€) < my, and hence by Theorem 3.14 every brancl§ ¢firoughpy is smaller tharg;. This
implies in particular thaty < gj, and thus by Lemma 34y must be infinitely near to the first satellite qf

In any case, the algorithm is correct.
In order to complete the proof, we must check that the allgoriloes not stop before reaching the pajnt
That is, we have to show thatdfis eitherpy or any py-satellite point strictly precedingy, thennﬁ # l¢(qg).
g 7

o If g < qq, any branch of going throughgy is bigger thar. Then Proposition 3.6 implies thii(q) < 1.(d),
and by Theorem 3.14 we also have tiagt) = mq. Sols(g) = = < I¢(d) and in partlculalmq # 1¢(d).

e Consider now the casg > gqq. Then, on the one hand Proposmon 3.6 implies thed) < 1(g), with
equality if and only if every branch @fgoing throughpg is not bigger thamly. On the other hand, Theorem
3.14 says thaty(¢) < my, and equality holds if and only if there is some branch afot smaller thar.
Summarizing, we havi(d) < I:(q) < nq , and having equality;(d) = nﬁ; would imply (by Theorem 3.14)
that there is some branch éthroughpy which is not smaller tha. But such a branch would be bigger
thangq, implying (by Proposition 3.6) thdt(d) < I.(q) < % and thus contradicting the equalipfd) =

O

4.2. Recovering values

This section is devoted to explain how the values of a cgraeits singular points can be recovered from the
invariantsm, andnp, provided the set of rupture poiri¢) (and hence the set of singular poidi§)) is already
known. Recall that from Lemma 3.12 we already know th#f) = nyl.(p) at anyp € S(¢), but that the diiculty
lies on the computation of the invariant quoties(tp).

Assume first thap € R (¢) is a rupture point. Then Corollary 3.15 implies thgf¢) = m,.

Suppose now thgt € S(¢) a free singular point which is not a rupture point. By Thewnr@ 14, we have the
equalityvp(¢) = my if and only if there is a free point in the first neighbourhoddpdying oné. In particular, if
there is a free singular point in the first neighbourhoog,ofre can also assert thaj(¢) = m,. If otherwise there
is no free singular point o&in the first neighbourhood gf, then there is at most one free point lyingé®€m the
first neighbourhood op and, if it exists, it is non-singular. If there is no such anpihen Proposition 3.6 implies
that n n

Vp(€) = Mple(p) = Mple(0) = ~Eva(é) = Emy
q q
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whereq is the biggesp-satellite point inR(£). On the contrary, i has a free point in the first neighbourhood of
p, then Proposition 3.9, Lemma 3.12 and Corollary 3.15 giednlequalities

Vp€) -1 _Vva(&) _ Mg _ Vp(é)

Np Ng Ng Np

which are equivalent to N 0
Pmy < vpé) < Pmg+ 1,
Ng Ng

where as beforg is the biggestp-satellite point inR(£). Hence, in any case,(¢) belongs to the real interval

My

n Mo, n—zrnq + 1) . Since the width of this interval is one, there is exactly orteger in it, and thus the valug(¢)

is uniquely determined.
So far we have proved the following

Proposition 4.6. Let pe S(¢) be a free singular point which is not a rupture point.
o Ifthere is a free singular point in the first neighbourhoodmthen (&) = m,,.

o Otherwise, let g be the biggest point®¥®(£) (which must be non-empty). Theg(d) is the only integer in
the interval

Mo Mp
[”qmq’ ”qmq+1)

Moreover, the equalitypf¢) = E—Z’mq holds if and only if there is no branch éfgoing through p and whose
point in the first neighbourhood of p is free.

It only remains to consider the case of satellite pomtsS(£) which are not rupture points, and it is solved by
the next

Proposition 4.7. Let p € S(¢) be a satellite point of which is not a rupture point. Suppose moreover that p is
satellite of p € S(¢) and let q be the biggest point R” (£). Then

n . _ n7/

volé) = n Y (€) IR >qand () = 5om,
mp otherwise.

Proof. If p’ = qis a rupture point, there exists a branchéafoing throughp’ and having a free point in its first

neighbourhood, and the same holds if otherwise g butvy (¢) # ';—Z’mq (by Proposition 4.6). Thus, in any case

Theorem 3.14 implies that,(£) = mp.

Suppose now thal’ is not a rupture point andy (¢) = nn—‘:rrh. Then there is no branch gfgoing throughp’

and having a free point in its first neighbourhood. If furtherep < g, Theorem 3.14 applies to giwg(¢&) = mp
again, but if otherwisg > g, Proposition 3.6 gives that

Vol&) = Nple(p) = nple(p)) = :—svpf(f).

O

As a consequence of the proof of Proposition 4.7 we infer ¢flevfiing result, which determines those free
pointsp € S(¢) (besides the rupture points) admitting branches @bing throughp and non-singular aftep.

Corollary 4.8. Let pe S(¢) be a free singular point. Then there is some brancli nbn-smaller than p if and
only if either p is a rupture point ory(¢) # :—:m] (where q is the biggest p-satellite rupture poingpf
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4.3. The algorithm

Algorithm 4.9. Starting from the weighted cluster BF (£)), the following algorithm computes the s&s= R(£)
andS = S(¢) of rupture and singular points @, together with the values\= v,(¢) for any pe S(¢).

Part 1: Recovering the rupture points and the singular points.

1. Start withR = S = 0, and letD be the set of dicritical points of BF (£)).
2. IfO e D, thenseR =S = {O}.
3. Foreach de © - {O}:
(a) Compute I= W +1.
(b) Find the last pomt p< d such tha ™ < | and its next point p irk(d) is free.

(c) Takei |_ Oand Q=p.
(d) Whlle #1do

o If :’q' > |, take @, to be the first satellite ofiq
i

o |f %‘ < |, take q,1 to be the second satellite of.q

Increase i to i+ 1.
(e) If %‘ =1, setR =RU{qg}andS =SuU{q|q< g}

Part 2: Recovering the values.

1. For each pe Rsety, = m,.
2. For each free point g S - R

e Ifthere is a free point both i$ and in the first neighbourhood of p, sgt¥ m,,.
o Otherwise, let q be the biggest p-satellite poinkiand set y the only integer in the interva{lﬂ—zrrb, E—qu + 1) .

3. For each satellite point i S — R, let p be the free point of which p is satellite, and let g be the bégge
point in R which is either equal to or satellite of p

o If p>gandy = ¥myboth hold, sety = vy .
e Otherwise, sety= my.

Remark 4.10. This algorithm gives a proof of the first statement in TheoPen Furthermore, it is obvious that
the algorithm yields similar clusters if it is applied to sian clusters, so in fact it also proves the second statement
in Theorem 2.4, as we wanted.

Corollary 4.11. The cluster of singular point§(¢) of any reduced singular curwe: f = 0 is determined and
may be explicitly computed from any two polarg () and Ry, (f), provided g and @ have dfferent tangents,
regardless whether they are topologically generic or evandverse ones.

Proof. Note thatBP(J (&) = BP(‘;;, f,;) = BP (Pg,(f), Pg,(f)) for any two polars along éierent directions.
This weighted cluster can be explicitly computed using tigerdthm in [2] valid for any pencil of curves. Then
use Algorithm 4.9. O

In some cases, the rupture poigtcan be directly characterized fropg as the following Proposition shows.

Proposition 4.12. Let d € D be a dicritical point of BRJ(¢£)) with polar invariant | = 1.(d), and suppose jis
the last free point lying both o& and K (d). Assume that there exists another dicritical poihtad®D for which
pe = pa but whose polar invariant’l= 1,(d") is greater than I. Thengjs the last g-satellite point in%(d).

Proof. Suppose the claim is false and kgt be the lastpy-satellite point inK(d). Proposition 4.1 implies that
Qda > 04, and henceyy > gq. Moreover, sincepg is the last free point lying both oft and K(d), we can take
indistinctlyy¢ or y% to compute -

[Ey®] _ (69 _

eo(y®)  eo(y9)

If qq is the rupture point associateddf we claim thaigy > qq. Indeed, if it is not the case, Proposition 3.6
would imply thatl” = 1.(qs¢) < l¢(0) = | contradicting our hypothesis. Therefore, there existsesbranch ot
bigger thamy, and then Proposition 3.6 again will givgdq) < 1:(qq) = I, which contradicts thaiy is the rupture
point associated tad. O
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Based on Proposition 4.12, we present an alternative verdithe algorithm for the part of recovering the
rupture and the singular points. This apparently longesivergives a more precise and geometrical description
of some of the rupture pointg, for which also avoids the tedious task of performing theaiiens in step (d).

Algorithm 4.13. Part 1 of Algorithm 4.9 may be replaced by the following:

1. Start withR = S = 0, and letD be the set of dicritical points of BF (£)).
2. 1fO e D, thenseR =S = {0}
3. For each de D — {O} compute ¢ = w +1, and orderD — {O} = {d, ..., dy} by descending order
of lg (i.e., ly, = ... = lg)-
4. Foreach j=1,...,kdo:
a) Find the Iast oint p< dj such thatmp < lg, and its next point p if<(d;) is free.
p | p p

(b) If p has already appeared at this step, lgtimp the last p-satellite point iK'(d;) and setR = R U {q;}
andS = Su {qglg < g;}. Then skip to the next j.

(c) Other\lee take+ Oand g = p.

(d) Whlle L # g, do

o If % > lg,, take g1 to be the first satellite ofiq

o If % < lg,, take g1 to be the second satellite of. g
i

Increase i to i+ 1.
(e) If :“—; =lg, setR =R U (g} andS = SU{qlq < g}

4.4. Examples

Let us illustrate through some examples the application IgbAthm 4.9. We work each example as fol-
lows: we start from an equatioh of £ and then we present our initial data, the weighted clustdrage points

BP(J(£)) = BP (% g—;) which has been computed using the algorithm given in [2F (ffart will not be ex-
plained in any case). Then we apply Algorithm 4.9BB(7(£)) in order to recover the cluste®(¢) with the
corresponding values, showing the invariaﬁ?s:omputed and explaining how the algorithm works. At the énd,
can be checked that our output coincides ws(Y).

For each example of singular curgefour Enriques diagrams will be shown: the first one showsetingsin-
gularity class of the original curue The second one contains the names of the singular poigtsiod the base
points of 7 (¢), where the dots in each square mean that there are as mamnyoirgs as the number in the same
square. The third diagram represents the clUBE7 (£)) with its virtual multiplicities, and the fourth one shows
the heights of the trunksy, and the multiplicitiesn, of the morphismp, for eachp € S(¢£) U BP(J(£)) (which
are computed using Lemma 2.9). The points lyingt@re represented with black filled circles, while the circles
representing points not lying anhare filled in white. When reading each example, it is advis&bleok at the
corresponding figure in order to fix some notation, payingrdibn to the labels of the points of the clusters.

We start with a pair of simple examples, which are classitdhe literature about polars and were given by
Pham [25] in order to prove that the equisingularity clasa ofirve does not determine the equisingularity class of
its topologically generic polars. Namely, the cugvef Example 4.14 and that of Example 4.15 are equisingular,
while its topologically generic polars are not. Observe thar are similar their respective clustdB®(7(£)),
proving also that the reciprocal of Theorem 2.4 does not.hold

Example 4.14(See Figure 1) Take¢ to be given byy® — x* + axy = 0, witha # 0. Itis irreducible and has only

one characteristic exponerigl.. The clusteBP( 7 (¢)) is shown in Figure 1, and hence topologically generic gola

of ¢ consist of two smooth branches sharing the point$ op to ps, the point or¢ in the third neighbourhood of

O. Moreover, topologically generic polars thare four further fixed free points aftpes, two on each branch.
SinceO ¢ D = {ps, po}, We start withR = S = 0. The polar invariants are

[BP(T(£)).K(ps)] 2.1+42-142-1+2-1+1%2+12
Ps

+1=11

We start withpg. The corresponding point’ is pz, and thus the rupture point associatedptois satellite of
Oo = ps3. Step 4(d) consists of the next two iterations:
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(3,6) P1
w21) (1,33) o Ps
(3.3) ©
&, (€p(8), Vp(£)) S U BP(IT(£))

BP(T(£)). vp

SE VBRI @), 7

Figure 1: Enriques diagrams for the singular cugvey® — x1 + ax8y = 0 (@ # 0).

12> 11 =1, so we takey = pa, the first satellite ofs.
o “u =2 <11=1,s0we takey, = ps, the second satellite ;.

Since% =11=1, we end by takingR = {ps} andS = {0, py, .. ., Ps}.

Takizng po we havely, = | = 11 and agairp’ = p,. Hence we obtain the same results asggand it is not
necessary to add any further pointRar S.

The second part of the algorithm starts settigg= m,, = 33. On the one hand, since there are free singular
points in the first neighbourhood @, p, and py, Step 2 yields/o = 3,v,, = 6 andvp, = 9. On the other hand,
since there are no free singular points in the first neighthoon ofps, the second instance of step 2 givgs= 11,
the only integer in the interval

LTI TA 1) ~[11,12).

Nps Nps
Finally, the third step of the second part applies to recoygrHerep’ is ps andq is ps. Sinceps < ps, we must
follow the second instance of step 3 andggt= m,, = 21.

Example 4.15(See Figure 2) Now consider the curve given byy® — x!* = 0. It is again irreducible with single
characteristic exponer%i, and hence it is equisingular to the curve in the previous¥ta (in fact, it corresponds
to takea = 0 in the equation of Example 4.14). However, the Enriquegrdia of BP(7(£)) is not equal to that in
Example 4.14. In this case, topologically generic polass abnsist of two smooth branches, but they share five
points (instead of four, as happened in the previous exgrapktthere are no more base points.

In this case there is only one dicritical pointBP( 7 (£)): ps, and its corresponding polar invariant is again

_[BRIE)Kpe)] |, _2:1+42:1+2:1+2:142-1

I =1
Nps 1

1=11

Pes

Moreover, the poinp is againps, and hence the algorithm works as it does in example 4 (recayveoth the
rupture points and the values).

We expose now a more complicated example, since two of theches of the curve have two characteristic
exponents. After this example it will be clear that the cotafion of S(¢) by hand is much faster using Algorithm
4.13.

Example 4.16. (See figures 4, 3, 5 and 6)
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(2.11) p3 _o Pe

39 P2 -7
P1 Ps
(1,21) (1.33) Pa
(3:3) ©
£.(ep(8).-vp(©)) S(©) VBRI )
2 02
, -
2
2
BP(T(9). vp S VBRI ().

Figure 2: Enriques diagrams for the singular cufve® — x!1 = 0.

Let £ be the curve with branches, ..., ys given by the Puiseux series(X) = x4 + X, S(X) = X# +
63 8 16 9 . . .
X2, S3(X) = X3, 4(X) = X7 andss(X) = x2. One possible equation fgris

=@ — )y - )y - x*)
(y*® — 4xy2 — 80x?Ly° + 6x°A8 — 723y
1603%° — 4x3y* — 16xM1y° + 56x*2y2 — 16x3y + x* — x°h)
(y?° - BxHy™® + 10x°%y*2 — 140" — 10xPP — 620¢° — 1107+
5x*y* — 260x* A + 340¢*8y* — 20x°%* — x° — 4x°7 — 6x°° — 4xP — X53),

and its Enriques’ diagram is shown in Figure 4. It is immedglititat the set of rupture points gfis R(¢) =
{Pa4, Ps, P7, Ps, P13, P14}

The representation dP(7(¢£)) in Figure 5 shows in particular that topologically gecepolars of¢ have
seven branches. One of the branches is smooth, four of theendmdy one characteristic exponent, and the two
remaining branches have two characteristic exponents. &ample also shows thBP(7(£)) may contain a lot
of points which are simple on the topologically generic pela

Now we run the algorithm. Step 1 s&®s= S = 0, D = {p1s, P17, P21, P22, P23, P29, P30}, and sinced ¢ D we
go to step 3.

The polar invariants arls = 17 = 132,151 = 129,12, = 222, 153 = 222, |59 = 22 andlg = 8. Hence, in step
4 we must process the dicritical points in the orgdgy;, pso, P1s, P17, P21, P22, P23-

e Start withpae. We havep’ = pg andp = pio becausqn:ﬂ 887 < 1p9 = 243 < Tho = 544 — 136, Since itis
the first iteration, we takgg = p1o and perform 4(d).

- % =136> 5443 = l,g, SO that we take; = p11, the first satellite opyo.
0

— Mo _ 1083 533 = Iz9, SOQ2 = P12, the second satellite qf;.

Ng, 8
— D _ 407 . 543 _ |0 and therefor the second satellite qf
n, 3 29 €3 = P13, 12

Sincer;1qs = Zigz 00, this first iteration finishes witR = {py3} andS = {O, py, ..., Ps, Po. . . ., P13}-

o Take pao. Since:%'j =33 < 3= B < % = 2112 we havep’ = pg andp = pyo. But pyo has already
14
appeared ap, and so the rupture point associategtg is p14, the lastp;g-satellite point inkK(psg). Up to

now we haveR = {pi3, p14} andS = {O, p1,..., Ps, Po, - . ., P14}

e Take the poinp;s. Since ™ M1 — 100< Iy5 = 132 < r::z = 133, we havgy = p; andp = py. Itis the first

time p, appears, so we must perform the iterations of 4(d) startomm €p = p = p2:
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Figure 3: Singular points af and base points Qf (¢£).

My

~ 72 = 133> 132= I35, and hence we takg, = ps, the first satellite op,.
- ’r']:n £ < 132= 135, and hence we takg = ps, the second satellite gfs.
My, _

- 387 < 132= 135, and hence we takg = ps, the second satellite qf.

And we stop here becaué;@é = 132 = l;5. We finish this step by settin@ = {ps, p13, P14} and
S={0,ps,....ps, pg,...,p14}

e The case opy7 is exactly the same qf;5, SO we omit it.

e Take the pointp,1. Sincer:—pp1 =100< Iy = 7 < T—;Z = 133, we havey = p; andp = p,. But p, has
1
already appeared, and hence we obtain that the rupturegssiatiated t@,; is ps, the lastp,-satellite point
in K(pz1). Therefore we have by the momeRit= {p4, ps, P13, P14} @andS = {0, py, ..., Ps, Po, - - - » P14}-

e Consider the poinp,,. We have agaip’ = p; andp = p2 becausq% =100< Iy = @ < r:— =133, and
sincep; has already appeared as the pginthe rupture point assomated e, is the lastp,- satelllte point

in K(p22): ps. We finish this step by setting = {pa, Ps, Ps, P13, P14} andS = {O, py, .. ., P14}
e We finally takepys, the last dicritical point. We have agai = p; becausqn:pﬂ =100< lp3= 222 ¢ T =

2 = n
133, and hence = p,. But it has already appeared (three times), and thelreferamrture point assc;ciated
to pasis py.

Thus, the first part of the algorithm finishes with= {p4, ps, p7, Ps, P13, P14} andS = {O, py, . . ., P14}, Which
actually coincide withR(¢) andS(¢) respectively.
The second part begins recovering the values of the ruptinésp

Vp, =387, vy, =528 vp, =450, vp, =799 vp,=2172 and vy, =2712
Then we take care of the free singular non-rupture poirastisg with
Vo=Mo =50, vy =mp =50 and vp, = mp, =537
because,, p, andpyg are free singular points in the first neighbourhood®gpp; and pg respectively. Next,

Vp, =132 and vy, =543
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(50,100)

(50,50)

(6,543)

(32132) ©.537) (1,2172)

(2,1628)

(10,387)

o 526) (3,1083)

(1,2712)

Y2

(1,799)

Y5

Figure 4: Singular points af with its multiplicities and valuesg(é), vp(£)).

71

Figure 5: Base points f (¢) with its virtual multiplicitiesv,.
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Figure 6:S5(¢) U BP(J (¢)) with heights of the trunks and multiplicities ¢f, (r:—g)

because they are the only integers in the intervals

n n n n
nﬂmps, nﬂmps + 1) =[132,133) and npm Mg %mpm + 1) = [543, 544)
Ps Ps P13 P13

respectively, angbs (resp.p13) is the biggesp,-satellite (resppio-satellite) rupture point.
Finally, we must consider the satellite non-rupture poimisich areps, ps, p11 andpz2. In first place, bothp;
andpg are smaller thamps, the biggesp,-satellite rupture point, and hence we have

Vp, =My, =245 and vp, = mp, = 348

because the second instance of step 3 applies. In secor] ptabp;; and p;, are smaller tham; s, which is the
biggestp,¢-satellite rupture point. Therefore we get

Vp, = Mp, =1083 and vy, =my, = 1628

by the same reason as above.
As in all the other examples, it is immediate to check thas¢halues are the valueséét its singular points,
as claimed.
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