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Abstract

This paper addresses a very classical topic that goes back atleast to Pl̈ucker: how to understand a plane curve
singularity using its polar curves. Here, we explicitly construct the singular points of a plane curve singularity
directly from the weighted cluster of base points of its polars. In particular, we determine the equisingularity class
(or topological equivalence class) of a germ of plane curve from the equisingularity class of generic polars and
combinatorial data about the non-singular points shared bythem.
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1. Introduction

Polar germs are one of the main tools to analyze plane curve singularities, because they carry very deep ana-
lytical information on the singularity (see [21]). This holds still true for germs of hypersurfaces or even germs of
analytic subsets ofCn (see for instance [29], [30], [21], [20], or [13]). There have been lots of efforts in the liter-
ature with the aim of distinguishing which of this information is in fact purely topological. One of the first steps
in solving this problem was settled more than thirty years ago by Teissier in [29]. There, he introduced the polar
invariants, which in the planar case can be defined from the intersection multiplicity of the whole curveξ with the
branches of a generic polar, and he proved that they are topological invariants ofξ. This result has been generalized
by Maugendre in [22] and by Michel in [24], where the role of polars is played by the Jacobian germs of planar
morphisms and finite morphisms from normal surface singularities, respectively. The problem of relating a curve
to its polars, and vice versa, is the motivation of lots of classical and recent works. Among these let us quote the
works of Teissier [29, 30], Merle [23], Kuo and Lu [17], Lê and Teissier [20], Eggers [10], Lê, Michel and Weber
[18, 19], Casas-Alvero [4, 5], Gaffney [13], Delgado-de la Mata [8], Garcı́a-Barroso [14], and Garcı́a-Barroso and
Gonźalez-Ṕerez [15].

In this work we consider the classical topic of understanding a plane curve singularityξ using its polar curves.
The study of the contact between a reduced plane curve singularity and its polars goes back at least to Plücker,
in 1837, in the framework of proving the global projective Plücker formulae [26]. This motivated later in 1875
the work of Smith [27], which is considered to be the first in giving local results on the contact between a germ
of plane curve and its polars. The question addressed in thispaper of determining a plane curve singularity from
its polars implies solving two problems. The first one is to choose the right invariant, entirely computable from
the polars, which determines the singular points ofξ (or its topological equivalence class), and this was solvedby
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Casas-Alvero in [6, Theorem 8.6.4], in the way we will explain next. The second problem is to explicitly construct
the singular points ofξ from this invariant, which is still open and is the scope of this work.

Regarding the first problem, the above mentioned polar invariants are computable from two polar curves taken
in different directions (see Lemma 4.3), or equivalently from the weighted cluster of base points of the Jacobian
system, and they could be a starting point. In fact, Merle showed in [23] that for an irreducibleξ the polar invariants
and the multiplicity do determine its equisingularity class. However, this does not hold in general and there are
examples of reducible non-equisingular curves with the same multiplicity and the same set of polar invariants (see
[6, Example 6.11.7]). Another possibility could be to consider the topological class (or the singular points) of
a generic polar, but it turns out that this analytic invariant carries not enough topological information about the
singularity. As Casas-Alvero showed in [6, Theorem 8.6.4],one has to consider a slightly sharper invariant: the
weighted cluster of base points of the polars ofξ, which solves the first problem. Indeed, the underlying cluster
consists of the singular points of the generic polars plus the non-singular points shared by generic polars (or by all
polars, if we are considering the notion of “going virtuallythrough a cluster” of infinitely near points, as it will be
explained in Section 2.1).

The second problem of giving the singular points ofξ from its polars is still open. In fact, Casas-Alvero’s proof
of Theorem 8.6.4 in [6] is highly non-constructive, and nothing is said about the relation between both objects.
Only for an irreducibleξ the answer follows easily from the explicit formulas given by Merle in [23].

The aim of this work is to present an algorithm which explicitly recovers the weighted cluster of singular
points of a plane curve singularity directly from the base points of its polar germs. Recognizing the difference
in difficulty, this could be interpreted as a sort of local version ofthe known, quite elementary fact in algebraic
geometry that the proper singular points of plane projective algebraic curves are exactly the proper base points
of its polar curves. In particular, the algorithm applies todescribe the equisingularity class of a germ of plane
curve (by giving this information combinatorially encodedby means of an Enriques diagram) from the Enriques
diagram which encodes the equisingularity class of a generic polar enlarged by some extra vertices representing
the simple (non-singular) points shared by generic polars.As we will show, these extra vertices are only relevant
for recovering the polar invariants. Once the polar invariants are computed as a previous step in Lemma 4.3, our
procedure shows in which way the equisingularity class (or the singular points) of generic polars determines the
equisingularity class of the curves. Furthermore, our approach applies for any pair of polars in different directions,
regardless whether they are topologically generic or even transverse ones (see Corollary 4.11). As an additional
value, our algorithm gives a quite clear and neatly different proof of Casas-Alvero’s Theorem 8.6.4 of [6]. We
address the problem by reinterpreting it in terms of the theory of planar analytic morphisms, recently developed in
[7], and a careful and ingenious use of these new techniques enables us to construct our new proof.

Falling on the same stream of recovering the equisingularity class of a germ of plane curve from invariants
associated to polars, but starting form a different setting, there are the works by Eggers and by Garcı́a-Barroso. In
[10], Eggers proves that the generic polar enriched with thepolar invariants corresponding to each of its branches
determine the equisingularity (topological) type of the curve. Hence the starting data include some information
about the topological type of the curve, and it is crucial to know which polar invariant correspond to each branch
of the polar, since the permutation of two polar invariants may give different topological types of curve (as shown
in [10] or [14] ). In [14, Theorem 6.1], Garcı́a-Barroso proves that thepartial polar invariantsof a plane curveξ
and the multiplicities of its branches determine the equisingularity type of the curve. Partial polar invariants are
defined from the intersection multiplicity of each branch ofξ with the branches of a generic polar. Hence, in order
to have the partial polar invariants at the beginning, one needs to know some information about the topological type
of ξ (the number of branches, their multiplicity, and their intersection with each branch of the polar). Our work,
instead, does not take for granted any knowledge of the original curveξ, and its equisingularity type is computed
entirely from the polars.

This paper is structured as follows. In Section 2 we give a survey on the tools used all along the work, recalling
definitions and facts about infinitely near points, polar germs of singular curves and germs of planar morphisms.
We then relate our problem about polar germs to the theory of planar analytic morphisms and close the section
with a short sketch of the algorithm giving the solution. Section 3 contains the technical results needed to solve
the problem, which we believe are interesting on their own. It is divided into two parts. The first part is devoted
to the study of the growth of some rational invariants,Iξ(p), associated to the equisingularity class of the curve,
independently of its polars. The behaviour of these invariants has been studied by several authors, but always
considering only pointsp lying on ξ. However, we need to take into account also points which do not lie on the
curve, as well as some refined versions of the known results for points of the curve. Therefore, we have developed
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some generalizations that, although not particularly surprising, are new and essential for our work. The second
part studies the relation between these topological invariants, the valuesvp(ξ) of the curve and some invariants,
the multiplicitiesnp and the heightsmp, of the morphism associated to a generic polar. Finally, in Section 4 we
develop the results which build up our algorithm and apply itto a paradigmatic example of Pham and to a more
complicated curve with several branches, some of them with more than one characteristic exponent, illustrating
how the algorithm works.

AcknowledgementThe authors thank F. Dachs-Cadefau for the implementation of the algorithm.

2. Preliminaries and translation of the problem to a morphism

In this section we introduce the notations and concepts needed in the development of the results of this work.
We start recalling some notions about infinitely near points, equisingularity of plane germs of curve and base
points of linear systems, followed by some results relatingthem to polar germs. Next we expose a brief review
of the theory of planar analytic morphisms developed by Casas-Alvero in [7], explaining how our problem fits
in that context. The last part of the section is a short overview of the main ideas behind our algorithm to solve
the problem. For the sake of brevity, we have kept this section merely descriptive, and the reader is referred, for
instance, to [6, Chapters 3, 4 and 6] and [7] for further details or proofs.

2.1. Infinitely near points.

From now on, supposeO is a smooth point in a complex surfaceS, and denote byO = OS,O the local ring at
O, i.e. the ring of germs of holomorphic functions in a neighbourhood ofO. We denote byNO the set of points
infinitely near to O(includingO), which can be viewed as the disjoint union of all exceptional divisors obtained
by successive blowing-ups aboveO. The points inS will be calledproperpoints in order to distinguish them from
the infinitely near ones. Given anyp ∈ NO, we denote byπp : Sp −→ S the minimal composition of blowing-ups
that realizesp as a proper point in a surfaceSp, and byEp the exceptional divisor obtained by blowing upp in Sp,
which is also called itsfirst neighbourhood. The setNO is naturally endowed with and order relation6 defined by
p 6 q (resp.p < q, readingp precedes q) if and only if q ∈ Np (resp.q ∈ Np − {p}).

A function f ∈ O defines a(germ of) curveξ : f = 0 at O, whosebranchesare the germs given by the
irreducible factors off . The germξ is irreducible if and only if its equation is irreducible. Inthe sequel, we will
implicitly assume that all the curves arereduced(i.e. they have no multiple branches). Themultiplicity of ξ at
O, eO(ξ), is defined to be the order of vanishing of the equationf at O. From now on consider thatξ : f = 0
is a given curve atO. For anyp ∈ NO we denote bȳξp : π∗p f = 0 its total transformat p, which contains a

multiple of the exceptional divisor ofπp. If we subtract these components we obtain thestrict transformξ̃p, which
might be viewed as the closure ofπ−1

p (ξ − {O}). Themultiplicity and thevalueof ξ at p are defined respectively as

ep(ξ) = ep(ξ̃p) andvp(ξ) = ep(ξ̄p). We say thatp lies onξ if and only if ep(ξ) > 0, and we denote byNO(ξ) the set
of all such points. A pointp ∈ NO(ξ) is simple(resp.multiple) if and only if ep(ξ) = 1 (resp.ep(ξ) > 1). In the
caseξ is irreducible,NO(ξ) is totally ordered and the sequence of multiplicities is non-increasing.

Given two germs of curveξ, ζ without common components, its intersection multiplicityatO can be computed
by means ofNoether’s formula(see [6, Theorem 3.3.1]) as

[ξ.ζ]O =
∑

p∈NO(ξ)∩NO(ζ)

ep(ξ)ep(ζ). (1)

Given p 6 q points infinitely near toO, q is proximateto p (written q → p) if and only if q lies on the
exceptional divisorEp. A point p is free (resp.satellite) if it is proximate to exactly one point (resp. two points),
and these are the only possibilities. Note thatq→ p impliesq > p, but not conversely.

Definition 2.1. We say that q issatellite ofp (or p-satellite) if q is satellite and p is the last free point preceding q
(cf. [6, Section 3.6]).

Proximity allows to establish theproximity equalities

ep(ξ) =
∑

q→p

eq(ξ), (2)
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and the following relation between values and multiplicities

vp(ξ) = ep(ξ) +
∑

p→q

vq(ξ). (3)

A point p ∈ NO(ξ) is singular(on ξ) if it is either multiple, or satellite, or precedes a satellite pointq ∈ NO(ξ).
Equivalently,p ∈ NO(ξ) is non-singular if and only if it is free and there is no satellite point q ∈ NO(ξ), q > p.
The set of singular points ofξ weighted by the multiplicities or the values ofξ at them is denoted byS(ξ). Two
curvesξ, ζ areequisingularif it exists a bijectionϕ : S(ξ) −→ S(ζ) (called anequisingularity) preserving the
natural order6, the multiplicities (or values) and the proximity relations. It is known that two such curves are
equisingular if and only if they are topologically equivalent in a neighbourhood ofO (seen as germs of topological
subspaces ofC2 = R

4). Thus,S(ξ) determines the topological class of (the embedding of) thecurveξ.
The set of singular points of a curve is a special case of a (weighted) cluster. Aclusteris a finite subsetK ⊂ NO

such that ifp ∈ K, then any other pointq < p also belongs toK. A weighted clusterK = (K, ν) is a clusterK
together with a functionν : K −→ Z. The numberνp = ν(p) is thevirtual multiplicity of p in K . Two clusters
K,K′ aresimilar if there exists a bijection (similarity) ϕ : K −→ K′ preserving the ordering and the proximity. In
the weighted case we also imposeϕ to preserve the virtual multiplicities.

A cluster can be represented by means of anEnriques diagram([11, 12]), which is a rooted tree whose vertices
are identified with the points inK (the root corresponds to the originO) and there is an edge betweenp andq if
and only if p lies on the first neighbourhood ofq or vice-versa. Moreover, the edges are drawn according to the
following rules:

• If q is free, proximate top, the edge joiningp andq is curved and ifp , O, it is tangent to the edge ending
at p.

• If p andq (q in the first neighbourhood orp) have been represented, the rest of points proximate top in
successive neighbourhoods ofq are represented on a straight half-line starting atq and orthogonal to the
edge ending atq.

In the weighted case, the vertices are labeled with their virtual multiplicities.
Another usual way to represent a clusterK is thedual graphof the exceptional divisor ofπK : SK −→ S, the

composition of the successive blow-ups of every point inK. It is another tree, which has one vertex corresponding
to each exceptional curve ofπK (and hence, to each pointp ∈ K), and two vertices are joint by an edge if and only
if the corresponding exceptional curves intersect inSK . It is naturally rooted at the vertex corresponding toO, and
the choice of this root induces a partial ordering≺ in K (different than the natural ordering≤) that later plays an
important role.

Both the Enriques diagram and the dual graph may be used to represent the equisingularity class of a curveξ.
One starts with the representation ofS (ξ), and then one add an edge for each branchγ of ξ, starting at the vertex
corresponding to the last singular point onγ and without end. In the Enriques diagram these edges are curved,
and in the dual graph they are usually arrows (pointing out ofthe graph). We will call these graphsaugmented
Enriques diagram or dual graph.

A curveξ goes throughO with virtual multiplicity νO if eO(ξ) ≥ νO, and in this case thevirtual transformis
ξ̌ = ξ̄ − νOEO. This definition can be extended inductively to any pointp ∈ K whenever the multiplicities of the
successive virtual transforms are non-smaller than the virtual ones. In this case it is said thatξ goes (virtually)
through the weighted clusterK . If moreoverep(ξ) = νp for all p ∈ K, it is said thatξ goes throughK with
effective multiplicities equal to the virtual ones. It might happen that there is no curve going through a given
weighted cluster with effective multiplicities equal to the virtual ones, but when there exists such a curve the
cluster is said to beconsistent. Furthermore, if this is the case, there are curves going throughK with effective
multiplicities equal to the virtual ones and missing any finite set of points not inK. Equivalently,K is consistent if
and only ifνp ≥

∑
q→p νq for all p ∈ K, which resembles the proximity equalities (2). In this case, the difference

ρp = νp −
∑

q→p νq is theexcessof K at p, andp is dicritical if and only if ρp > 0. Finally, we say thatξ goes
sharplythroughK if it goes throughK with effective multiplicities equal to the virtual ones and furthermore it has
no singular points outsideK. All germs going sharply through a consistent cluster are reduced and equisingular (cf.
[6, Proposition 4.2.6]), or more generally, germs going sharply through similar consistent clusters are equisingular.
Moreover, ifξ goes sharply throughK andp ∈ K, ξ has exactlyρp branches going throughp and whose point in
the first neighbourhood ofp is free and does not belong toK.
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Definition 2.2. Given p∈ NO, we denote byK(p) the (irreducible weighted cluster) consisting of the points q≤ p
such thatρp = νp = 1 andρq = 0 for every q< p. Thus, germs going sharply throughK(p) are irreducible, with
multiplicity one at p, and its (only) point in the first neighbourhood of p is free and non-singular.

Based on Noether’s formula, it is possible to define the intersection number of a weighted cluster with a curve,
or even two clusters, as

[K .ξ] = [ξ.K ] =
∑

p∈K

νpep(ξ) and [K .K ′] =
∑

p∈K∩K′

νpν
′
p.

In particular, the self-intersection of a weighted clusteris defined asK2 =
∑

p∈K ν
2
p.

The main example of weighted cluster is the clusterBP(L) of base points of a linear familyL of curves
without fixed part (i.e., the curves inL have no common component). It has multiplicityνO = min{eO(ξ) | ξ ∈ L}
at the origin, and the multiplicities at the infinitely near points are computed inductively considering the virtual
transforms ofξ ∈ L. All germs inL go virtually throughBP(L), and generic ones go sharply through it, miss any
fixed finite set of points not inBP(L), and in particular are reduced and have the same equisingularity class. In
the particular caseL is a pencil, any two such germs share exactly the points inBP(L), and the self-intersection
BP(L)2 coincides with the intersection of two distinct germs inL.

2.2. Polar germs and its base points.

In this section we remind the basic definitions and facts about polar germs of curve. We will assumeξ : f = 0
is a non-empty, reduced, singular germ of curve atO. A polar of ξ is any germ given by the vanishing of the
jacobian determinant

Pg( f ) :
∂( f ,g)
∂(x, y)

=

∣∣∣∣∣

∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣ = 0 (4)

with respect to some local coordinates (x, y) atO, whereg defines a smooth germη atO. The equation (4) actually
defines a curve unlessξ is a multiple ofη (in this case the determinant vanishes identically), whichwe assume
not to hold from now on. We might even suppose thatη is not a component ofξ, since in this case the polar is
composed byη and the polar ofξ − η. A polar is transverseif the curveη is not tangent toξ. The set of polar
curves obtained in this way does not depend on the choice of coordinates ([6, Remark 6.1.1]), but it does actually
depend on the equationf , and not only on the curveξ itself ([6, Remark 6.1.6]). However, this is not a problem
because we are interested in intrinsical properties of the polar curves depending only onξ, namely properties of its

jacobian ideal, defined asJ(ξ) =
(

f , ∂ f
∂x ,
∂ f
∂y

)
⊂ O. This ideal does not depend on the choice of the equationf for

ξ, and carries very deep information about the singularity ofξ. Indeed, it was shown by Mather and Yau in [21]
that two germsξ1, ξ2 areanalytically equivalentif and only if the ringsO/J(ξ1) andO/J(ξ2) are isomorphic.

The jacobian ideal defines a linear systemJ(ξ) called thejacobian systemof ξ. Although all the polars belong
to the jacobian system, the converse is not true. However, every germ in the jacobian system of multiplicityeO(ξ)−1
is indeed a polar curve. Ifξ is reduced and singular, its jacobian ideal is not the whole ringO, its jacobian system is
without fixed part, and hence its generic members are reducedand go sharply through its weighted cluster of base
pointsBP(J(ξ)) (hence they are equisingular and, furthermore, they share all their singular points). This motivates
the following

Definition 2.3. Let ζ be a polar of a reduced singular curveξ. We say thatζ is topologically genericif it goes
sharply through BP(J(ξ)).

The weighted clusterBP(J(ξ)) is difficult to compute from its definition, but it can be shown (cf. [28] and [6,

Corollary 8.5.7]) that it coincides withBP
(
∂ f
∂x ,
∂ f
∂y

)
, the weighted cluster of base points of the pencil spanned by

the partial derivatives of any equation ofξ. But base points of pencils are easy to compute (see for instance the
algorithm in [2]).

The clusterBP(J(ξ)) is deeply related to the cluster of singular points ofξ. As a first result, it contains all the
free singular points ofξ ([6, Lemma 8.6.3]), but the most striking result is the following

Theorem 2.4. ([6, Theorem 8.6.4]) Letξ1 andξ2 be germs of curve, both reduced and singular. Then

1. If BP(J(ξ1)) = BP(J(ξ2)), thenS(ξ1) = S(ξ2).
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2. If BP(J(ξ1)) and BP(J(ξ2)) are similar weighted clusters, thenξ1 andξ2 are equisingular.

The proof of Casas-Alvero works in two steps. The first one is to recover the polar invariants (which will be
introduced below), and the second step is a procedure involving a careful tracking of the Newton polygon of the
iterated strict transforms of a generic polar under blowingup. However, the major drawback of this proof is that it
throws no light on the connection between the singular points of both objects: germ of curve and generic polars.

Our aim is to give a precise description of the relation between the singular points of the curve and those of its
generic polars. This will provide a new alternative proof ofTheorem 2.4. As a previous step we will also recover
the polar invariants, but in contrast, our algorithm will give a different proof of the second step, avoiding the use of
the Newton polygon and the tracking of the polars after successive blowing-ups.

A classical tool to study the relation between a germ and its polar curves are the polar invariants. These
invariants were introduced by Teissier in [29], where he proved that they are topological invariants ofξ closely
related to its (transverse) polar curves. A pointp ∈ NO(ξ) is a rupture pointof ξ if either there are at least two
free points onξ in its first neighbourhood, orp is satellite and there is at least one free point onξ in its first
neighbourhood. Equivalently,p is a rupture point if and only if the total transform̄ξp has three different tangents.
In the augmented dual graph ofS (ξ), rupture points correspond to vertices with three or more incident edges
(counting the arrows). We denote byR(ξ) the set of rupture points ofξ. More generally, ifp ∈ NO is a free point,
Rp(ξ) denotes the subset of rupture points ofξ which are either equal top or p-satellite. Note that all rupture points
are singular, and also all maximal singular points are rupture points.

For anyp ∈ NO, takeγp to be any irreducible germ of curve going throughp and whose point in the first
neighbourhood ofp is free and does not lie onξ, and define the rational number

I (p) = Iξ(p) =
[ξ.γp]
eO(γp)

=
[ξ.K(p)]
νO(K(p))

, (5)

which is independent of the choice ofγp and will be calledinvariant quotient at p. Thepolar invariantsof ξ are
the invariant quotientsI (q) at the rupture pointsq ∈ R(ξ). Note that they (as well as the invariant quotients) can
be computed from an Enriques diagram ofξ, and hence are topological invariants ofξ. In fact, it was shown by
Merle in [23] that ifξ is irreducible, its equisingularity class is determined byits multiplicity at O and by its polar
invariants. Polar invariants have an interesting topological meaning which was given by Lê, Michel and Weber in
[19].

We have defined the polar invariants without any mention to polar germs. Its relation to polar germs is given
by the next

Proposition 2.5. ([6, Theorems 6.11.5 and 6.11.8]) Letζ = Pg(ξ) be a transverse polar of a non-empty reduced
germ of curveξ, and letγ1, . . . , γl be the branches ofζ. Then

{
[ξ.γi ]
eO(γi)

}

i=1,...,l

= {I (q)}q∈R(ξ) .

Furthermore, if p∈ NO(ξ) is either O or any free point lying onξ, the set of quotients[ξ.γ]eO(γ) , for γ a branch ofζ
going through p and missing all free points onξ after p, is just{I (q)}q∈Rp(ξ).

2.3. Planar analytic morphisms.

We end the preliminary material summarizing some definitions and results concerning germs of morphisms
between surfaces which will be used along the paper. We now consider two pointsO ∈ S, O′ ∈ T lying on
two smooth surfaces. Agerm of morphismof surfaces at them is a morphismϕ : U −→ V defined on some
neighbourhoods ofO and O′, such thatϕ(O) = O′. We will assume that the morphism is dominant, i.e. its
image is not contained in any curve throughO′, or equivalently the pull-back morphismϕ∗ : OT,O′ −→ OS,O is a
monomorphism. Since the surfaces are smooth, we can attach two systems of coordinates (x, y) and (u, v) centered
at O andO′ respectively, obtaining isomorphismsOS,O � C{x, y} andOT,O′ � C{u, v}. Under this isomorphisms,
we denote bŷh ∈ C[x, y] the initial form of any h ∈ OS,O, and byoO(h) = degĥ its order (and analogously for
h′ ∈ OT,O′ ).

The pull-back of germs atO′ is defined by pulling back equations, and the push-forward, or direct image, of
germs atO is defined on irreducible germs and then extended by linearity. For an irreducible germγ at O its
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push-forwardϕ∗(γ) is defined as the image curveσ = ϕ(γ) counted with multiplicity equal to the degree of the
restrictionϕγ : γ → σ. With this definitions, it holds theprojection formula

[ξ.ϕ∗(ζ)]O = [ϕ∗(ξ).ζ]O′ (6)

for all germs of curveξ atO andζ atO′.
Let ( f (x, y),g(x, y)) be the expression ofϕ in the coordinates fixed above. Themultiplicity of ϕ is defined as

eO(ϕ) = n = nO = min{oO( f ),oO(g)}. Consider now the pencilP = {λ f +µg = 0}. Its fixed partΦ is thecontracted
germof ϕ, defined byh = gcd(f ,g). If both f

h andg
h are non-invertible, the variable partP′ is a pencil without fixed

part whose cluster of base points is by definition thecluster of base pointsof ϕ, denotedBP(ϕ). Themultiplicity
ep(ϕ) of ϕ at any pointp ∈ NO infinitely near toO is defined as the sum ofep(Φ) and the virtual multiplicity of
BP(ϕ) at p. A point p is fundamentalof ϕ if ep(ϕ) > 0. The multiplicity can alternatively be extended to any
p ∈ NO as the multiplicity of the compositionϕp = ϕ◦πp, which is denoted bye(ϕp) or np if the morphism is clear
from the context. These two possible generalizations of thenotion of multiplicity correspond respectively to the
multiplicities and the values of a curve at a point. Indeed, they verify the following formula (see [7, Proposition
13.1])

e(ϕp) = ep(ϕ) +
∑

p→q

e(ϕq). (7)

So far we have attached toϕ a weighted cluster of points infinitely near toO. There is a natural way to construct
a weighted cluster of points atO′: the trunk ofϕ. LetL = {lα : α ∈ P1

C
} be a pencil of lines atO, and consider its

direct images{γα = ϕ∗(lα)}. All but finitely many of them may be parametrized as

(u(t), v(t)) = (tn,
∑

i≥n

ai t
i)

wheren = eO(ϕ) and theai may depend onα. Indeed, sinceϕ is supposed to be dominant, at least one of them will
depend onα. Since the coefficients of a Puiseux series determine the position of the points (cf. [6, Chapter 5]),
all but finitely many of theγα share a finite number of points with the same multiplicities.This weighted cluster
is independent of the choice of the pencil of linesL, it is denoted byT = T (ϕ), and it is called the(main) trunk
of ϕ. The smallest integerm = mO such thatam is not constant is theheightof the trunk. These definitions can
be extended to anyp ∈ NO by considering the morphismϕp instead ofϕ. In [7, Section 10] it is developed an
algorithm to compute the trunk of any morphism from its expression in coordinates.

The last concept we want to recall is thejacobian germor ϕ. It is defined as the germ

J(ϕ) :
∂( f ,g)
∂(x, y)

=

∣∣∣∣∣

∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣ = 0,

which is a germ of curve atO (the determinant does not vanish identically becauseϕ is dominant). Note that when
g defines a smooth germ, the jacobian germ is a polar ofξ : f = 0. One of the main results of [7] gives an explicit
formula to compute the multiplicities of the jacobian germ from the multiplicities and the heights of the trunks of
the compositesϕp:

Proposition 2.6. ([7, Theorem 14.1]) For any point p∈ N , we have

ep(J(ϕ)) =





m+ n− 2 if p = O,

mp + np −mp′ − np′ − 1 if p is free, proximate to p′,

mp + np −mp′ − np′ −mp′′ − np′′ if p is satellite, prox. to p′ and p′′.

(8)

In particular, we will use the following

Corollary 2.7. ([7, Corollary 14.4]) If p is a non-fundamental point ofϕ, then mp = mp′ + ep(J(ϕ))+ 1 if p is free
proximate to p′, and mp = mp′ +mp′′ + ep(J(ϕ)) if p is satellite proximate to p′ and p′′. In any case, mp > mp′ .
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2.4. The problem.
Our aim is to give an explicit algorithm which computes the weighted clusterS(ξ) of singular points of a

singular and reduced germ of curveξ from the weighted cluster of base points of the jacobian system BP(J(ξ)).
In particular, we shall obtain a new proof of Theorem 2.4. To achieve this, we reinterpret the problem in terms of
the theory of planar analytic morphisms as follows.

Let (x, y) be a system of coordinates in a neighbourhoodU of O, f an equation for the germξ, andη : g = 0
a smooth germ atO such that the point onη in the first neighbourhood ofO is not in BP(J(ξ)) andζ = Pg( f ) :
∂( f ,g)
∂(x,y) = 0 is a topologically generic transverse polar ofξ. Note that being topologically generic is a generic property,
and being transverse excludes finitely many tangent directions atO, so the existence of such aη is guaranteed.

The key observation is that we can think of the polarζ as the jacobian germ of the morphismϕ : U −→ C
2

defined asϕ(x, y) = ( f (x, y),g(x, y)).
Let us first study the fundamental points ofϕ. Since we are assumingζ to be transverse, we know thatf

andg share no factors, soϕ has no contracted germ. Thus the only fundamental points ofϕ are its base points
BP(ϕ) = BP({ξλ : λ1 f + λ2g = 0}). Note thatξ[1,0] = ξ andξ[0,1] = η. We haveeO(ξλ) = 1 for λ , [1,0],
and soνO(BP(ϕ)) = 1. Since the weighted cluster of base points of a pencil is consistent, this forcesBP(ϕ)
to be irreducible and to have only free points with virtual multiplicity one. Moreover, its self-intersection is
BP(ϕ)2 = eO(ξ), soBP(ϕ) consists ofeO(ξ) points lying onη. We have thus proved the following

Lemma 2.8. The fundamental points ofϕ are exactly the first eO(ξ) points inNO(η). In particular, there are no
fundamental points in BP(J(ξ)) but the origin O.

Combining this result with formula (7) and Corollary 2.7 we obtain the following

Lemma 2.9. If p , O is either a base point ofJ(ξ) or a satellite of one of them (or more generally, it is not a
fundamental point ofϕ), then

np =
∑

p→q

nq,

mp = mp′ + ep(ζ) + 1 if p is free, proximate to p′, and

mp = mp′ +mp′′ + ep(ζ) if p is satellite, proximate to p′ and p′′,

while for p= O we have nO = 1 and mO = eO(ξ) = eO(ζ) + 1.

2.5. The solution: an algorithm.
The algorithm we have found to solve this problem is based on the following facts. Firstly,BP(J (ξ)) coincides

with the weighted cluster of base points of the pencil
(
∂ f
∂x ,
∂ f
∂y

)
spanned by any two polars along different directions.

This allows to recover the set of polar invariants just fromBP(J (ξ)) (see Lemma 4.3). Secondly, although the
underlying cluster ofBP(J (ξ)) does not coincide with the set of singular points ofξ, each dicritical pointd of
BP(J (ξ)) corresponds to a unique rupture pointqd ∈ R (ξ) whose associated polar invariant is given by any
branch of a polar going throughd (Proposition 4.1). Furthermore, any rupture point ofξ can be obtained in this
way, soBP(J (ξ)) is enough to determine thesetof singular points ofξ (because every maximal singular point is
a rupture point). Finally, since the set of singular points does not determine the equisingularity point of the curve
(because there are many ways to assign virtual multiplicities in a consistent way), it is necessary to determine the
multiplicities ofS (ξ).

Our algorithm works then roughly as follows (see Algorithm 4.9 for a precise description). In the first part, for
each dicritical pointd of BP(J (ξ)) we compute the associated polar invariantId and explicitly find the rupture
point qd by comparingId with the quotientsmp

np
. In the second part, after finding all rupture and singular points,

we determine the values ofξ at any singular point (which indeed coincide withmp for manyp, for example for the
rupture points). This is clearly equivalent to recover the virtual multiplicities ofS (ξ) by means of the formula (3).

Algorithm 4.9 implemented in the Computer Algebra systemMacaulay 2 [16] will be available at the web
pagewww.pagines.ma1.upc.edu/∼alberich or upon request to authors.

3. Tracking the behaviour of the invariant quotients

In this section we develop the main technical results which describe de behaviour of the invariant quotients
Iξ(p) asp ranges overNO, as well as its relation to the valuesvp(ξ) and the heightsmp associated to the morphism
ϕ introduced at the end of section 2.
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3.1. Growth of the invariant quotients

First of all, we need to introduce a new order relation inNO. Recall (Definition 2.2) that for anyp ∈ NO,K(p)
is the irreducible weighted cluster whose last point isp.

Definition 3.1. Let q1 , q2 be two points infinitely near to O, equal to or satellite of thefree points p1 and p2

respectively. We say that q1 is smaller thanq2 (or q2 is bigger thanq1), and denote it q1 ≺ q2 (or q2 ≻ q1) if

p1 6 p2 (with the usual order) and
νp1 (K(q1))
νO(K(q1)) ≤

νp1 (K(q2))
νO(K(q2)) . Obviously, we denote by q1 � q2 the situation in which

q1 ≺ q2 or q1 = q2, and similarly for q2 � q1.

We introduce also the following relation between points andirreducible curves.

Definition 3.2. Letγ be any irreducible germ, let p be any free point and let q be either p or a p-satellite point. We
say that q issmaller thanγ (or thatγ is biggerthan q) if p∈ NO(γ) (or equivalently ep(γ) > 0) and νp(K(q))

νO(K(q)) <
ep(γ)
eO(γ) .

We denote it q≺ γ.

Remark 3.3. It is worth noting that the ordering≺ coincides with the ordering in the dual graph. More precisely,
if Γ is the dual graph of a cluster containing q1 and q2, then q1 ≺ q2 if and only if the vertex corresponding to q1

belongs to the minimal path from O to q2.

The following lemmas summarize the main properties of the order relation≺.

Lemma 3.4. Let p∈ NO be any free point different from O, proximate to p′. Then:

1. The satellite point q in the first neighbourhood of p satisfiesp′ ≺ q ≺ p.
2. If q is a p-satellite point, the two satellite points q1,q2 in its first neighbourhood may be ordered as p′ ≺

q1 ≺ q ≺ q2 ≺ p. Moreover, every p-satellite point q′ infinitely near to q1 (resp. q2) satisfies q′ ≺ q (resp.
q′ ≻ q).

Proof. The proof follows easily from the relation between the set ofp-satellite points inK(q) and the expansion
as a continued fraction of the quotientνp(K(q))

νp′ (K(q)) , combined with some elementary properties of continued fractions
(see for instance [1, Remark 2.1 and Lemma 3.5]). Alternatively, the result follows immediately from the fact that
≺ coincides with the order in the dual graph.

For future reference, the pointq1 (resp.q2) in the second case above will be calledfirst (resp.second) satellite
of q. In the first case, when there is only one satellite pointq, it will be calledfirst satelliteof p.

It is also useful to know how a satellite point is ordered withrespect to the two points which it is proximate to.

Lemma 3.5. Let q be a satellite point, proximate to q1 and q2, and assume q1 ≺ q2. Then

q1 ≺ q ≺ q2.

We now turn to the relation between the ordering≺ and the growth of the invariant quotientsIξ(p).

Proposition 3.6. Let p, O be a free point proximate to p′, let q1 be a p-satellite point and let q2 ≻ q1 be either p
or another p-satellite point. Then the following inequalities hold:

Iξ(p
′)

(a)
6 Iξ(q1)

(b)
6 Iξ(q2).

Moreover, equality holds in(a) if and only if p< NO(ξ), and equality holds in(b) if and only if there is no branch
γ of ξ such that q1 ≺ γ (bigger than q1). In particular, note that equality in(a) implies equality in(b).

Proof. For any infinitely near pointq ∈ NO, letγq be any irreducible curve going throughq and having a free point
in its first neighbourhood which does not lie onξ. The first inequality, as well as the characterization of equality,
is easily obtained computing the intersections [ξ.γp′ ] and [ξ.γq1] with Noether’s Formula (1).

For the second inequality, letξ1, . . . , ξk be the branches ofξ and expand eachIξ(qi) as

Iξ(qi) =
[ξ.γqi ]
eO(γqi )

=

k∑

j=1

[ξ j .γ
qi ]

eO(γqi )
. (9)
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For branchesξ j not going throughp, we have[ξ j .γ
q1 ]

eO(γq1 ) =
[ξ j .γ

q2 ]
eO(γq2 ) again by Noether’s Formula. For the rest of the

branches, following [1, Proposition 2.5] we can write

[ξ j .γ
qi ]

eO(γqi )
=
∑

q<p

eq(ξ j)2

eO(ξ j)
+ ep′ (ξ j) min

{
ep(ξ j)
eO(ξ j)

,
ep(γqi )
eO(γqi )

}
, (10)

and so we just need to take care of the minimum in the last summand. In the caseep(ξ j )
eO(ξ j )

6
ep(γq1 )
eO(γq1 ) this minimum is

the same fori = 1,2, while in the opposite case (i.e. whenξ j ≻ q1) the minimum fori = 1 is strictly smaller than
for i = 2, giving strict inequality in (b) as wanted.

Remark 3.7. Proposition 3.6 can be interpreted as follows: the functionIξ is monotone increasing on the dual
graph of any composition of blow-ups, and strictly increasing over the dual graph of any subset ofNO (ξ).

Also next corollary follows immediately.

Corollary 3.8. If p ∈ NO(ξ) is a free point, all the polar invariants Iξ(q) associated to points q∈ Rp(ξ) are
different.

Unfortunately, these results are not precise enough for ourpurposes, so we need a more sophisticated result
which deals with a particular case.

Proposition 3.9. Let ξ be a germ of curve at O, and p∈ NO any free point different from O. Assumeξ has at
least two branches going through p, and that exactly one of them, sayγ, goes through a free point in the first
neighbourhood of p. Suppose in addition that p is a non-singular point ofγ. Finally, let q∈ NO(ξ) be the biggest
p-satellite rupture point onξ. Then

[ξ.K(p)] − 1
νO(K(p))

= Iξ(p) −
1

νO(K(p))
< Iξ(q) < Iξ(p).

Proof. The second inequality is given by Proposition 3.6, so we justneed to prove the first one. If we consider
decompositions as in (9) both forIξ(p) andIξ(q), the proof of Proposition 3.6 shows that all the summands are equal
but for the one corresponding to the branchγ, and that it only remains to check one of the following (equivalent)
inequalities

[γ.γp]
eO(γp)

−
1

eO(γp)
<

[γ.γq]
eO(γq)

, or
1

eO(γp)
>

[γ.γp]
eO(γp)

−
[γ.γq]
eO(γq)

= ep′ (γ)

(
ep(γp)
eO(γp)

−
ep(γq)
eO(γq)

)
, (11)

whereγp andγq are as in the proof of Proposition 3.6,γp going sharplythroughK(p), p′ is the pointp is proximate
to, and the last equality is a consequence of [1, Proposition2.5]. Now, noting that bothγ andγp go sharply through
K(p), we getep(γp) = ep(γ) = ep′ (γ) = 1 and the inequality in (11) becomes obvious.

Remark 3.10. The hypotheses of Proposition 3.9 can be expressed in terms of the dual graph ofS (ξ) as follows:
p correspond to a maximal vertex, and there is exactly one arrow coming out from it. The point q corresponds to
the last rupture vertex in the path from O to p.

Remark 3.11. Propositions 3.6 and 3.9 are generalizations of [6, Proposition 7.6.8], extending it to points not
necessarily lying onξ and giving more precise descriptions of some cases. Similarresults can be found also in
[18], [3] and [9].

3.2. Relating the invariant quotients to the morphism

We now wish to study the relation between the invariant quotientsIξ(p), the valuesvp(ξ) of ξ and the multi-
plicities np and heightsmp of the morphismsϕp = ϕ ◦ πp for the points inBP(J(ξ)) or satellite of them (or more
generally, for anyp ∈ NO such thatK(p) ∩ NO(η) = {O}). We begin with an easy

Lemma 3.12. If p ∈ NO belongs to BP(J(ξ)) or is satellite of such a base point (or more generally,K(p) ∩
NO(η) = {O}), then[ξ.K(p)] = vp(ξ) andνO(K(p)) = vp(η) = np. In particular

Iξ(p) =
vp(ξ)
np
.
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Proof. The intersection number [ξ.K(p)] equals [ξ.γp] for any γp going sharply throughp and missing any point
on ξ in the first neighbourhood ofp, and this intersection turns out to bevp(ξ). Indeed, ifπp : Sp −→ S is the
composition of blowing-ups giving rise top, thenγp = πp∗(lp) for some smooth curvelp at p non-tangent tōξp.
Then, by the projection formula (6), we have

[ξ.γp] = [ξ.πp∗(lp)] = [π∗p(ξ).lp] = [ξ̄p.lp] = ep(ξ̄p)ep(lp) = vp(ξ).

For the second part, the virtual multiplicityνO(K(p)) may be written as the intersection [η.K(p)] (becauseK(p)∩
NO(η) = {O}), and thusνO(K(p)) = vp(η) by the same reason as above. But the valuesvp(η) also satisfy the
recursive formula of Lemma 2.9 with the same initial valuenO = 1 = eO(η), and henceeO(γp) = npep(γp). The
last equality is immediate.

We now focus on the relation between the values and the heights.

Proposition 3.13.Keeping the hypothesis of Lemma 3.12, the inequality vp(ξ) ≤ mp holds, with equality if and only
if the total transforms̄ξp andη̄p at p have non-homothetical tangent cones (counting multiplicities, or equivalently,
considered as divisors on Ep, the first neighbourhood of p).

Proof. The proof is based on the algorithm given in [7, Section 10] tocompute the trunk of a morphism. This
algorithm produces a sequence of pencils whose clusters of base points have strictly increasing heights (the defi-
nition of the height of a trunk works for any multiple of an irreducible cluster). It is immediate to check that the
cluster in the first step of this algorithm has height exactlyvp(ξ) = o(ϕ∗p(u)), and that the algorithm stops after this
first step if and only if the initial forms ofϕ∗p(u) andϕ∗p(v) are non-homothetical, which is equivalent to the total
transforms̄ξp andη̄p at p having non-homothetical tangent cones.

We are now ready to state the main results relating the valuesand the heights:

Theorem 3.14. Still keeping the hypothesis of the previous results, let p′ ≤ p be the last free point preceding (or
equal to) p. Then vp(ξ) ≤ mp, with equality if and only if

• either p is free and there is a free point proximate to p lying on ξ (in particular, p lies onξ),

• or p is satellite and there exists a branch ofξ which goes through p′, and this branch is not smaller than p.

Equivalently, vp(ξ) < mp if and only if all branches ofξ going through p′ are smaller than p.

Proof. Let us first consider the casep free. By Proposition 3.13, we know thatvp(ξ) = mp if and only if the total
transforms̄ξp andη̄p have non-homothetical tangent cones. Sincep is free, it is proximate to a single pointq. Let
Eq be the germ (atp) of the exceptional divisor ofπp : Sp −→ S. By definition, ξ̄p = vq(ξ)Eq + ξ̃p, and by the
hypothesis onp, η̄p = nqEq. So,ξ̄p andη̄p have homothetical tangent cones if and only if every branch of ξ̃p is also
tangent toEq, which means that there is no free point in the first neighbourhood ofp lying on ξ. So,vp(ξ) = mp if
and only if there is some free point in the first neighbourhoodof p lying on ξ, as wanted.

Now let us deal with the casep satellite, proximate to two pointsq and q′. Assume thatq ≺ q′, so that
q ≺ p ≺ q′ by Lemma 3.5. By definition and the hypothesis onp we haveξ̄p = vq(ξ)Eq + vq′ (ξ)Eq′ + ξ̃p and
η̄p = nqEq + nq′Eq′ . Let aq (resp.aq′ ) denote the multiplicity ofEq (resp.Eq′ ) in the tangent cone of̃ξp. Thenξ̄p
andη̄p have homothetical tangent cones if and only if every branch of ξ̃p is tangent to eitherEq or Eq′ (equivalently,
aq + aq′ = ep(ξ)) and

vq(ξ) + aq

nq
=

vq′ (ξ) + aq′

nq′
.

So assumēξp andη̄p have homothetical tangent cones, which by the previous Proposition means thatvp(ξ) <

mp, and takeα = vq(ξ)+aq

nq
=

vq′ (ξ)+aq′

nq′
. Then on the one hand we have

α =
vq(ξ) + aq + vq′ (ξ) + aq′

nq + nq′
=

vq(ξ) + vq′ (ξ) + ep(ξ)
np

=
vp(ξ)
np
= Iξ(p),

and on the other hand

α = Iξ(q) +
aq

nq
> Iξ(q) and α = Iξ(q

′) +
aq′

nq′
> Iξ(q

′).
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But we have assumedq ≺ p ≺ q′, and thus by Proposition 3.6 we haveIξ(q) 6 Iξ(p) 6 Iξ(q′), which combined
with the above equalities implies thatIξ(p) = Iξ(q′) (= α) andaq′ = 0. This in turn implies (by Proposition 3.6)
that every branch ofξ going throughp′ is smaller thanp, as wanted, and thataq = ep(ξ).

It remains to prove that if̄ξp andη̄p have non-homothetical tangent cones (i.e.vp(ξ) = mp), then there is some
branch ofξ going throughp′ which is not smaller thanp. But this case only may occur either ifaq + aq′ < ep(ξ) or

if vq(ξ)+aq

nq
,

vq′ (ξ)+aq′

nq′
. In the former case there is a branch ofξ throughp whose point in its first neighbourhood is

free, and such a branch is not smaller thanp. In the latter case we can assume thataq+aq′ = ep(ξ) (for if not we are

in the previous case) and then we have that the quotientIξ(p) = vq(ξ)+aq+vq′ (ξ)+aq′

nq+nq′
fits betweenIξ(q) + aq

nq
=

vq(ξ)+aq

nq

andIξ(q′) +
aq′

nq′
=

vq′ (ξ)+aq′

nq′
. Sincep ≺ q′ implies Iξ(p) 6 Iξ(q′), we are in fact in the situation

Iξ(q) +
aq

nq
< Iξ(p) < Iξ(q

′) +
aq′

nq′
.

Now we have to consider the cases when the second inequality holds. If we already haveIξ(p) < Iξ(q′), then
by Proposition 3.6 there exists a branch ofξ going throughp′ and bigger thanp, as we want. If otherwise
Iξ(p) = Iξ(q′), thenaq′ > 0 and there is at least one branch ofξ whose strict transform atp is tangent toEq′ . This
concludes de proof because this branch is bigger thanp.

Corollary 3.15. If p is a rupture point ofξ, then

vp(ξ) = mp.

Proof. Sincep is a rupture point ofξ, there is at least one branch ofξ going through it and whose point in the first
neighbourhood if free. Such a branch clearly goes through the last free point preceding or equal top, and is not
smaller thanp. Thus, we havevp(ξ) = mp in virtue of Theorem 3.14.

4. Recovering the singular points from the base points of thepolars

This section presents the main result of this paper, namely the procedure which recovers the weighted cluster
of singular pointsS(ξ) (of a singular reduced germ of curveξ) directly from the weighted clusterBP(J(ξ)) of base
points of the jacobian system ofξ. This procedure uses only invariants computable from the Enriques diagram
of BP(J(ξ)) (weighted with the virtual multiplicities) and hence oneof the strengths of this procedure is that it
applies also to obtain the topological class ofξ directly from the similarity class ofBP(J(ξ)).

4.1. Recovering rupture points

In order to recover the set of rupture pointsR(ξ), and hence the whole set of singular points ofξ, just from
BP(J(ξ)), we argue as follows. LetD be the set of dicritical points ofBP(J(ξ)). We will show that to eachd ∈ D
we can associate a uniquely determined rupture pointqd ∈ R(ξ) such thatIξ (qd) = Iξ (d). Moreover we will see
that any rupture point is associated to some dicritical point in this way (see Proposition 4.1). However, the explicit
determination ofqd has two main difficulties to be overcome. On one side, despite the polar invariants{Iξ(d)}d∈D
are computable fromBP(J(ξ)) (see Lemma 4.3), it is not possible to know the invariant quotientIξ(p) for whatever
p, and hence the possibility to check equalityIξ(p) = Iξ(d) (necessary to identify the rupture pointqd associated
to d) is out of reach. On the other side, ifqd happens to bepd-satellite, thenqd does not necessarily belong to
BP(J(ξ)). Furthermore, despite we manage to characterize the freepoint pd in terms of the invariantsnpd andmpd

(see Proposition 4.4), there might be manypd-satellite pointsq with the same invariant quotientIξ(q) = Iξ(qd), and
some criterion to distinguishqd must be found. All these difficulties are solved by a cunning use of the invariants
Iξ(q), nq andmq, and their properties developed in Section 3.2. More precisely, as we will exhibit, not only the
quotientsmq

nq
behave similarly enough like the invariant quotientsIξ (q) to help findpd, but they are at the same

time different enough to distinguish between thepd-satellite pointsq when the invariantsIξ(q) cannot (see Theorem
4.5).

Next we will develop the results that justify our procedure,which will be detailed as an algorithm at the end of
the section.

Proposition 4.1. Let d∈ D be a dicritical point of BP(J(ξ)), and suppose pd is the last free point lying both onξ
andK(d). Then there exists a unique rupture point qd ∈ R

pd(ξ) such that Iξ(qd) = Iξ(d). Furthermore, qd � d.
Moreover, any rupture point is associated to some dicritical point in this way.
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Proof. Let γ be a branch of a topologically generic transverse polarζ of ξ going sharply throughK(d) (such aγ
exists becaused is a dicritical point ofBP(J(ξ)) andζ goes sharply through it). Thenpd is the last free point lying
both onξ andγ, and the existence of aqd ∈ R

pd(ξ) satisfyingIξ(qd) = [γ.ξ]
eO(γ) = Iξ(d) is guaranteed by Proposition

2.5. Moreover, Proposition 2.5 also says that for any rupture point q there exists a branchγ′ (not necessarily
unique) ofζ such thatIξ(q) = [γ′.ξ]

eO(γ′) , and thatq is satellite of the last free point lying both onξ andγ′. So it only
remains to prove that the same branchγ cannot work for several rupture points, which is equivalentto prove the
uniqueness ofqd.

The casepd = O is quite easy, sinceO has noO-satellite points, and thusqd = O is the only possibility.
For the rest of the proof assumepd , O, and suppose thatq1 ≺ q2 are two rupture points ofξ equal to or satellite

of pd and such thatIξ(q1) = Iξ(q2) = Iξ(d). By Proposition 3.6, no branch ofξ can be bigger thanq1. But sinceq2

is a rupture point, there exists a branch ofξ going throughq2 and having a free point in its first neighbourhood, and
such a branch is clearly bigger thanq1, which leads to a contradiction. Therefore, there exists a uniquepd-satellite
rupture pointqd satisfyingIξ(qd) = Iξ(d).

In order to prove thatqd � γ, which is equivalent toqd � d, note that we can consider[γ.ξ]
eO(γ) asIξ(q′), whereq′

is the lastpd-satellite point onγ (becausepd is the last free point lying both onγ andξ). ThenIξ(qd) = Iξ(q′), and
again by Proposition 3.6 we obtain thatqd � q′, which impliesqd � γ by definition.

Corollary 4.2. The number of rupture points of a reduced singular curveξ is bounded above by the number of
dicritical points of BP(J(ξ)).

From now on, ifd ∈ D is a dicritical point ofBP(J(ξ)), pd will denote the last free point lying both onξ and
K(d), andqd will stand for the rupture point associated tod according to Proposition 4.1. Note thatqd may be
either equal to or satellite ofpd. As a particular case, ifO ∈ D, thenqO = O because it is the only point� O.
However, determiningqd in the cased , O, which we assume from now on, is not so easy and needs some more
work.

The first step to determineqd is to compute the polar invariantIξ(qd) = Iξ(d) = [ξ.K(d)]
νO(K(d)) from BP(J(ξ)), and

we can do it thanks to the following

Lemma 4.3. If d ∈ D is a dicritical point of BP(J(ξ)), then Iξ(d) = [BP(J(ξ)).K(d)]
nd

+ 1.

Proof. Letγ be a branch of a topologically generic transverse polarζ of ξ going sharply throughK(d). So, proving
the statement is equivalent to prove

Iξ(qd) =
[ξ.γ]
eO(γ)

=
[BP(J(ξ)).γ]

eO(γ)
+ 1.

By definition, there exists some equationf of ξ and some smooth germg = 0 such thatζ is given by the equation
∂( f ,g)
∂(x,y) = 0. Up to change of coordinates, we may assumeg = x, and thusζ : ∂ f

∂y = 0.

SinceBP(J(ξ)) = BP
(
∂ f
∂x ,
∂ f
∂y

)
, all but finitely many germsζ′ of the pencil

{
α
∂ f
∂x
+ β
∂ f
∂y
= 0

}

go sharply throughBP(J(ξ)) and miss the first point lying onγ and not inBP(J(ξ)). Then, for any suchζ′, we
have [BP(J(ξ)).γ] = [ζ′.γ]. Moreover, up to a linear change of the coordinatey, we may assume thatζ′ : ∂ f

∂x = 0.
Now, letn = eO(γ) and lets(x) be a Puiseux series ofγ. Thus, we have (see [6, Remark 2.6.6] for this formula

of the intersection product)

[ξ.γ] =
∑

ǫn=1

ox( f (x, s(ǫx))) and [ζ′.γ] =
∑

ǫn=1

ox

(
∂ f
∂x

(x, s(ǫx))

)
.

We may relate the summands in the two formulas as follows:

ox( f (x, s(ǫx))) = 1+ ox

(
d
dx

f (x, s(ǫx))

)
= 1+ ox

(
∂ f
∂x

(x, s(ǫx)) + ǫ
∂ f
∂y

(x, s(ǫx))s′(x)

)
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and sinceγ is a branch ofζ : ∂ f
∂y = 0, the summandǫ ∂ f

∂y (x, s(ǫx))s′(x) vanishes identically. Now adding-up all these
equalities for everyn-th root of the unityǫ, we finally obtain

[ξ.γ] = n+ [ζ′.γ] = eO(γ) + [BP(J(ξ)).γ]

and the claim follows.

The second step in order to determineqd is to determinepd, the last free point preceding or equal toqd, or
equivalently, the last free point lying both onξ andK(d). To achieve this we will use a property that relatespd to
the polar invariantIξ(d):

Proposition 4.4. Let d, O be a dicritical point of BP(J(ξ)), qd its associated rupture point (see Proposition 4.1),

and pd ≤ qd the last free point preceding or equal to qd. Let p′d < d be the last point such that
mp′

d
np′

d

< Iξ(d) and

whose next point inK(d) is free. Then pd is the next point of p′d in K(d). In particular, pd ∈ BP(J (ξ)).

Proof. Supposepd is proximate top′. We want to show thatp′ = p′d as defined in the statement. Sinceqd � d,
we must havepd 6 d, and hencep′ < d. Moreover, combining Proposition 3.6 and Theorem 3.14 we obtain that
vp′ (ξ) = mp′ and

Iξ(p
′) =

mp′

np′
< Iξ(qd).

So, among all points strictly precedingd whose next point inK(d) is free,p′ must satisfymp′

np′
< Iξ(d). We need to

show that indeedp′ is the last point with such property. LetO < p1 < p2 < . . . < pk be the free points inK(d),
and for eachi ≥ 1 let p′i be the point immediatly precedingpi . Thenp′i+1 is either equal to or satellite ofpi , and
hence Proposition 3.6 gives

Iξ(p
′
i )

(a)
≤ Iξ(p

′
i+1) ≤ Iξ(pi) for all 1 ≤ i < k,

where the inequality (a) is strict if and only ifp′i ≤ p′, since this is equivalent topi lying on ξ. In particular, the
sequence{Iξ(p′i )}

k
i=1 is strictly increasing up top′, and it becomes constant after that.

Suppose now to get a contradiction thatp′ = p′r for some 1≤ r ≤ k, but that it is not the lastp′i such that
mp′

i
np′

i

< Iξ(d), i.e. assumer < k and
mp′s
np′s

< Iξ(d) for somer < s≤ k. This implies that

Iξ(p
′
s) ≤

mp′s

np′s

< Iξ(d),

but sincepr is the last free point lying both onξ andK(d), it holds the equalityIξ(p′s) = Iξ(d), which leads to a
contradiction and we are done.

Now that pd has been determined, it only remains to know which of its satellite points isqd. The problem
is that there might be many pointsq, equal to or satellite ofpd, with the same invariant quotientIξ(q) = Iξ(d).
Moreover, although Proposition 3.6 implies thatqd is the smallest (by≺) such point, there is no way to determine
it explicitly from the lastpd-satellite point inK(d). Fortunately, thepd-satellite pointsq bigger thanqd and with
the same invariant are exactly the points for whichvq(ξ) < mq (Theorem 3.14), and this fact enables us to solve
this case. In other words, the heightsmq can distinguish between thepd-satellite points when the invariantsIξ(q)
cannot. This fact allows us to develop an algorithm which computesqd just from the polar invariantIξ(d) and the
already determinedpd, by seeking the unique pointq which is either equal to or satellite ofpd and for which the
equality mq

nq
= Iξ(qd) = Iξ(d) holds. In fact, it computes step by step all the intermediate pointspd = q0 < q1 <

· · · < qk−1 < qk = qd (whereqi is in the first neighbourhood ofqi−1).
The procedure works as follows:

• Start withi = 0 andq0 = pd.

• While
mqi
nqi
, Iξ(d) do

– If
mqi
nqi
> Iξ(d) takeqi+1 to be the first satellite ofqi .

– If
mqi
nqi
< Iξ(d) takeqi+1 to be the second satellite ofqi .
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Increasei to i + 1.

• If
mqi
nqi
= Iξ(d), end by takingk = i andqd = qk.

Theorem 4.5. Keep the above notations. The above procedure ends after a finite number of steps, and actually
computes the rupture point qd.

Proof. First of all, note that sinceqd is a rupture point, Corollary 3.15 implies thatIξ(d) = Iξ(qd) =
mqd
nqd

. Therefore,

since there are finitely many points betweenpd andqd, it is enough to check that eachqi actually precedesqd and
that if

mqi
nqi
= Iξ(d) thenqi = qd.

To see thatqi 6 qd for eachi we use induction oni. For i = 0, we haveq0 = pd, and henceq0 = pd 6 qd by
definition of pd. Now suppose we have reached the stepi of the algorithm and we have to perform another step.
This means thatqi 6 qd and

mqi
nqi
, Iξ(d). We know that in this caseqi < qd, and we claim that the pointqi+1

computed by the algorithm still precedesqd. Indeed, sincepd 6 qi < qd andqd is pd-satellite, the point in the first
neighbourhood ofqi precedingqd must be satellite. Hence, it only remains to check that the choice made by the
algorithm is the correct one.

• If
mqi
nqi
< Iξ(d), thenIξ(qi) =

vqi (ξ)
nqi

6
mqi
nqi
< Iξ(d) by Theorem 3.14. Therefore, by Lemma 3.4 and Proposition

3.6, the next pointqi+1 must be the second satellite point, for if it was the first one the invariantsIξ(q) would
be strictly smaller thanIξ(d) for every satelliteq > qi+1.

• If
mqi
nqi
> Iξ(d), then eitherIξ(d) < Iξ(qi) 6

mqi
nqi

or Iξ(qi) 6 Iξ(d) <
mqi
nqi

. In the former case we apply Lemma
3.4 and Proposition 3.6 as above to see thatqi+1 must be the first satellite point ofqi . In the latter case we
have thatvqi (ξ) < mqi , and hence by Theorem 3.14 every branch ofξ throughpd is smaller thanqi . This
implies in particular thatqd ≺ qi , and thus by Lemma 3.4qd must be infinitely near to the first satellite ofqi .

In any case, the algorithm is correct.
In order to complete the proof, we must check that the algorithm does not stop before reaching the pointqd.

That is, we have to show that ifq is eitherpd or anypd-satellite point strictly precedingqd, then mq

nq
, Iξ(qd).

• If q ≺ qd, any branch ofξ going throughqd is bigger thanq. Then Proposition 3.6 implies thatIξ(q) < Iξ(d),
and by Theorem 3.14 we also have thatvq(ξ) = mq. SoIξ(q) = mq

nq
< Iξ(d) and in particularmq

nq
, Iξ(d).

• Consider now the caseq ≻ qd. Then, on the one hand Proposition 3.6 implies thatIξ(d) 6 Iξ(q), with
equality if and only if every branch ofξ going throughpd is not bigger thanqd. On the other hand, Theorem
3.14 says thatvq(ξ) 6 mq, and equality holds if and only if there is some branch ofξ not smaller thanq.
Summarizing, we haveIξ(d) 6 Iξ(q) 6 mq

nq
, and having equalityIξ(d) = mq

nq
would imply (by Theorem 3.14)

that there is some branch ofξ throughpd which is not smaller thanq. But such a branch would be bigger
thanqd, implying (by Proposition 3.6) thatIξ(d) < Iξ(q) 6 mq

nq
and thus contradicting the equalityIξ(d) = mq

nq
.

4.2. Recovering values

This section is devoted to explain how the values of a curveξ at its singular points can be recovered from the
invariantsmp andnp, provided the set of rupture pointsR(ξ) (and hence the set of singular pointsS(ξ)) is already
known. Recall that from Lemma 3.12 we already know thatvp(ξ) = npIξ(p) at anyp ∈ S(ξ), but that the difficulty
lies on the computation of the invariant quotientIξ(p).

Assume first thatp ∈ R (ξ) is a rupture point. Then Corollary 3.15 implies thatvp(ξ) = mp.
Suppose now thatp ∈ S(ξ) a free singular point which is not a rupture point. By Theorem 3.14, we have the

equalityvp(ξ) = mp if and only if there is a free point in the first neighbourhood of p lying on ξ. In particular, if
there is a free singular point in the first neighbourhood ofp, we can also assert thatvp(ξ) = mp. If otherwise there
is no free singular point onξ in the first neighbourhood ofp, then there is at most one free point lying onξ in the
first neighbourhood ofp and, if it exists, it is non-singular. If there is no such a point, then Proposition 3.6 implies
that

vp(ξ) = npIξ(p) = npIξ(q) =
np

nq
vq(ξ) =

np

nq
mq,

15



whereq is the biggestp-satellite point inR(ξ). On the contrary, ifξ has a free point in the first neighbourhood of
p, then Proposition 3.9, Lemma 3.12 and Corollary 3.15 give the inequalities

vp(ξ) − 1
np

<
vq(ξ)
nq
=

mq

nq
<

vp(ξ)
np
,

which are equivalent to
np

nq
mq < vp(ξ) <

np

nq
mq + 1,

where as beforeq is the biggestp-satellite point inR(ξ). Hence, in any case,vp(ξ) belongs to the real interval[
np

nq
mq,

np

nq
mq + 1

)
. Since the width of this interval is one, there is exactly oneinteger in it, and thus the valuevp(ξ)

is uniquely determined.
So far we have proved the following

Proposition 4.6. Let p∈ S(ξ) be a free singular point which is not a rupture point.

• If there is a free singular point in the first neighbourhood ofp, then vp(ξ) = mp.

• Otherwise, let q be the biggest point inRp(ξ) (which must be non-empty). Then vp(ξ) is the only integer in
the interval [

np

nq
mq,

np

nq
mq + 1

)
.

Moreover, the equality vp(ξ) = np

nq
mq holds if and only if there is no branch ofξ going through p and whose

point in the first neighbourhood of p is free.

It only remains to consider the case of satellite pointsp ∈ S(ξ) which are not rupture points, and it is solved by
the next

Proposition 4.7. Let p ∈ S(ξ) be a satellite point ofξ which is not a rupture point. Suppose moreover that p is
satellite of p′ ∈ S(ξ) and let q be the biggest point inRp′ (ξ). Then

vp(ξ) =

{
np

np′
vp′ (ξ) if p ≻ q and vp′ (ξ) =

np′

nq
mq,

mp otherwise.

Proof. If p′ = q is a rupture point, there exists a branch ofξ going throughp′ and having a free point in its first
neighbourhood, and the same holds if otherwisep′ , q but vp′ (ξ) ,

np′

nq
mq (by Proposition 4.6). Thus, in any case

Theorem 3.14 implies thatvp(ξ) = mp.
Suppose now thatp′ is not a rupture point andvp′ (ξ) =

np′

nq
mq. Then there is no branch ofξ going throughp′

and having a free point in its first neighbourhood. If furthermorep ≺ q, Theorem 3.14 applies to givevp(ξ) = mp

again, but if otherwisep ≻ q, Proposition 3.6 gives that

vp(ξ) = npIξ(p) = npIξ(p
′) =

np

np′
vp′ (ξ).

As a consequence of the proof of Proposition 4.7 we infer the following result, which determines those free
pointsp ∈ S(ξ) (besides the rupture points) admitting branches ofξ going throughp and non-singular afterp.

Corollary 4.8. Let p ∈ S(ξ) be a free singular point. Then there is some branch ofξ non-smaller than p if and
only if either p is a rupture point or vp(ξ) , np

nq
mq (where q is the biggest p-satellite rupture point ofξ).
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4.3. The algorithm
Algorithm 4.9. Starting from the weighted cluster BP(J (ξ)), the following algorithm computes the setsR = R(ξ)
andS = S(ξ) of rupture and singular points ofξ, together with the values vp = vp(ξ) for any p∈ S(ξ).

Part 1: Recovering the rupture points and the singular points.

1. Start withR = S = ∅, and letD be the set of dicritical points of BP(J(ξ)).
2. If O ∈ D, then setR = S = {O}.
3. For each d∈ D − {O}:

(a) Compute I= [BP(J(ξ)).K(d)]
nd

+ 1.
(b) Find the last point p′ < d such that

mp′

np′
< I and its next point p inK(d) is free.

(c) Take i= 0 and q0 = p.
(d) While

mqi
nqi
, I do

• If
mqi
nqi
> I, take qi+1 to be the first satellite of qi .

• If
mqi
nqi
< I, take qi+1 to be the second satellite of qi .

Increase i to i+ 1.
(e) If

mqi
nqi
= I, setR = R ∪ {qi} andS = S ∪ {q |q 6 qi}.

Part 2: Recovering the values.

1. For each p∈ R set vp = mp.
2. For each free point p∈ S − R

• If there is a free point both inS and in the first neighbourhood of p, set vp = mp.

• Otherwise, let q be the biggest p-satellite point inR and set vp the only integer in the interval
[

np

nq
mq,

np

nq
mq + 1

)
.

3. For each satellite point p∈ S − R, let p′ be the free point of which p is satellite, and let q be the biggest
point inR which is either equal to or satellite of p′.

• If p ≻ q and vp′ =
np′

nq
mq both hold, set vp =

np

np′
vp′ .

• Otherwise, set vp = mp.

Remark 4.10. This algorithm gives a proof of the first statement in Theorem2.4. Furthermore, it is obvious that
the algorithm yields similar clusters if it is applied to similar clusters, so in fact it also proves the second statement
in Theorem 2.4, as we wanted.

Corollary 4.11. The cluster of singular pointsS(ξ) of any reduced singular curveξ : f = 0 is determined and
may be explicitly computed from any two polars Pg1( f ) and Pg2( f ), provided g1 and g2 have different tangents,
regardless whether they are topologically generic or even transverse ones.

Proof. Note thatBP(J(ξ)) = BP
(
∂ f
∂x ,
∂ f
∂y

)
= BP

(
Pg1( f ),Pg2( f )

)
for any two polars along different directions.

This weighted cluster can be explicitly computed using the algorithm in [2] valid for any pencil of curves. Then
use Algorithm 4.9.

In some cases, the rupture pointqd can be directly characterized frompd as the following Proposition shows.

Proposition 4.12. Let d ∈ D be a dicritical point of BP(J(ξ)) with polar invariant I = Iξ(d), and suppose pd is
the last free point lying both onξ andK(d). Assume that there exists another dicritical point d′ ∈ D for which
pd′ = pd but whose polar invariant I′ = Iξ(d′) is greater than I. Then qd is the last pd-satellite point inK(d).

Proof. Suppose the claim is false and let ¯qd be the lastpd-satellite point inK(d). Proposition 4.1 implies that
q̄d � qd, and hence ¯qd ≻ qd. Moreover, sincepd is the last free point lying both onξ andK(d), we can take
indistinctlyγd or γq̄d to compute

Iξ(q̄d) =
[ξ.γq̄d ]
eO(γq̄d)

=
[ξ.γd]
eO(γd)

= I .

If qd′ is the rupture point associated tod′, we claim thatqd′ ≻ qd. Indeed, if it is not the case, Proposition 3.6
would imply thatI ′ = Iξ(qd′ ) 6 Iξ(q̄d) = I contradicting our hypothesis. Therefore, there exists some branch ofξ
bigger thanqd, and then Proposition 3.6 again will giveIξ(qd) < Iξ(q̄d) = I , which contradicts thatqd is the rupture
point associated tod.
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Based on Proposition 4.12, we present an alternative version of the algorithm for the part of recovering the
rupture and the singular points. This apparently longer version gives a more precise and geometrical description
of some of the rupture pointsqd, for which also avoids the tedious task of performing the iterations in step (d).

Algorithm 4.13. Part 1 of Algorithm 4.9 may be replaced by the following:

1. Start withR = S = ∅, and letD be the set of dicritical points of BP(J(ξ)).
2. If O ∈ D, then setR = S = {O}
3. For each d∈ D− {O} compute Id =

[BP(J(ξ)).K(d)]
nd

+ 1, and orderD− {O} = {d1, . . . ,dk} by descending order
of Id (i.e., Id1 > . . . > Idk).

4. For each j= 1, . . . , k do:
(a) Find the last point p′ < d j such that

mp′

np′
< Id j and its next point p inK(d j) is free.

(b) If p has already appeared at this step, let qj be the last p-satellite point inK(d j) and setR = R ∪ {q j}

andS = S ∪ {q |q 6 q j}. Then skip to the next j.
(c) Otherwise, take i= 0 and q0 = p.
(d) While

mqi
nqi
, Id j do

• If
mqi
nqi
> Id j , take qi+1 to be the first satellite of qi .

• If
mqi
nqi
< Id j , take qi+1 to be the second satellite of qi .

Increase i to i+ 1.
(e) If

mqi
nqi
= Id j , setR = R ∪ {qi} andS = S ∪ {q |q 6 qi}.

4.4. Examples

Let us illustrate through some examples the application of Algorithm 4.9. We work each example as fol-
lows: we start from an equationf of ξ and then we present our initial data, the weighted cluster ofbase points

BP(J(ξ)) = BP
(
∂ f
∂x ,
∂ f
∂y

)
, which has been computed using the algorithm given in [2] (this part will not be ex-

plained in any case). Then we apply Algorithm 4.9 toBP(J(ξ)) in order to recover the clusterS(ξ) with the
corresponding values, showing the invariantsmp

np
computed and explaining how the algorithm works. At the end,it

can be checked that our output coincides withS(ξ).
For each example of singular curveξ, four Enriques diagrams will be shown: the first one shows theequisin-

gularity class of the original curveξ. The second one contains the names of the singular points ofξ and the base
points ofJ(ξ), where the dots in each square mean that there are as many free points as the number in the same
square. The third diagram represents the clusterBP(J(ξ)) with its virtual multiplicities, and the fourth one shows
the heights of the trunksmp and the multiplicitiesnp of the morphismϕp for eachp ∈ S(ξ) ∪ BP(J(ξ)) (which
are computed using Lemma 2.9). The points lying onξ are represented with black filled circles, while the circles
representing points not lying onξ are filled in white. When reading each example, it is advisableto look at the
corresponding figure in order to fix some notation, paying attention to the labels of the points of the clusters.

We start with a pair of simple examples, which are classical in the literature about polars and were given by
Pham [25] in order to prove that the equisingularity class ofa curve does not determine the equisingularity class of
its topologically generic polars. Namely, the curveξ of Example 4.14 and that of Example 4.15 are equisingular,
while its topologically generic polars are not. Observe that nor are similar their respective clustersBP(J(ξ)),
proving also that the reciprocal of Theorem 2.4 does not hold.

Example 4.14(See Figure 1). Takeξ to be given byy3− x11+αx8y = 0, withα , 0. It is irreducible and has only
one characteristic exponent:11

3 . The clusterBP(J(ξ)) is shown in Figure 1, and hence topologically generic polars
of ξ consist of two smooth branches sharing the points onξ up to p3, the point onξ in the third neighbourhood of
O. Moreover, topologically generic polars ofξ share four further fixed free points afterp3, two on each branch.

SinceO < D = {p8, p9}, we start withR = S = ∅. The polar invariants are

I = Ip8 = Ip9 =
[BP(J(ξ)).K(p8)]

np8

+ 1 =
2 · 1+ 2 · 1+ 2 · 1+ 2 · 1+ 12 + 12

1
+ 1 = 11.

We start withp8. The corresponding pointp′ is p2, and thus the rupture point associated top8 is satellite of
q0 = p3. Step 4(d) consists of the next two iterations:
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ξ, (ep(ξ), vp(ξ))

(3,3)

(3,6)

(3,9)
(2,11)

(1,21)
(1,33)

S(ξ) ∪ BP(J(ξ))

O

p1

p2

p3

p4
p5

p6

p7

p8

p9

BP(J(ξ)), νp

2

2

2
2

1

1

1

1

S(ξ) ∪ BP(J(ξ)), mp

np

3
1

6
1

9
1

12
1

21
2

33
3

14
1

14
1

16
1

16
1

Figure 1: Enriques diagrams for the singular curveξ : y3 − x11 + αx8y = 0 (α , 0).

•
mq0
nq0
= 12> 11= I , so we takeq1 = p4, the first satellite ofp3.

•
mq1
nq1
= 21

2 < 11= I , so we takeq2 = p5, the second satellite ofp4.

Since
mq2
nq2
= 11= I , we end by takingR = {p5} andS = {O, p1, . . . , p5}.

Taking p9 we haveIp9 = I = 11 and againp′ = p2. Hence we obtain the same results as forp8 and it is not
necessary to add any further point toR orS.

The second part of the algorithm starts settingvp5 = mp5 = 33. On the one hand, since there are free singular
points in the first neighbourhood ofO, p1 and p2, Step 2 yieldsvO = 3, vp1 = 6 andvp2 = 9. On the other hand,
since there are no free singular points in the first neighbourhood ofp3, the second instance of step 2 givesvp3 = 11,
the only integer in the interval [

np3

np5

mp5,
np3

np5

mp5 + 1

)
= [11,12).

Finally, the third step of the second part applies to recovervp4. Herep′ is p3 andq is p5. Sincep4 ≺ p5, we must
follow the second instance of step 3 and setvp4 = mp4 = 21.

Example 4.15(See Figure 2). Now consider the curveξ given byy3 − x11 = 0. It is again irreducible with single
characteristic exponent11

3 , and hence it is equisingular to the curve in the previous example (in fact, it corresponds
to takeα = 0 in the equation of Example 4.14). However, the Enriques diagram ofBP(J(ξ)) is not equal to that in
Example 4.14. In this case, topologically generic polars also consist of two smooth branches, but they share five
points (instead of four, as happened in the previous example) and there are no more base points.

In this case there is only one dicritical point inBP(J(ξ)): p6, and its corresponding polar invariant is again

I = Ip6 =
[BP(J(ξ)).K(p6)]

np6

+ 1 =
2 · 1+ 2 · 1+ 2 · 1+ 2 · 1+ 2 · 1

1
+ 1 = 11.

Moreover, the pointp is againp3, and hence the algorithm works as it does in example 4 (recovering both the
rupture points and the values).

We expose now a more complicated example, since two of the branches of the curve have two characteristic
exponents. After this example it will be clear that the computation ofS(ξ) by hand is much faster using Algorithm
4.13.

Example 4.16. (See figures 4, 3, 5 and 6)
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ξ, (ep(ξ), vp(ξ))
(3,3)

(3,6)

(3,9)
(2,11)

(1,21)
(1,33)

S(ξ) ∪ BP(J(ξ))

O

p1

p2

p3

p4

p5

p6

BP(J(ξ)), νp

2

2

2
2 2

S(ξ) ∪ BP(J(ξ)), mp

np

3
1

6
1

9
1

12
1

21
2

33
3

15
1

Figure 2: Enriques diagrams for the singular curveξ : y3 − x11 = 0.

Let ξ be the curve with branchesγ1, . . . , γ5 given by the Puiseux seriess1(x) = x
11
4 + x

51
16 , s2(x) = x

11
4 +

x
63
20 , s3(x) = x

8
3 , s4(x) = x

16
7 ands5(x) = x

9
4 . One possible equation forξ is

f =(y3 − x8)(y4 − x9)(y7 − x16)

(y16 − 4x11y12 − 80x21y9 + 6x22y8 − 72x31y6−

160x32y5 − 4x33y4 − 16x41y3 + 56x42y2 − 16x43y+ x44 − x51)

(y20 − 5x11y16 + 10x22y12 − 140x24y12 − 10x33y8 − 620x35y8 − 110x37y8+

5x44y4 − 260x46y4 + 340x48y4 − 20x50y4 − x55 − 4x57 − 6x59 − 4x61 − x63).

and its Enriques’ diagram is shown in Figure 4. It is immediate that the set of rupture points ofξ is R(ξ) =
{p4, p5, p7, p8, p13, p14}.

The representation ofBP(J(ξ)) in Figure 5 shows in particular that topologically generic polars ofξ have
seven branches. One of the branches is smooth, four of them have only one characteristic exponent, and the two
remaining branches have two characteristic exponents. This example also shows thatBP(J(ξ)) may contain a lot
of points which are simple on the topologically generic polars.

Now we run the algorithm. Step 1 setsR = S = ∅,D = {p15, p17, p21, p22, p23, p29, p30}, and sinceO < D we
go to step 3.

The polar invariants areI15 = I17 = 132,I21 = 129,I22 =
799
7 , I23 =

225
2 , I29 =

543
4 andI30 =

678
5 . Hence, in step

4 we must process the dicritical points in the orderp29, p30, p15, p17, p21, p22, p23.

• Start withp29. We havep′ = p9 andp = p10 because
mp9
np9
= 537

4 < I29 =
543
4 6

mp10
np10
= 544

4 = 136. Since it is

the first iteration, we takeq0 = p10 and perform 4(d).

–
mq0
nq0
= 136> 543

4 = I29, so that we takeq1 = p11, the first satellite ofp10.

–
mq1
nq1
= 1083

8 <
543
4 = I29, soq2 = p12, the second satellite ofp11.

–
mq2
nq2
= 407

3 <
543
4 = I29, and thereforeq3 = p13, the second satellite ofp12.

Since
mq3
nq3
= 2172

16 = I29, this first iteration finishes withR = {p13} andS = {O, p1, . . . , p5, p9, . . . , p13}.

• Take p30. Since
mp9
np9
= 537

4 < I30 =
678
5 6

mp14
np14
= 2712

20 , we havep′ = p9 and p = p10. But p10 has already

appeared asp, and so the rupture point associated top30 is p14, the lastp10-satellite point inK(p30). Up to
now we haveR = {p13, p14} andS = {O, p1, . . . , p5, p9, . . . , p14}.

• Take the pointp15. Since
mp1
np1
= 100< I15 = 1326

mp2
np2
= 133, we havep′ = p1 andp = p2. It is the first

time p2 appears, so we must perform the iterations of 4(d) starting fromq0 = p = p2:
20
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Figure 3: Singular points ofξ and base points ofJ(ξ).

–
mq0
nq0
= 133> 132= I15, and hence we takeq1 = p3, the first satellite ofp2.

–
mq1
nq1
= 245

2 < 132= I15, and hence we takeq2 = p4, the second satellite ofp3.

–
mq2
nq2
= 387

3 < 132= I15, and hence we takeq3 = p5, the second satellite ofp4.

And we stop here because
mq3
nq3
= 528

4 = 132 = I15. We finish this step by settingR = {p5, p13, p14} and

S = {O, p1, . . . , p5, p9, . . . , p14}.

• The case ofp17 is exactly the same ofp15, so we omit it.

• Take the pointp21. Since
mp1
np1
= 100 < I21 =

387
3 6

mp2
np2
= 133, we havep′ = p1 and p = p2. But p2 has

already appeared, and hence we obtain that the rupture pointassociated top21 is p4, the lastp2-satellite point
in K(p21). Therefore we have by the momentR = {p4, p5, p13, p14} andS = {O, p1, . . . , p5, p9, . . . , p14}.

• Consider the pointp22. We have againp′ = p1 andp = p2 because
mp1
np1
= 100< I22 =

799
7 6

mp2
np2
= 133, and

sincep2 has already appeared as the pointp, the rupture point associated top22 is the lastp2-satellite point
in K(p22): p8. We finish this step by settingR = {p4, p5, p8, p13, p14} andS = {O, p1, . . . , p14}.

• We finally takep23, the last dicritical point. We have againp′ = p1 because
mp1
np1
= 100< I23 =

225
2 6

mp2
np2
=

133, and hencep = p2. But it has already appeared (three times), and therefore the rupture point associated
to p23 is p7.

Thus, the first part of the algorithm finishes withR = {p4, p5, p7, p8, p13, p14} andS = {O, p1, . . . , p14}, which
actually coincide withR(ξ) andS(ξ) respectively.

The second part begins recovering the values of the rupture points:

vp4 = 387, vp5 = 528, vp7 = 450, vp8 = 799, vp13 = 2172, and vp14 = 2712.

Then we take care of the free singular non-rupture points, starting with

vO = mO = 50, vp1 = mp1 = 50 and vp9 = mp9 = 537

becausep1, p2 andp10 are free singular points in the first neighbourhoods ofO, p1 andp9 respectively. Next,

vp2 = 132 and vp10 = 543
21
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.

because they are the only integers in the intervals
[

np2

np5

mp5,
np2

np5

mp5 + 1

)
= [132,133) and

[
np10

np13

mp13,
np10

np13

mp13 + 1

)
= [543,544)

respectively, andp5 (resp.p13) is the biggestp2-satellite (resp.p10-satellite) rupture point.
Finally, we must consider the satellite non-rupture points, which arep3, p6, p11 andp12. In first place, bothp3

andp6 are smaller thanp5, the biggestp2-satellite rupture point, and hence we have

vp3 = mp3 = 245 and vp6 = mp6 = 348

because the second instance of step 3 applies. In second place, bothp11 andp12 are smaller thanp13, which is the
biggestp10-satellite rupture point. Therefore we get

vp11 = mp11 = 1083 and vp12 = mp12 = 1628

by the same reason as above.
As in all the other examples, it is immediate to check that these values are the values ofξ at its singular points,

as claimed.
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