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Abstract— This paper presents a new method for leak local-
ization in Water Distribution Networks that uses a model-based
approach combined with Bayesian reasoning. Probability den-
sity functions in model-based pressure residuals are calibrated
off-line for all the possible leak scenarios by using a hydraulic
simulator, being leak size uncertainty, demand uncertainty and
sensor noise considered. A Bayesian reasoning is applied on-
line to the available residuals to determine the location of leaks
present in the Water Distribution Network. A time horizon
method combined with the Bayesian reasoning is also proposed
to improve the accuracy of the leak localization method. The
Hanoi District Metered Area case study is used to illustrate the
performance of the proposed approach.
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I. INTRODUCTION

Water leaks in a Water Distribution Network (WDN)
can cause significant economic losses in fluid transportation
leading to increase reparation costs that finally generate an
extra cost for the final consumer. In many WDNs, losses
due to leaks are estimated to account up to 30 % of the total
amount of extracted water. This is a very important amount
in a world struggling to satisfy water demands of a growing
population.

Several works have been published dealing with leak
detection and isolation (localization) methods for WDNs
(see [1] and references therein). For example, in [2], a
review of transient-based leak detection methods is offered
as a summary of current and past work. In [3], a method
is proposed to identify leaks using blind spots based on
previously leak detection that uses the analysis of acoustic
and vibrations signals [4], and models of buried pipelines to
predict wave velocities [5]. More recently, in [6], it has been
developed a method to locate leaks using Support Vector
Machines (SVM) that analyzes data obtained by a set of
pressure control sensors of a pipeline network to locate and
calculate the size of the leak. The use of classifiers in leak
localization has been proposed in [7] and [8]. Another set of
methods is based on the inverse transient analysis [9], [10].
The main idea of this methodology is to analyze the pressure
data collected during the occurrence of transitory events by
means of the minimization of the difference between the
observed and the calculated parameters. In [11], [12], it is
shown that unsteady-state tests can be used for pipe diagnosis
and leak detection. The transient-test based methodologies
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use the equations for transient flow in pressurized pipes in
frequency domain and then information about pressure waves
is taken into account too.

Model-based leak detection and isolation techniques have
also been studied starting with the seminal paper of Pudar
[13] which formulates the leak detection and localization
problem as a least-squares parameter estimation problem.
However, the parameter estimation of water network models
is not an easy task [14]. The difficulty lies in the non-linear
nature of water network model and the few measurements
usually available with respect to the large number of pa-
rameters to be estimated that leads to an underdetermined
problem. Alternatively, in [15], [16], a model-based method
that relies on pressure measurements and leak sensitivity
analysis is proposed. This methodology consists in analyzing
the residuals (difference between the measurements and
their estimation using the hydraulic network model) on-
line regarding a given threshold that takes into account
the modeling uncertainty and the noise. When some of the
residuals violate their threshold, the residuals are matched
against the leak sensitivity matrix in order to discover which
of the possible leaks is present. Although this approach
has good efficiency under ideal conditions, its performance
decreases due to the nodal demand uncertainty and noise
in the measurements. This methodology has been improved
in [17] where an analysis along a time horizon has been
taken into account and a comparison of several leak isolation
methods is presented. It must be noticed that in cases where
the flow measurements are available, leaks could be detected
more easily since it is possible to establish simple mass
balance in the pipes. See for example the work of [18]
where a methodology to isolate leaks is proposed using fuzzy
analysis of the residuals. This method finds the residuals
between the flow measurements and their estimation using
a model without leaks. However, although the use of flow
measurements is viable in large water transport networks, this
is not the case in water distribution networks where there
is a dense mesh of pipes with only flow measurements at
the entrance of each District Metering Area (DMA). In this
situation, water companies consider as a feasible approach
the possibility of installing some pressure sensors inside the
DMAs, because they are cheaper and easy to install and
maintain.

In this paper, a new method for leak localization in WDNs
that uses a model-based approach combined with Bayesian
reasoning is proposed. Probability Density Functions (PDFs)
in model-based pressure residuals are calibrated off-line for
all the possible leak scenarios by using a hydraulic simulator



and being leak size uncertainty, demand uncertainty and
sensor noise considered. A Bayesian reasoning is applied
on-line to the available residuals to determine the location of
leaks present in the WDN. A time horizon method combined
with the Bayesian reasoning is also proposed to improve
the accuracy of the leak localization method. The Hanoi
DMA case study is used to illustrate the performance of the
proposed approach.

The paper is organized as follows. Section II presents
in detail the proposed method while Section III describes
the required calibration processes before its application to a
WDN. Section IV details the application of the method to
the Hanoi DMA case study and provides a comparison with
another well-established approach. Finally, Section V draws
the main conclusions of the work.

II. METHODOLOGY

A. Methodology overview

Following the approach proposed in previous works [15],
[16], this paper proposes a method for leak localization based
on the generation and analysis of pressure residuals. The
contribution relies on the use of a Bayesian reasoning to
implement such analysis.

1) Architecture: The on-line operation of the proposed
method uses the classical two-stage model-based Fault De-
tection and Isolation (FDI) architecture based on generating
and evaluating residuals. In particular, the leak localization
method proposed in the paper considers on the scheme
depicted in Fig. 1, based on computing pressure residuals
and processing them by using a Bayesian reasoning pro-
cedure. Residuals are computed as differences between the
measurements provided by pressure sensors installed inside
the WDN and the estimations provided by a hydraulic model
simulated under leak-free conditions. Residuals are sensitive
to leaks since leaks change the real pressures and hence
the measured values, whereas the corresponding reference
estimated values remain unchanged. The aim of the Bayesian
reasoning is to determine the most likelihood leak that
explains the mismatches between the measurements and the
estimations. It is assumed that just one leak can be affecting
the network in a given time instant (single-fault assumption).
The extension to multiple leaks will be addressed in future
research.

The hydraulic model is built using a hydraulic simulator
Epanet by considering the DMA structure (pipes, nodes and
valves) and network parameters (pipe coefficients) and it is
assumed to be able to represent precisely the WDN behavior
after the corresponding calibration process using real data.
However, it must be noticed that the model is fed with
estimated water demands (typically obtained by analyzing
historical billing records) in the nodes (d̂1, · · · , d̂nn

) since
in practice nodal demands (d1, · · · , dnn

) are not measured
except for some particular consumers where automatic me-
tering readers (AMRs) are available. Hence, the residuals are
not only sensitive to faults but also to differences between
the real demands and their estimated values. Additionally,
pressure measurements are subject to the effect of sensor
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Fig. 1. Leak localization scheme.

noise v that affects the residuals too. Taking all of these
effects into account, the Bayesian reasoning must be able to
locate the real leak present in the WDN, that can be in any
node and with any (unknown) magnitude, while being robust
to the demand uncertainty and the measurement noise.

2) Design: As with any other model-based FDI method,
the method proposed in this paper will operate on-line but
it requires a previous off-line design. In traditional FDI
approaches, the design typically relies on the manipulation
of the model (combination and/or projection of equations)
with the aim of obtaining enhanced residuals, i.e. residuals
that can facilitate isolation under a Boolean (structured
residuals) or geometric (directional residuals) framework.
Unfortunately, this type of procedure can not be applied
to the localization of faults in WDNs since the model is
a set of non-linear implicit equations that can not be easily
manipulated. Alternatively, what can be done is generating
synthetic data in the residual space by executing extensive
simulations of the model under the different faulty conditions
and trying to analyze directly the obtained raw residuals. In
a previous work [7], this was done by training and using a
classical k-Nearest Neighbors (k-NN) classifier. In this work,
a Bayesian approach is proposed.

The method proposed in this paper considers an off-line
design based on the following stages:
• Modelling - A model for the WDN is obtained, cali-

brated and implemented in Epanet. The model is basi-
cally built by taking into account the network structure
and by applying flow balance conservation and pressure
loss equations, see [15], [16] for details.

• Data generation - The model is extensively used to
generate data in the residual space for each possible
leak. The residuals correspond to differences between
the pressures obtained considering fault scenarios and
the ones obtained in the fault-free scenario.

• Calibration - The data associated to each fault is used
to calibrate a joint probability density function that
models the effect of each fault in the residual space.
The calibration procedure is detailed in Section III of
the paper.



The data generation stage is critical since the generated
data has to be complete to allow obtaining representative
probability density functions and the maximum possible de-
gree of isolability. Data is generated by applying the scheme
presented in Fig. 2, that is similar to the one presented in
Fig. 1 but substituting the real WDN by its Epanet model.

WDN model 
(Epanet) 

WDN model 
(Epanet) 

…
 

…
 

d̂1
d̂2
d̂nn

p 

p̂0

+ 

- 

r 

+ + 
 
d1

 
d2

 
dnn

labeled 
data 

residuals 

fault 

 
fi

 v

Fig. 2. Data generation scheme.

The proposed scheme is exploited in order to:
• Generate data for all possible leak locations, i.e. for all

the different nodes in the WDN.
• For each possible leak location, generate data for dif-

ferent leak magnitudes inside a given range.
• Generate data from sequences of demands that corre-

spond to an estimated daily evolution of the demand in
each node. These sequences are determined by taking
into account the type of consumers that configure each
nodal demand and the daily average demand.

• Take into account the uncertainty in the demands, i.e.
the differences between the real demands and their
estimated values. This is done by working with sim-
ulated real demands (d̃1, · · · , d̃n) that differ from the
simulated estimations (d̂1, · · · , d̂n).

• Take into account the measurement noise in pressure
sensors, by generating synthetic Gaussian noise ṽ.

B. Bayesian fault isolation
Assume that we have a finite set of possible fault situa-

tions, fi, i = 1, ..., N and a finite set of measuring devices
xj , j = 1, ...,M . Assume also that we have a model of
the system behavior which allows us the computation of M
residual signals rj , j = 1, ...,M . These time-varying resid-
uals are defined as the mismatch between the measurements
and the behavior predicted by the model. When a fault takes
place, all the residuals are activated up to some extent.

Given the residuals, the objective is to perform a fault
diagnosis procedure in order to identify which fault or faults
are behind the observed behavior. In this work, we present
a diagnosis procedure based on the Bayesian reasoning. The
methodology is explained below.

At every discrete-time instant k, the probability of each
fault can be estimated by means of the application of the
Bayes rule

P (fi | r(k)) =
P (r(k) | fi)P (fi)

P (r(k))
, i = 1, ..., N (1)

where P (fi | r(k)) is the posterior probability that
fault fi had caused the observed residual vector r(k) =
(r1(k) · · · rN (k))T , P (r(k) | fi) is the likelihood of the
residual r(k) assuming that the active fault is fi, P (fi)
is the prior probability for the fault fi, and P (r(k)) is a
normalizing factor given by the total probability law

P (r(k)) =
N∑
i=1

P (r(k) | fi)P (fi) (2)

Regarding the prior probabilities, unless we have some
additional information, an unprejudiced starting point is to
consider all of them equally probable, that is, P (fi) =
1
N , i = 1, ..., N . To estimate the likelihood value P (r(k) |
fi) we need to perform a previous calibration task in order
to obtain the joint probability density function for each fault
in the residual space, P (r | fi), i = 1, ..., N . The calibration
stage is detailed in the next section. In any case, note that we
do not need to assume independency between the residuals.

The application of (1) produces a set of values P (fi |
r(k)),

∑N
i=1 P (fi | r(k)) = 1, that can be used to decide

which fault is acting over the system. Note that, at each time
sample k, we have information of which is the probability
associated to each fault situation. There can be many com-
peting faults, each one with a different probability value. In
order to select one of them (the most probable fault), we can
take the fault with the highest probability or we can define
a threshold value as well.

C. Recursivity

The results can be improved if (1) is recursively applied,
that is, if the posterior P (fi | r(k)) is used as the prior
probability for the next time instant. This way, as long as new
measurements are available, the probabilities are updated and
many of the competing faults can be discarded.

The only drawback is that if any of the faults takes the
1 probability value at any k, then all the remaining faults
take the 0 probability value, therefore preventing them to
have a future value different from zero due to the recursive
application of (1). This drawback can be easily overcome
by forcing all probabilities to present a maximum value of,
say, 0.99. When a fault fi presents the probability P (fi |
r(k)) > 0.99, we force it to be P (fi | r(k)) = 0.99 and
we can force the remaining faults to be P (fn | r(k)) =
1−0.99
N−1 , n = 1, ..., N, n 6= i.

D. Time horizon

Finally, the result can additionally be improved if a time
horizon H is used. In this case, the posterior probability can
be computed on the basis of the H−1 previous computations,
that is, to compute P (fi | r(k)), we recursively can apply
the following equation

P (fi | r(k −H + n)) =

P (r(k −H + n) | fi)P (fi | r(k −H + n− 1))

P (r(k −H + n))
,

i = 1, ..., N, n = 1, ...,H

(3)
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Fig. 3. Calibration for faults 1 and 2.

where the unprejudiced starting point may be P (fi | r(k −
H)) = 1

N , i = 1, ..., N .

III. CALIBRATION

In order to apply the methodology presented in the pre-
vious section, we need to perform a first off-line calibration
task consisting in obtaining the joint probability density
function for each fault in the residual space, P (r | fi), i =
1, ..., N . To do so, we generate a set of residual samples
for each fault situation and we obtain the probability density
function that best fits to them.

A. Residuals independence

In general, better results are obtained if we take into
account the correlation between the residual signals. Fig. 3
shows the case where two faults are calibrated by means
of Gaussian probability density functions. Fault 1 is better
adjusted because it takes into account the cross correlation
between residuals r1 and r2. On the other hand, fault
2 is adjusted by assuming statistic independence between
residuals r1 and r2 therefore the fitting is not so accurate.
Note also that other probability distribution families than
Gaussian could be used, including multimodal and non-
parametric distributions.

B. Groups of faults

Sometimes, in practical situations, different faults lead
to very similar residual realizations. In such a case, the
diagnosis process is more complicated and ends up with a
result that indicates that the fault belongs to a certain group of
faults whereas the particular fault is not completely isolated
(see Fig. 4, fault 1 is introduced in k = 25 and it cannot be
distinguished from faults 2 and 3).

The calibration process allows identifying these situations
a priori, for example, by computing the Kullback-Leibler di-
vergence between the obtained probability density functions.
If the divergence is below a pre-specified threshold, we can
expect that the corresponding faults will be very difficult to
isolate.

In these situations, it is interesting to associate a unique
PDF for the group of faults. Regarding the prior probability
of the group, one can assign a proportional value to the
number of faults in the group, i.e., P (f1,2,3) =

3
N or assign
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the same PDF for all the groups (simple or composed),
i.e., P (f1,2,3) = 1

N ′ with N ′ the number of new groups.
Working with a joint distribution for the undistinguishable
faults allows reducing the number of competing faults and
the computational load.

IV. CASE STUDY

The proposed methodology has been applied to the sim-
plified model of the Hanoi DMA network (depicted in Fig.
5). This model consists of one reservoir, 34 pipes and 31
nodes. Two inner pressure sensors placed in nodes 14 and 30
have been considered (for more details see [19]). The sample
time between available measurements is one hour. Single-
leak (fault) scenarios in the 31 nodes have been considered.
The demand pattern in all demand nodes has been considered
known but with some uncertainty as proposed in [20], the
leak magnitude has been considered unknown but bounded
by an interval (minimum and maximum leak magnitudes)
and noise in pressure sensors has been considered too.

In order to illustrate the performance of the proposed
methodology, four different studies have been carried out
under the following conditions:
• A leak magnitude uncertainty study considering a leak

range between 25 and 75 [l/s] (0.84 and 2.51 % of the
total amount of water demanded, which is 2991.1 [l/s]).

• A study considering noise in pressure measurements
with a noise amplitude of ±5 % of the mean value
of all pressure residuals.

• A demand uncertainty study considering an uncertainty
of ±5 % of the nominal demand node values.

• A study considering the all three uncertainties defined
above present in the system at the same time.



A. Calibration

Probability density functions have been calibrated (consid-
ering dependence and independence between the different
residuals) using a set of data with 200 samples for every
leak scenario. Every sample corresponds to two residuals
computed with the two sensor measurements and the ex-
pected values considering the fault-free scenario. Fig. 6
depicts residuals in the 31 leak scenarios considering demand
uncertainty.
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Fig. 6. Residuals space with demand uncertainty in Hanoi network.

Fig. 7 depicts the PDFs of leak scenario in node 1 when
dependence and independence in residuals are considered.

The process of grouping leaks in composed classes de-
scribed in Section III have been carried out considering the
Kullback-Leibler divergence between the 31 obtained PDFs.
A threshold of 10−3 has been chosen. As a result of the
grouping process, two composed leak classes that group 4
and 3 single nodes have been obtained. These two composed
groups are depicted in Fig. 5. Then, the total of new groups
is N ′ = 26.

B. Results

A set of 1000 samples for every leak scenario has been
used for validation purposes. The results obtained by the
proposed method without recursivity considering dependence
and independence between the different residuals in the
four different studies have been compared with the ones
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TABLE I
LEAK LOCATION ACCURACY IN HANOI NETWORK (H = 1).

Dependence Independence k-NN classifier

Leak 100[%] 78.56[%] 99.24[%]

Noise 100[%] 100[%] 100[%]

Demand 49.10[%] 46.83[%] 40.57[%]

All 41.71[%] 39.22[%] 34.81[%]

TABLE II
LEAK LOCATION RANK LIST IN HANOI NETWORK (H = 1).

Dependence Independence k-NN classifier

Leak 1 1.32 1.01

Noise 1 1 1

Demand 2.28 2.45 3.36

All 2.72 2.91 3.98

obtained using the method proposed in [7] where residuals
are evaluated by using a kNN classifier. An initial prior
probability of 1

26 for the new 26 groups has been chosen.
The results are summarized in Tables I and II. The numbers
of Table I indicate the % of well classified leak locations
(the highest posterior probability corresponds to the correct
hypothesis) defined as “Accuracy”. On the other hand, the
numbers of Table II indicate the average position of the
correct leak location node among all the different hypothesis
in the diagnosis procedure defined as “Rank list”.

As it can be noticed, the proposed Bayesian method
considering dependence between residuals provides the best
performance in the 4 different studies described before. The
improvement of considering dependence (or not) between
residuals is significative in case of leak uncertainty. On
the other hand, both Bayesian methods can handle more
efficiently the dispersion produced by demand uncertainty.

Finally, the effect of the horizon length H in the Accuracy
and Rank list of the proposed method considering all the
uncertainties together is shown in Figs. 8 and 9. As it can be
noticed from these two figures, both indicators improve with
the increase of the time horizon length H (i.e. the number
of available data).

Fig. 10 depict the evolution of posterior probabilities
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obtained by the proposed method in leak scenario 18. In
leak scenario 18 during the first 17 time instants and from
k = 20 to k = 22 the most probable leak provided by the
proposed method is leak 3 and the correct leak hypothesis is
ranked as the second most probable leak.

V. CONCLUSION

In this paper a leak localization methodology has been
presented using pressure residuals and Bayesian reasoning.
In a first off-line stage the data obtained from the simulation
of the hydraulic model with and without leaks is used to
generate the residuals to obtain the PDFs. Also when the
PDFs are highly overlapped a grouping method is proposed.
The on-line Bayesian reasoning provides the time-dependent
posterior probability of every possible leak. The performance
of the proposed method has been tested in the Hanoi DMA
network in different scenarios and by considering both
dependence and independence in the residuals variables.
Moreover the performance has been compared with the
performance of a previous proposed method that uses a k-
NN classifier to evaluate the pressure residuals. The effect
of the time horizon has also been studied.
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placement for leak location in water distribution networks using
genetic algorithms, Sensors 13 (11) (2013) 14984–15005.
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