
EFFICIENT CONVOLUTIONAL NEURAL NETWORKS FOR PIXELWISE CLASSIFICATION
ON HETEROGENEOUS HARDWARE SYSTEMS

Fabian Tschopp1 Julien N. P. Martel2 Srinivas C. Turaga3 Matthew Cook2 Jan Funke2,3

1Department of Computer Science, ETH Zurich
2Institute of Neuroinformatics, University of Zurich and ETH Zurich

3Janelia Research Campus, Howard Hughes Medical Institute

ABSTRACT
With recent advances in high-throughput Electron Microscopy
(EM) imaging it is now possible to image an entire nervous
system of organisms like Drosophila melanogaster. One of
the bottlenecks to reconstruct a connectome from these large
volumes (≈ 100TiB) is the pixel-wise prediction of mem-
branes. The time it would typically take to process such a
volume using a convolutional neural network (CNN) with a
sliding window approach is in the order of years on a current
GPU. With sliding windows, however, a lot of redundant
computations are carried out. In this paper, we present an
extension to the Caffe library to increase throughput by pre-
dicting many pixels at once. On a sliding window network
successfully used for membrane classification, we show that
our method achieves a speedup of up to 57×, maintaining
identical prediction results.

Index Terms— convolutional neural networks, pixel wise
classification, electron microscopy, loss functions

1. INTRODUCTION

Convolutional Neural Networks (CNN) are forward-backward
neural networks that are based on convolutions using ker-
nels, generally followed by element-wise non-linearities and
pooling operations. The networks have been successfully
employed for various image classification tasks [1]. Recent
networks such as the U-Net [2] can feature over 20 layers,
and contain millions of parameters to learn.

This paper focuses on the pixel-wise classification of im-
ages. For pixelwise classification, as opposed to image classi-
fication, a label for each pixel in a given image has to be pre-
dicted. Since the fields of view for the predictions are overlap-
ping between neighboring pixels, optimizations are possible
reducing redundant computations. This is particularly use-
ful for predictions in electron microscopy (EM) datasets of
neural tissue, which can easily reach 100TiB, even for small
organisms like Drosophila melanogaster. Pixel-wise predic-
tions in these datasets is the current bottleneck in the auto-
matic segmentation of neurons. With our implementation of

Thanks to AMD for hardware sponsoring of two W9100 GPUs.

sliding window

strided kernels

. . .

. . .

Fig. 1: The working principle of sliding window (SW) net-
works (top) and the proposed strided kernel (SK) networks
(bottom). For a given input image, SW networks process a
patch around every pixel (shown as red boxes). The fields of
view of neighboring pixels have a considerable overlap where
many computations are performed redundantly. In contrast,
SK nets predict many pixels at once (green boxes), and thus
decrease the number of redundant computations per pixel.

strided kernels (SK), we are able to reduce the needed pro-
cessing time significantly compared to currently used sliding
window (SW) approaches. On a deep CNN that we designed
for membrane predictions in EM images, we show a reduc-
tion in processing time by a factor of 57, delivering exactly
identical results. On a cluster with 100 current GPUs, this
corresponds to a reduction from ≈ 23 years (SW network)
to ≈ 145 days (SK network). Additionally, we show that
a further reduction to ≈ 19 days is possible using our strided
kernels in fully convolutional downsampling networks [2], de-
livering qualitatively similar results.

Strided kernels allow predicting many labels of an image
patch at once, and thus avoid a lot of the redundancy carried
out by sliding window approaches, as illustrated in Figure 1.
Fully convolutional networks also predict large patches ef-
ficiently [3], but do not have an equivalent sliding window
network.

978-1-4799-2349-6/16/$31.00 ©2016 IEEE 1225

Our approach is most similar to the strided kernels pro-
posed by Hongsheng Li et al. [4]. Another similar method us-
ing a fragment dimension to store the shifted pooling outputs,
instead of using a strided representation, has been proposed
[5][6]. However, this method was implemented for CPUs and
2D only and is less suitable for GPUs in terms of memory ac-
cess [4]. In contrast to the existing work, our implementation
(1) supports convolutions and pooling in 3D, (2) is ready to
be run on heterogeneous hardware (nVidia and AMD GPUs,
CPU clusters), (3) features training on a topological loss by
exploiting the pixel-wise predictions, (4) provides an easy-to-
use tool targeted at users, not experts, to perform training and
prediction, and (5) our source code is publically available.

Implementation wise, our work extends the open source
neural network Caffe library, maintained by the Berkeley Vi-
sion and Learning Center [7]. We extended Caffe with our
strided kernels for convolution and max pooling for three and
more spatial dimensions, enabling our speedup also for classi-
fication in isotropic volumes. Support for different hardware
backends is available through OpenCL and CUDA. Further-
more, we realize that the joint prediction of image patches can
be exploited during training. To this end, we implemented the
Malis criterion [8] using affinity graphs on the pixel-wise pre-
dictions as a new loss layer. This training loss is especially
useful for biomedical image processing, where we want our
classifiers to focus on minimizing topological errors during
training, rather then pixel-wise errors. We refer to this ex-
tended library as Greentea.

2. METHOD FOR PIXEL-WISE CLASSIFICATION

We present our method by explaining the conversion of exist-
ing networks and demonstrate it on a 2D network that works
well on our two datasets (see Section 4). In particular, we
highlight how different types of layers (element-wise, convo-
lution, pooling and inner product) change and what pixel-wise
networks imply for training.

2.1. Example sliding window network design

We first designed a suitable sliding window network for neu-
ral tissue images (Figure 2), with a field of view the size of
a mitochondria (≈ 1022 pixels) in the datasets. This network
is used as basis for benchmarks and to create an SK model,
however this stands as an example and other networks can be
used as a basis. The kernel sizes (in both dimensions) of our
network are k = 7, 5 and 3 for the convolutions. For the max-
pooling layers, we use a stride s of the same size as the kernel
k to realize a downsampling by a factor of 2, i.e., s = k = 2.

2.2. Converting to strided kernel networks

Given a sliding window network with one pixel output and
size w

(0)
SW input, Algorithm 1 converts the network into a

3

10
22

48

96
2

48

48
2

128

44
2

128

22
2

192

20
2

192

10
2

1024

12

512

12

2

12

Convolution + ReLU
Pooling

(a) SW-Net
3

22
92

48

22
32

48

22
22

128

21
42

128

21
22

192

20
42

192

20
02

1024

12
82

512

12
82

2

12
82

(b) SK-Net

Fig. 2: Representation of (a) a sliding window network architec-
ture and (b) a mathematically equivalent strided kernel network. The
network contains 3 convolution-ReLU-pooling and 3 inner-product
layers. Vertical numbers are the size of the feature maps, horizontal
numbers the count of feature maps. Green-red striped blocks rep-
resent feature maps with a kernel stride (d > 1). The red blocks
describe the path of a single pixel classification, as it would have
been carried out by the SW-Net.

strided kernel network which is compatible with the existing
trained weights and gives mathematically identical results to
the original network, but processes images much faster for
pixel wise classification. The number of feature maps and the
field of view considered to predict a pixel remains identical.

In strided kernel networks, convolutions are performed
on the whole input patch, and the results are shared between
neighboring pixels. Max pooling (downsampling) is per-
formed similarly, but different copies have to be generated
because the pooling offsets are shifted for neighboring out-
put pixels. For better memory access, the shifted copies are
stored interleaved, which requires kernels with an inner stride
dSK [4] that keeps the data of each shifted copy separated.

The kernel stride consequently increases after each pool-
ing operation (Algorithm 1, LN 15, Figure 2b) and has to be
applied to all following layers. Inner product layers are re-
placed by convolutions with kernels equal to the feature map
sizes in the original network (LN 18). The result is an inde-
pendent fully connected layer for each of the shifted copies.
Element-wise layers (k = 1) require no modification as they
are not affected by the kernel stride.

The resulting network can theoretically be used with any
output size w(N)

SK . However, device memory required for con-
volution buffers and feature maps is often a limiting factor, as
memory usage increases proportional to w2. More memory
allows a bigger patch size (w) to context padding (v) ratio,
which avoids redundant computations.

On our example network, a w2 = 1282 output is feasible
with 4GiB GPU memory. The three inner product layers are
replaced by convolutions with kernel sizes k = 10, 1 and 1
respectively, while the kernel stride grows up to d = 8 be-
fore collapsing to d = 1 after the first fully connected layer
(Algorithm 1, LN 19).

1226

Algorithm 1 Converts an SW-Net into a mathematically equivalent
SK-Net by going through all layers 1, . . . , N of the original network.

1: ∀i ∈ [1, N].s
(i)
SK ← 1 ∧ p

(i)
SK ← 0

2: w
(0)
SK ← w

(0)
SW dtemp ← 1

3: for i = 1; i ≤ N ; i← i+ 1 do
4: if l(i)SW = convolution then
5: l

(i)
SK ← convolution SK

6: k
(i)
SK ← k

(i)
SW d

(i)
SK ← dtemp

7: w
(i)
SK ← w

(i�1)
SK − (k

(i)
SK − 1) · d(i)SK

8: . w
(i)
SW ← w

(i�1)
SW − (k

(i)
SW − 1)

9: else if l(i)SW = pooling then
10: if w(i�1)

SW mod k
(i)
SW 6= 0 ∨ k

(i)
SW 6= s

(i)
SW then error

11: l
(i)
SK ← pooling SK

12: k
(i)
SK ← k

(i)
SW d

(i)
SK ← dtemp

13: w
(i)
SK ← w

(i�1)
SK − (k

(i)
SK − 1) · d(i)SK

14: . w
(i)
SW ←

⌈
w

(i�1)
SW

k
(i)
SW

⌉
15: dtemp ← dtemp · k(i)

SK

16: else if l(i)SW = inner product then
17: l

(i)
SK ← convolution SK

18: k
(i)
SK ← w

(i�1)
SW . k

(i)
SW = w

(i�1)
SW is implicit

19: d
(i)
SK ← dtemp dtemp ← 1

20: w
(i)
SK ← w

(i�1)
SK − (k

(i)
SK − 1) · d(i)SK . w

(i)
SW ← 1

21: else
22: if k(i)

SW > 1 then error

23: lSK ← lSW

24: w
(i)
SK ← w

(i�1)
SK . w

(i)
SW ← w

(i�1)
SW

25: if dtemp = 1 then success else error

2.3. Training strided kernel networks

In classical sliding window networks, the prediction of indi-
vidual pixel labels is beneficial when training with a Softmax
loss, because every pixel in the batch can be picked indepen-
dently. When predicting complete tiles with strided kernel
networks, however, pixels become spatially dependent and
dictate the label distribution. This can lead to unbalanced loss
backpropagation during training, as there are, for example,
more cell interior pixels than membrane pixels. Learning rare
features, such as synapses, is even more difficult. Our tool
uses preprocessing methods to reduce these adverse effects.

For the training under a topological loss function, predic-
tions of complete images are however required to determine
if objects are properly separated. We implemented the Malis
loss [8], as a training layer, taking advantage of our strided
kernel networks.

3. GREENTEA BREW TOOL

To support training with pixel-wise labelled ground truth (in-
stead of a single label per image), we provide an interface tool
for Greentea. The tool can be configured for training, pro-
cessing and benchmarking through prototxt files in the same

style as Caffe networks. Our tool is designed to simplify
pixel-wise training and prediction, making fast experimenta-
tion easy. The key features are:
1. Easy setup: The tool is easy to use, as it only requires

a folder with training images and the corresponding label
images. Tiles get cropped and processed through the net-
work out of arbitrary sized input images (Figure 1).

2. Pre-processing: To be able to classify the whole image,
border mirroring can be applied to extend the raw im-
ages. Image normalization and contrast limited adaptive
histogram equalization (CLAHE) improve the training
stability. The training data can furthermore be augmented
through rotation, mirroring and blurring.

3. Label preparation: For balancing labels during training,
the tool can prioritize image regions or mask error signals
according to label frequencies in the training data to mimic
independent and identically distributed training. Anno-
tated labels can also be grouped together. The training data
can be dense or sparse, by masking areas that are unlabeled
or should be excluded from training.

4. RESULTS

4.1. Labeling throughput

Vendor AMD nVidia Intel
Device W9100 / R9 390X GTX 980 i7-4790K
Compute Units 44 (2816) 16 (2048) 4 (8)
Memory (GiB) 16 / 8 4 16
FMA (GFLOP/s) 5240 4612 512
Memory (GiB/s) 320 224 25.6

Table 1: Hardware used for benchmarking.

The labeling throughput (Figure 3) is an overall perfor-
mance measure for neural networks. It also shows how dif-
ferent devices and backends perform. Even on the CPU with
OpenCL, using the strided kernel network gives a speedup of
35.75× compared to sliding window networks.

CUDA performed best, but AMD OpenCL offers a com-
petitive performance-price ratio, considering the customer-
level R9 390X with the same performance as an AMD
W9100. Performance is mainly determined by the BLAS
matrix-matrix multiplications used to compute strided-kernel
convolutions. For optimal performance, hardware specific
BLAS libraries have to be used. Libraries such as cuDNN do
not provide support for strided kernels yet.

4.2. Segmentation results

To assess the effect of using the Malis loss on complete image
predictions, we evaluated the proposed SK network on two
datasets: ssTEM [9] (Drosophila melanogaster larva ventral
nerve cord, 20 images of 10242 pixels training data with bi-
nary segmentation) and ISBI 2012 [10] (30 images of 5122

pixels).

1227

0 20000 40000 60000 80000 100000
Labels [pixel/s]

SW

SK

C
N

N
A

rc
hi

te
ct

ur
e

98

3504

850

28461

1108

59513

1488

85460

nVidia CUDA
AMD OpenCL
nVidia OpenCL
Intel OpenCL

Fig. 3: Labeling throughput, using a batch of n = 256 with SW-
and tiles of (w + v − 1)2 = (128 + 102− 1)2 pixels with SK-Net.

Dataset Loss Function Rand Warping Pixel
ssTEM Softmax + Malis 0.043871 0.000324 0.052724
ssTEM Malis 0.063852 0.000386 0.055678
ssTEM Softmax 0.123334 0.000549 0.034416
ISBI 2012 Softmax + Malis 0.060110 0.000495 0.106053
ISBI 2012 Malis 0.086975 0.000572 0.107365
ISBI 2012 Softmax 0.087380 0.000585 0.075981

Table 2: ssTEM & ISBI 2012 dataset error evaluation (sorted by
Rand error, lower is better).

On both datasets (Table 2), training with Softmax and
fine-tuning with Malis (Softmax + Malis) outperforms all
other approaches assessed in our work considering the Rand
error. The pixel accuracy decreases when switching from
Softmax to Malis because Malis does not train pixel accu-
racy, but on topological correctness. Starting to train with
Malis directly gives worse results as Malis requires some
degree of topological separation on the prediction to produce
stable error maps.

5. CONCLUSION

In this work we proposed to speed-up labeling throughput of
existing sliding window networks in mathematically equiv-
alent strided kernel networks. The accessibility of those
deep neural networks has been greatly increased by sup-
porting more hardware through OpenCL and providing an
easy-to-use interface on top of the library. We considered the
Malis criterion as an improved training method that works
very well in combination with efficient pixel-wise networks
due to the large tile outputs on which Malis can assess the
topology during training. We demonstrated on two datasets
that our networks exhibit a competitive accuracy. We show
solid speedups of up to 57× with strided kernel networks
on heterogeneous hardware while maintaining identical nu-
merical properties as sliding window networks. Although
we presented the results in this paper in the context of EM
images, the proposed techniques can be applied to any image
processing problem that requires pixel-wise predictions.

6. SOURCE CODE

We provide our tools as an open source software stack:
www.github.com/BVLC/caffe/tree/opencl
www.github.com/naibaf7/caffe
www.github.com/naibaf7/caffe_neural_tool
www.github.com/naibaf7/caffe_neural_models
Full technical report:
www.arxiv.org/abs/1509.03371

7. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “Im-
agenet classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems 25, pp.
1097–1105. Curran Associates, Inc., 2012.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,”
in Medical Image Computing and Computer-Assisted Interven-
tion MICCAI 2015, vol. 9351 of Lecture Notes in Computer
Science, pp. 234–241. Springer International Publishing, 2015.

[3] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully
convolutional networks for semantic segmentation,” in The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[4] H. Li, R. Zhao, and X. Wang, “Highly Efficient Forward and
Backward Propagation of Convolutional Neural Networks for
Pixelwise Classification,” ArXiv e-prints, Dec. 2014.

[5] Alessandro Giusti, Dan Claudiu Ciresan, Jonathan Masci,
Luca Maria Gambardella, and Jürgen Schmidhuber, “Fast im-
age scanning with deep max-pooling convolutional neural net-
works,” in ICIP, 2013, p. in press.

[6] Jonathan Masci, Alessandro Giusti, Dan Claudiu Ciresan,
Gabriel Fricout, and Jürgen Schmidhuber, “A fast learning
algorithm for image segmentation with max-pooling convolu-
tional networks,” in ICIP, 2013, p. in press.

[7] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” in Proceedings of the ACM International Conference
on Multimedia, New York, NY, USA, 2014, MM ’14, pp. 675–
678, ACM.

[8] Srinivas C. Turaga, Kevin Briggman, Moritz N. Helmstaedter,
Winfried Denk, and Sebastian Seung, “Maximin affinity learn-
ing of image segmentation,” in Advances in Neural Infor-
mation Processing Systems 22, pp. 1865–1873. Curran Asso-
ciates, Inc., 2009.

[9] Stephan Gerhard, Jan Funke, Julien Martel, Albert Cardona,
and Richard Fetter, “Segmented anisotropic sstem dataset of
neural tissue,” 2013.

[10] Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Ben-
jamin Schmid, Anchi Cheng, Jim Pulokas, Pavel Tomancak,
and Volker Hartenstein, “An integrated micro- and macroarchi-
tectural analysis of the drosophila brain by computer-assisted
serial section electron microscopy,” PLoS Biology, vol. 8, no.
10, pp. e1000502, oct 2010.

1228

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

