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Word Ordering and Document Adjacency for Large
Loop Closure Detection in 2D Laser Maps

Jeremie Deray, Joan Solà, and Juan Andrade-Cetto

Abstract—We address in this paper the problem of loop closure
detection for laser-based simultaneous localization and mapping
(SLAM) of very large areas. Consistent with the state of the
art, the map is encoded as a graph of poses, and to cope with
very large mapping capabilities, loop closures are asserted by
comparing the features extracted from a query laser scan against
a previously acquired corpus of scan features using a bag-of-
words (BoW) scheme.

Two contributions are here presented. First, to benefit from
the graph topology, feature frequency scores in the BoW are
computed not only for each individual scan but also from
neighboring scans in the SLAM graph. This has the effect
of enforcing neighbor relational information during document
matching. Secondly, a weak geometric check that takes into
account feature ordering and occlusions is introduced that
substantially improves loop closure detection performance.

The two contributions are evaluated both separately and
jointly on four common SLAM datasets, and are shown to
improve the state-of-the-art performance both in terms of pre-
cision and recall in most of the cases. Moreover, our current
implementation is designed to work at nearly frame rate, allowing
loop closure query resolution at nearly 22 Hz for the best case
scenario and 2 Hz for the worst case scenario.

Index Terms—Localization, SLAM, Range Sensing.

I. INTRODUCTION

FOR several decades SLAM has been an extensively active
field of research. Initially developed to give robots auton-

omy with regards to the navigation task, it has lately focused
on other applications beyond robotics, such as augmented
reality [17] or medical imagery [9]. Loop closure detection
is an essential module of any SLAM system. It is needed to
reduce the uncertainty in the estimated map that accumulates
during open loop mapping.

Loop closure detection has been tackled with geometric
methods (see e.g. [11]), or with appearance-based methods.
Appearance can be considered either globally [24], [30], [20],
[5] or as a set of local distinctive features [27], [22], [18]
possibly extracted from different sensor modalities [2]. After
the initial work of the computer vision community on the
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use of bags of words (BoW) for object recognition [29],
[3], [23], the SLAM community found in BoW an efficient
manner to query large corpus of places visited by a robot
while mapping [1], [19], hence its amenity for the solution of
the loop closure problem. More recently, state of the art visual
SLAM algorithms have relied on BoW for their loop closure
and re-localization modules. ORB-SLAM [21] for instance
uses DBoW2 [6], whereas LSD-SLAM [4] relies on FAB-
MAP [8].

Unlike DBoW2 or FAB-MAP, which use images, our work
focuses on the creation of a BoW for the treatment of 2D laser
range data. This is motivated by the fact that many robots still
use rangefinder sensors for navigation, especially mobile bases
for industrial applications. There is little published work on
appearance-based place recognition using 2D laser scans, pos-
sibly due to the fact that reliable feature detectors/descriptors
were developed later than their image based counterparts. The
local feature Fast Laser Interest Point Transform (FLIRT) is
robust to scale and orientation changes [31] and thus allows a
direct application of BoW for the problem of place recogni-
tion [32]. As for global descriptors, the Geometrical Landmark
Relations (GLARE) [13] encodes the geometrical relations of
FLIRT corners in an histogram of relative distance over rela-
tive orientation. Extending GLARE, the Geometrical Surface
Relations [14] descriptor considers every reading of the 2D
laser scan rather than extracted corners. Recently, the Fast
Adaptive Laser Keypoint Orientation-invariant (FALKO) [16]
has been proposed as a local binary feature, claiming faster
and more reliable operation than FLIRT.

Most modern SLAM algorithms such as [4], [21] are
composed of three distinct modules:
• Odometry module - tracking the sensor/robot motion and

selecting key-frames to be added to the pose-graph.
• Core module - building the actual pose-graph and even-

tually solving it.
• Loop-closure/re-localization module - detecting loop clo-

sures and re-localizing the sensor/robot.
Our work focuses on the third module. It is designed to be

agnostic to the SLAM front-end, and limits its interaction with
the core module to:
• receiving new key-frames’ raw data sensor and its direct

adjacency with the previous key-frame.
• informing of loop-closure detections, in the form of pose-

graph constraints.
In this paper, we elaborate on the general application of

BoW with FLIRT features for loop closure detection for the
particular case of 2D laser data. First, by considering feature
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ordering during document retrieval. And second, by updating
feature frequency scores considering not only one document at
a time but also neighboring documents in the SLAM graph of
poses. These two contributions have the effect of substantially
improving document retrieval scores compared to previous 2D
loop closure implementations.

The rest of the paper is structured as follows. Section II
gives a short overview of the BoW scheme and sets the
necessary formulations for the introduction of our “weak”
geometric check in Section III, which takes into account the
ordering of features within a 2D scan. Section IV explains
how to compute robust feature frequency scores taking into
account adjacent documents within the SLAM graph topology.
Section V describes the experimental setup and demonstrates
the performances of our contributions. Finally we draw con-
clusions and propose further work in Section VI.

II. BAGS OF WORDS FOR PLACE RECOGNITION

In the BoW framework for recognition, the objective is
to find the document in a database with the largest simi-
larity score to a query document. For that end, it includes
two distinct elements. First, a vocabulary, W = {w1, ...,wk},
composed of cluster centers or words, wk, representing the
feature space. In our case, each word corresponds to a unique
FLIRT feature. This vocabulary of features or words is built
offline from a set of maps using hierarchical k-means [23],
[7]. The second element consists of a database composed
of documents, D = {d1, ...,dN}, where each document d j
represents the BoW associated to a sensor reading at a known
pose of the robot in the current map. That is, the set of FLIRT
features in the vocabulary detected in a particular scan and
their local coordinates.

The database keeps a record of each word occurrence in
every document by means of two frequency scores. The term
frequency (tf ) refers to how frequent a single word is within
a document, and the inverse document frequency (idf ) refers
to how frequent is a single word in the whole database. Given
a word wi in document d j, these frequencies are computed as
follows:

tf i j =
ni j

∑i ni j
, (1)

idf i = log
(

|D|
∑ j|ni j > 0|

)
, (2)

where ni j is the occurrence of the word i in document j, |D|
the size of the database and |ni j > 0| evaluates to 1 if wi occurs
in d j and 0 otherwise. The weight of every word wi in each
document d j is given by its tf-idf score, which is computed
with

xi j = tf i j · idf i . (3)

A document is characterized by its signature, a vector
containing its tf-idf weights, sig j = [x j1,x j2, ...,x jk]

T . The
document comparison is performed by computing the cosine
similarity of their signatures:

simlm =
sigT

l sigm

‖sigl‖‖sigm‖
. (4)

li l j

Fig. 1: Environment observed from two different viewpoints.
Arrows mark the position and orientation of the sensor.

Given a new sensor reading (a query scan), its feature de-
scriptors are extracted, quantized into words, and its signature
compared to those of every document in the database; the N
most similar documents are returned by the BoW scheme.

Finally, a consistency check needs to be made to assert
which if any of the returned documents is a good match
to the query scan. The most simple way to do so is by
computing the rigid transform between the matching features
in the query scan and those in each of the returned documents.
This transformation can be computed using Random Sample
Consensus (RANSAC) to be robust to outliers, and the candi-
date whose inlier set has the smallest residual error below a
given threshold is considered a loop closure.

III. WEAK GEOMETRIC CHECK

In contrast with other sensing modalities, 2D laser range
data present a natural (counter-)clockwise ordering of its
local features which can be easily exploited to reinforce the
computation of scan similarity. We present in this section
some empirical observations regarding this ordering, and how
to use these observations in an algorithm that computes the
best feature correspondence assignment between two scans.
The proposed algorithm produces a similarity score that, when
combined with (4), produces a significant improvement in loop
closure detection.

A. Observations

The local features extracted from a 2D scan (quantized into
words) can be ordered clock-wise in a sequence. The ordering
of the features allows to infer some minimal geometric in-
formation when comparing scans. This ordering must remain
the same for a given scene observed from slightly different
viewpoints (see Fig 1). As the viewpoint change increases,
features can disappear, shift their location in the sequence or
reorder in the following manner: Rotations of the sensor over
its main axis induce a pure shift of all the features in the
sequence. Forward translations produce, in environments with
a predominance of objects in the back-ground, an expansion
of the features away from the motion direction, shifting them
towards the lateral parts of the scan. In the expansion, new
features may appear as details get larger. Backward transla-
tions produce the opposite, a contraction of the feature, shifting
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them toward the scan center. In the contraction, new features
may appear at the extremums and disappear as details get
smaller. In all these cases, the ordering of the features through
consecutive scans is preserved. In environments with richer
perspectives, i.e. with objects at significantly different depths,
or in the presence of moving objects, nearby obstacles produce
occlusions to known features, and can eventually lead to a
change in the order of the features in the sequence.

Since we are interested in matching static parts of the
environment, and to be robust in the presence of occlusions,
our similarity score should concentrate on features that only
shift their location in the sequence, and disregard those which
change order. With this in mind, we propose an efficient
method to align sequences that present these types of vari-
ations, encoding the scans with a hidden Markov model, and
computing their optimal alignment as a Viterbi path [34].

B. Feature sequence encoding as a hidden Markov model

Feature matching is done directly on words. So, a given
descriptor quantized into a particular word w, can only
match features also quantized as w and in no case could
match another word in the vocabulary. This is exemplified in
Fig. 2 (top), which shows the clockwise ordering of words
extracted from scans li and l j in Fig. 1 and their correct
matches.

This allows us to define the problem of scan alignment as
that of finding the path that maximizes the sequence of feature
matches in a hidden Markov model. Consider the query laser
scan li and its extracted words w1i, . . . ,wNi as the set of states
SN in the model. Consider also the candidate match l j with
its words w1 j, . . . ,wM j as a set of observations OM . We can
define our HMM such that:
• We have equal initial probabilities δsn =

1
N .

• The transition from one state to another solely goes for-
ward with respect to the clockwise ordering of the states.
Self transitions have a lower probability to enforce the

importance of alignments φsn|sn =
0.5
F , φsn|sn+x =

1+ 0.5
F−1
F ,

and φsn|sn−x = 0, where F is the number of states following
the currently evaluated state in the ordered sequence.

• The output probability is defined such that a word mis-
match has null probability whereas a word match has
equal probability. Hence our emission probabilities are
θsn|om = 1

C for a match, and θsn|om = 0 for a mismatch,
where C is the number of matches of the currently
evaluated word.

Fig. 2 (middle) gives an unnormalized representation of
the HMM produced by the matching of words in scans li
and l j. Black downward pointing arrows indicate feasible
transitions, and red upward pointing arrows indicate non-
feasible transitions. Each cell is then filled by the product
φsn−x|sn ·θsn|om , where sn is the currently evaluated state, sn−x is
the previous most likely state and θsn|om the output probability.
Columns are filled recursively based on the previous iteration.

Unlike [12], the HMM is built based on the inner ordering
of two independent set of features extracted from raw sensor
readings, whereas [12] builds a HMM based on the inner
ordering of two independent sequences of key-frames, hence
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Fig. 2: Top: Clockwise ordered words of two scans and their
matches. Middle: The resulting hidden Markov model. Each
cell represents the product φsn−x|sn ·θsn|om e.g cells Y-A &
A-A. Green squared cells represent the best path across the
complete graph. Bottom: The final sequence of states given
the observations On

not impacting the frame-to-frame similarity measure. Once the
HMM is built, the goal is then to find a sequence of states that
maximizes the probability of a path across it.

C. The Viterbi algorithm

In order to find the most probable path at a reasonable
cost in terms of computation, we propose the use of the
Viterbi algorithm [34]. This dynamic programing algorithm
searches recursively for the most likely sequence of states
given a sequence of events, by computing for each observation
the partial probability with respect to the previous state that
optimally induced the current state. Such sequence is called
the Viterbi path. It is commonly used in speech recognition,
speech synthesis and decoding [26], [28].

Crossing edges in Fig. 2 (top) highlight mismatches. These
might occur either because different features are quantized to
the same word (e.g., words C and F), or because the feature
is on a moving object. The work in [32] does not discard such
mismatches while constructing the offset histogram, and thus
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they can not be taken into account to compute a consistent
relative transform. Thanks to the constraint of forward state
transition, the Viterbi algorithm naturally discards such cross-
ing edges. Note that in our example, crossing edges for the
sequence C-D-E can be resolved in two different ways, either
by removing the match C and keeping D and E, or removing
the latter keeping only C. The Viterbi algorithm maximizes
the sequence of states in the Viterbi path and hence it would
prefer, in this case, to keep matches D and E and discard C.

D. Scoring

Once the Viterbi path is obtained, the candidate is scored
based on three criteria:
• the number of correct matches that have not been dis-

carded by the Viterbi algorithm,
• the number of sequences of consecutive words that have

a correct match, and
• the distribution of matches in the laser scans. The wider

the better.
The second point is similar to the concept of phrases in [32],

where a phrase represents a sequence of consecutive words,
analogous to a n-grams model.

Considering such sequences and weighting them according
to their length we can add an extra layer of constraints to
our geometric check. These criteria evaluate respectively to:
score jk =

|M|
|C| , where |M| is the number of correct matches and

|C| the number of features in the candidate scan; weight jk =
|CM|
|C| , where |CM| is the number of sequences of consecutive

correct matches, e.g., sequences A-B & D-E in Fig. 1 (bottom);
and ratio jk =

Idr−Idl
|C| , where Idr and Idl are the indices of the

rightmost- and leftmost- correct matches in the Viterbi path,
respectively. These three criteria are aggregated into a final
geometric score,

g jk =
score jk +weight jk

2
· ratio jk . (5)

While querying the BoW database, both the tf-idf -based sim-
ilarity in (4) and the geometric score in (5) are computed for
each document in the database. The two are then aggregated
into a single similarity term,

sg jk = sim jk ·g jk . (6)

This aggregated similarity term is then used to rank BoW
candidates instead of (4).

IV. POSE-GRAPH DATABASE AUGMENTATION

In this section we detail our second contribution, which
is a topological augmentation of the BoW database. By
augmentation we refer to the fact of benefiting from common
features in adjacent poses in the pose-graph of our map for
the computation of the tf-idf weights. Since the pose-graph is
computed by our SLAM front end, our database augmentation
involves no computation overhead.

In pose-graph SLAM, every node holds a robot pose and
a sensor measurement, and every edge between two nodes
represents a spatial constraint –a relative transform– usually

computed from the sensor measurements. The most likely map
is obtained by jointly optimizing for all pose constraints in the
graph.

A. Topology-based Database Augmentation

Database augmentation taking the form of a similarity
graph has been proposed in [25] and [33] for the task of
image recognition. Graph edges are created by matching image
features and asserting an affine transform between images
through RANSAC. Direct edges represent document adja-
cencies; documents connected to an adjacent document then
represents 2-adjacencies, and so on. The set E j of adjacencies
of document d j is used to emphasize the tf weight of the
document,

mi j = ni j + ∑
k∈E j

nik , (7)

atf i j =
mi j

∑i mi j
. (8)

These normalized scores (8) constitute the adjacency tf used
as a direct drop-off replacement for (1) in (3), so that the tf-idf
weight in (3) becomes

xi j = atf i j · idf i j . (9)

While for object recognition the database augmentation is
based on object appearance similarity, in the case of place
recognition within a SLAM framework the topological dis-
tribution of the places matters. Since an edge in a pose-
graph SLAM is computed from sensor readings and represents
a spatial constraint, it embeds both the appearance-based
similarity required by the BoW scheme (consecutive nodes
share some common features) and the topological information
that we want to emphasize by the database augmentation.

Whereas object recognition usually considers a pre-trained
database for which an offline database augmentation can be
computed [25], [33], in the case of place recognition within a
SLAM framework the database together with its augmentation
are constructed online. Using the SLAM pose graph built
online by another module of the SLAM framework allows
for a database augmentation at no cost.

Finally, [33] identifies useful features (features belonging
to a transformation inlier set) from the document adjacencies
and discards the others. Since we build the database online,
we keep all of them, as they can become useful later on during
mapping.

V. EXPERIMENTS

We describe in this section our experiments, carried out
over four standard 2D laser datasets (three indoors and one
outdoor). Table I lists the datasets together with their details.
First, we evaluate our contributions both separately and jointly
against our own implementation of the classical tf-idf -based
BoW and publicly available Geometrical FLIRT Phrase algo-
rithm (Gflip) [32] using the same experiment as [32]. Second,
we evaluate the robustness with respect to changes in the
environment using synthetic data. From here we will use the
following aliases for each combination:
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Dataset # Scans Length (m) In/Out
FR-079 1464 390.8 Indoor
FR-CLINIC 6917 1437.6 Outdoor
INTEL-LAB 2672 360.7 Indoor
MIT-CSAIL-3rd-FLOOR 1051 382.9 Indoor

TABLE I: Public datasets used [15].

Alias BoW “weak” check adjacent tf
tfidf x - -
tfidfgraph x - x
viterbi x x -
vitgraph x x x

TABLE II: Aliases for the different methods compared.

A. Experiments Setup

Each dataset has been pre-processed by a state of the art
SLAM algorithm [10] in order to provide a baseline pose
estimation against which to assess if a detected loop-closure
is correct or not. Algorithm performance is compared with the
following procedure for each dataset used.

Each dataset is first used to train the BoW database. For
every scan, its features are extracted, then quantized to obtain
their associated BoW and signature.

During query, scans are individually removed from the
database when used for query to remove the obvious one-
to-one matching.

A consistency check is performed on the top N candidates.
The candidate whose inlier set has the the smallest residual
error, given that it meets an inliers threshold, is considered a
loop closure.

To appraise the correctness of a recognition, the estimated
rigid transform is compared to that of the baseline algorithm
described above from the pre-processed dataset. It is consid-
ered correct if the difference between the estimated pose and
that of the baseline lies within 0.5 m and 10 degrees.

The vocabulary was trained from 20.000 scans randomly
sampled from a randomly selected subset of datasets among
the vast database of the company PAL Robotics. These datasets
were recorded in the form of rosbags at different time and
places, the great majority being recorded in indoor real case
scenario. Thus they are different than those used in this
experiment. In average, 17.5 features were extracted per scan.

The tree architecture was chosen empirically using the
aforementioned experiment. A total of 49 different trees were
trained, varying the branching factor from 2 to 7 and the
depth factor from 2 to 7 as well. Evaluating the F1 score
(10) averaged over all experiments led to the selection of the
average optimal architecture of k = 4 and d = 6 (Figure 3).
As the number of tree leaves is rather small, they are parsed
linearly unlike [23] in order to reduce the quantization error.

F1 = 2 · 1
1

precision +
1

recall

= 2 · precision · recall
precision+ recall

. (10)

We only consider direct document adjacencies for the BoW
database augmentation. Documents with 2-adjacencies did not
show any improvements whereas 3-adjacencies decreased the
quality of results in an obvious manner as they end up linking
observation in the map which seldom shared common features.

Fig. 3: Variation of the average F1 score with respect to
branching factor and tree level.

B. Results

1) Recognition Performance: Precision over recall per-
formance results are shown in Fig. 4 for each algorithm,
with candidates threshold Top N=20 and varying the inlier
threshold. As can be seen in plots (a), (b), and (c), accounting
for the indoor datasets, both the viterbi and vitgraph versions
of our algorithm outperform tfidf and gflip in terms of recall
and precision. While tfidfgraph only slightly surpasses the
performance of tfidf in two datasets, it is able to outperform
gflip for the MIT-CSAIL-3rd-FLOOR dataset.

Table III reports statistics for each algorithm at different
Top N values. Each row shows the top performance of the
algorithm in terms of its F1 score for a fixed Top N while
varying the inlier threshold. The best F1 score of each row
is highlighted in boldface. The results show that our “weak”
geometric assertion allows for a drastic improvement of the
recall and precision over the BoW performance and outper-
forms gflip for the three indoor datasets. We attribute this to
the fact that the top N returned by the BoW query incorporate
“weak” geometrical constraints that are fully leveraged within
the purely geometrical consistency check. Adding the BoW
database augmentation further improves these results, espe-
cially for small numbers of query candidates (lowest values of
Top N). However its effect is mitigated when used alone as it
decreases the retrieval performance of tfidf for the lower Top N
values while increasing it for the higher Top N values. Finally,
Table III shows that gflip requires a higher value of the inlier
threshold (Inl) to reach its optimal performance, an average
increase of two more inliers compared to tfidf. Our algorithm
reaches it optimal performance for the same Inl value as tfidf
or less.

Figure 5 shows the recall over Top N for each algorithm
with precision over 99%. Plots (a), (b), and (c) show that both
viterbi and vitgraph outperform tfidf and gflip recall in the
indoor datasets. Moreover, tfidfgraph also clearly outperforms
gflip for the higher Top N cases.

Interestingly, both viterbi and gflip seem to reach a steady-
state in the FR079 and INTEL datasets for the higher Top N
cases, while vitgraph recall increases. This unveils the limita-
tion of geometrical properties such as the one inferred in [32]
or in this paper, and suggests that a closer attention to word-
to-word matching should be considered. It also highlights the
capability of neighbor documents to empower each other in the
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(a) FR079 (b) INTEL (c) MIT-CSAIL-3rd-FLOOR (d) FR-CLINIC

Fig. 4: Recall versus precision for 20 candidates varying the inliers threshold.

(a) FR079 (b) INTEL (c) MIT-CSAIL-3rd-FLOOR (d) FR-CLINIC

Fig. 5: Recall versus number of candidates at 99% precision.

GFLIP TF-IDF TF-IDF+GRAPH VITERBI VITGRAPH
Dataset Top-N Inl TP FP F1 Inl TP FP F1 Inl TP FP F1 Inl TP FP F1 Inl TP FP F1

5 9 911 53 772 7 386 178 393 7 324 36 368 7 1008 29 827 7 1033 26 840
10 9 1070 73 843 7 562 36 562 7 565 70 555 7 1153 30 892 7 1185 25 908

FR079 20 9 1211 159 884 7 831 60 725 7 877 77 745 7 1278 13 949 7 1300 10 959
50 9 1276 66 932 7 1290 34 947 7 1342 22 971 7 1346 20 973 7 1357 18 978

100 7 1360 78 958 5 1363 16 981 5 1414 28 994 7 1382 10 990 7 1383 11 990
5 5 1947 72 832 3 897 628 428 3 791 816 370 3 2346 145 910 3 2365 126 918

10 5 2136 73 877 5 1149 124 584 5 1061 139 549 3 2464 95 944 3 2473 88 947
INTEL 20 5 2292 58 914 5 1637 124 740 5 1666 116 749 3 2518 75 958 3 2525 69 960

50 5 2437 28 950 3 2505 103 950 3 2523 86 957 3 2574 36 976 3 2575 36 976
100 3 2512 54 961 3 2579 39 977 3 2588 29 980 3 2587 31 980 3 2591 26 981

5 5 555 124 646 5 249 92 361 5 233 95 341 5 644 75 733 5 666 73 749
MIT- 10 5 679 139 731 5 457 116 567 5 478 126 582 5 747 74 803 5 771 70 820

CSAIL- 20 5 773 136 794 5 733 106 781 5 778 90 816 5 823 66 854 5 831 63 860
3rd-FLOOR 50 5 858 128 847 5 859 73 872 5 882 62 890 5 865 72 876 3 917 112 886

100 5 905 91 889 5 896 64 896 5 898 61 899 5 894 65 895 5 898 59 900
5 7 2555 261 525 5 361 365 095 5 361 365 095 5 1517 394 344 5 1796 365 396

10 7 3326 322 630 5 629 625 154 5 629 625 154 5 2206 593 454 5 2558 487 514
FRCLINIC 20 7 3987 376 707 5 1015 922 229 5 1015 922 229 5 3002 765 562 5 3424 559 629

50 7 4838 426 795 5 1774 1260 357 5 1774 1260 357 5 4236 761 712 5 4674 495 774
100 7 5345 423 843 5 2596 1402 476 5 2596 1402 476 5 5145 688 808 5 5535 405 861

TABLE III: First experiment : Algorithms statistics for each dataset at max F1 score. Top-N: Number of candidates - Inl:
Inliers threshold - TP: True Positive - FP: False Positive - F1: F1 score (per mille ‰)

candidate ranking list of the BoW scheme, and thus supports
the idea of using a topological augmentation of the BoW
database such as the one presented in this paper.

Despite our improvement in recognition over tfidf, gflip ap-
pears to perform better for the outdoor dataset FRCLINIC. We
conjecture as being due to the fact that the vocabulary tree was
trained from scans mostly captured in indoor environments,
biasing it’s performance towards features encountered indoor.

2) Execution Performance: Table IV shows the average
execution time per query with gflip and vitgraph at 99%
precision varying Top N for both the smallest and the largest
datasets. We also give the average query time of our tfidf im-
plementation as a comparison point for the overhead induced

by the weak geometrical check. Experiments were conducted
on an Intel Core i7-870 at 2.93 GHz and 8 GiB RAM. Fig. 7
and the accompanying video http://goo.gl/DcCj8q show results
of the application of the method during the mapping of a large
mall.

These results highlight that the computation overhead of the
Viterbi path is linear in the number scans. The complexity of
the Viterbi algorithm is about O(Q ·C2) where Q is the number
of features of the query scan and C the number of features of
the candidate scan. Hence for every query the total computa-
tion overhead is D ·O(Q ·C2) with D the number of documents
in the database. In our experiments, vitgraph runs at nearly
2 Hz for the largest dataset and up to 22 Hz for the smallest
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one. This suggests that a carefully designed implementation
could run at frame rate for the common laser rangefinder —
around 10 Hz. However, the target speed should rather be the
solver rate (one should allow the solver to finish before issuing
a new loop closure event) —around 1 Hz. In such context, the
overall impact of improving the precision/recall performance
overcomes the penalty in execution time when compared to
e.g. [32].

Dataset # Candidates GFLIP TF-IDF VITGRAPH
5 0.0038 0.0188 0.0276

MIT-CSAIL-3rd-FLOOR 50 0.0125 0.0264 0.0367
100 0.0233 0.0347 0.0453

5 0.0337 0.1220 0.3369
FR-CLINIC 50 0.0571 0.1323 0.3545

100 0.0848 0.1548 0.3686

TABLE IV: Average query time (seconds).

C. Synthetic Obstacles Experiments Setup

The second experiment aims at evaluating the robustness
to substantial changes in the environment of the proposed
vitgraph using synthetic data. For each of the three indoor
datasets, an occupancy grid of 0.05 m resolution is generated
(Figure 6(a)). First, using the occupancy grid, a set of synthetic
scans is generated by the mean of ray-tracing. The set is
used to train the BoW databases. Second, virtual obstacles
are added (painted) to the occupancy-grid at random position
(but on the robot trajectory) and at random scale - 0.05 to 1 m
- (Figure 6(b)). Obstacles are of three different types - circles,
rectangles and legs (two small circles side-by-side). Then,
again, a new set of scans is generated from the new occupancy
grid and is then used for querying the BoW database.

D. Results

The same manner as Table III, Table V reports statistics for
both gflip and vitgraph for a selected subset of Top N.

Results show an expected decrease of the recognition per-
formance compared to the previous experiment, but remains
good enough to perform loop closures. The magnitude of the
descrease is similar for both vitgraph and [32]. Since our
initial performances are higher than [32], they remain higher
in this second experiment. The results show that our proposal
is robust too changes in the environment.

GFLIP VITGRAPH
Dataset Top-N Inl TP FP F1 Inl TP FP F1
FR079 20 9 716 412 570 7 861 369 659

50 9 893 466 651 7 906 412 670
INTEL 20 5 1700 482 702 3 2022 503 780

50 5 1935 562 750 3 2062 510 788
MIT-CSAIL- 20 5 505 308 555 5 579 166 662
3rd-FLOOR 50 5 615 338 628 5 640 168 690

TABLE V: Second experiment : Algorithms statistics for each
indoor dataset at max F1 score. Top-N: Number of candidates
- Inl: Inliers threshold - TP: True Positive - FP: False Positive
- F1: F1 score (per mille ‰)

(a) Intel-lab occupancy grid (b) Intel-lab occupancy grid with
painted obstacles

Fig. 6: Intel-lab occupancy grid before and after the addition
of virtual obstacles.

VI. CONCLUSION

We proposed in this paper two contributions to the BoW-
based place recognition using 2D laser rangefinder only. First,
a “weak” geometrical check that emphasizes BoW candidates
which share a static reliable sequence of features with a given
query scan. Second, a topological augmentation of the BoW
database which permits topological neighbors to empower
each other in the BoW candidates ranking list. By using the
graph provided by the SLAM algorithm such augmentation
comes at no extra computation cost. The addition of both
contributions to the classical tf-idf scheme outperforms the
state-of-the-art loop closure detection methods in terms of
recall and precision for three indoor datasets, while drastically
improving tf-idf results for all datasets. The central idea behind
the use of Viterbi - emphasizing candidates by asserting co-
occurrent sequences of ordered words - is very generic and
could be applied (in a different modality) to image-based BoW.
In the same manner, augmenting the BoW database using the
graph provided by the SLAM framework is directly usable for
image-based BoW. The developped laser-based loop-closure
detection framework has been successfully integrated and
tested on an industrial robotics plateform as depicted in Figure.
7.

Our ongoing work is to investigate the use of soft clustering
for feature quantization, whose probability of belonging to a
cluster center can be directly injected in the output probability
of the HMM. We expect in this way to reduce further the quan-
tization error. Moreover, the reliability of word matches can be
weighted by inferring a score from soft word probabilities. We
also plan to extend the developed place-recognition framework
to other sensor types with a first aim at cameras.
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