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Abstract: Population games have become a powerful tool for solving resource-allocation
problems in a distributed manner, and for the design of non-centralized optimization-based
controllers. The aim of this paper is to illustrate the advantages of two recently introduced
population-game approaches in comparison to other classical optimization methods. More
specifically, the discussion is mainly devoted to the communication requirements. Finally,
an illustrative example shows with more detail the advantages highlighted throughout the
comparative discussion, i.e., fewer communications links are required for resource allocation
problems, and there is not need of additional computation stages to solve the problem in a
distributed manner.

1. INTRODUCTION

The game-theoretical approach has been widely used in
the design of control systems, and in the solution of
constrained optimization problems in a distributed man-
ner (Marden and Shamma, 2014). In this paper, the
advantages of population-games-based methods to solve
constrained optimization problems are discussed. In this
regard, the discussion is particularly focused on two dif-
ferent population-game approaches. The first approach
consists on the distributed population dynamics presented
in Barreiro-Gomez et al. (2017), which has been used in
the solution of distributed resource allocation problems as
in Obando et al. (2014), Pantoja and Quijano (2011), and
Pashaie et al. (2015). In Pashaie et al. (2015), the passivity
properties of the population dynamics have been exploited
(Fox and Shamma, 2013). Moreover, these distributed
population dynamics may only consider a unique cou-
pled constraint, and guarantee the positiveness of decision
variables. On the other hand, the second approach under
consideration consists in population dynamics by adding
mass dynamics, which has been proposed in Barreiro-
Gomez et al. (2016), and that solves constrained opti-
mization problems in a distributed manner. In Barreiro-
Gomez et al. (2016), some features have been pointed out
that the distributed population dynamics do not have,
e.g., attractiveness of the feasible region, and the inclusion
of more coupled constraints. Generally, the optimization
problems, which can be solved by using these aforemen-
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tioned population-game approaches, can also be solved by
using other algorithms. Furthermore, due to the fact that
the population-game-based method presented in Barreiro-
Gomez et al. (2016) might use the Lagrangian function
depending on the optimization problem form, it is appro-
priate to establish a comparative discussion with respect
to other methods that also use the Lagrangian function,
e.g., dual decomposition or alternative direction method
of multipliers.

The contribution of this paper is twofold. First, a compar-
ative assessment is developed for different non-centralized
optimization algorithms. Besides, a discussion regarding
communication requirements and/or information depen-
dency in population-game-based methods with respect to
other classical optimization methods is made. In particu-
lar, it is considered the optimization form corresponding to
a resource allocation problem since it has straightforward
application in engineering problems. The aim is to high-
light and discuss the advantages of the population-game
approach with respect to other optimization techniques.
Over the end, an illustrative example shows in detail
the advantages and the different required communication
structures for all the discussed methods applied to solve a
resource allocation problem.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preliminaries for optimization meth-
ods, which are discussed throughout the paper. Section 3
presents the communication requirements discussion. Af-
terwards, Section 4 shows an illustrative example recalling
all the mentioned advantages identified in the discussion
for a specific optimization-problem form corresponding
to a resource allocation problem. Finally, conclusions are
drawn in Section 5.



Notation: The column vectors are denoted by bold font,
e.g., x. Differently, scalar numbers are denoted by non-bold
style, e.g., n. Calligraphy style is used to denote sets, e.g.,
S. The set of all non-negative real numbers are denoted
by R≥0, whereas R>0 denotes the set of all positive real
numbers, and Z>0 represents the set of positive integer
numbers. The derivative with respect to time is denoted by
ẋ = dx

dt . Finally, the continuous time is omitted throughout
the manuscript in order to simplify the notation, and
k ∈ Z>0 denotes the discrete time.

2. SOME OPTIMIZATION METHODS

In order to compare different optimization methods, first
the preliminaries corresponding to the two distributed
population-games-based methods under discussion are
presented. Then, the preliminary concepts for the dual
decomposition (DD) method and the alternative direction
method of multipliers (ADMM) are introduced.

2.1 Distributed population dynamics (DPD)

This population-game approach is an extension of the
population dynamics presented in Sandholm (2010) for
the distributed case. Moreover, this approach has been
widely discussed in Barreiro-Gomez et al. (2017), where
different distributed population dynamics have been stud-
ied. Also, in Pantoja and Quijano (2011), and (Pantoja
and Quijano, 2012) the distributed replicator dynamics
have been used for a smart-grid application. Consider a
large and finite population of agents represented by a
positive mass denoted by m ∈ R>0. It is assumed
that the agents are rational in the sense that they are
able to make decisions in order to improve their benefits.
The mentioned decisions consist in selecting among a set
of n available strategies denoted by S = {1, . . . , n}. Let
xi ∈ R≥0 denote a portion of agents choosing the strategy
i ∈ S. The collection of all these portions represent the
population strategic distribution denoted by x ∈ Rn

≥0.
Therefore, the evolution of the population only admits
population states belonging to the simplex set denoted by
∆ = {x ∈ Rn

≥0 :
∑

i∈S xi = m}. The benefits
that agents receive for selecting the strategy i ∈ S are
given by the mapping function fi : ∆ 7→ R. The collec-
tion of fitness functions represent the population function
given by F(x) = [f1(x) . . . fn(x)]> ∈ Rn. Under the
framework of full-potential and stable games, the fitness
functions are computed as ∇V (x) = F(x), where V (x)
is a strict concave function known as potential function.
These distributed dynamics consider that the evolution is
made over a non-well-mixed population whose structure
is represented by a graph G = (S, E), where S is the set
of nodes (strategies), and E ⊂ {(i, j) : i, j ∈ S} is the
set of links representing the possible strategic interaction.
Moreover, the set of neighbors of a node i ∈ S is given
by Ni = {j : (i, j) ∈ E}. One of the distributed
population dynamics presented in Barreiro-Gomez et al.
(2017) are the distributed replicator dynamics given by

ẋi = xi

fi ∑
j∈Ni

xj −
∑
j∈Ni

fjxj

 , ∀i ∈ S. (1)

Additionally, there is a close relationship between the
introduced population-game framework and constrained
optimization problems as presented in Theorem 1.

Theorem 1. (Adapted from (Sandholm, 2010)) If F is a
full-potential game, i.e., there exists a full potential func-
tion V such that ∇V (x) = F(x), then the Nash equilibria
of the game F satisfy the Karush-Kuhn-Tucker first-order
necessary conditions of the following optimization prob-
lem:

max
x

V (x) (2a)

s. t.
∑
i∈S

xi = m, (2b)

xi ≥ 0, ∀ i ∈ S. (2c)

Moreover, if V is concave, then F is a stable game. ♦

Proof. This proof may be found in Sandholm (2010). �

The optimization problem presented in (2) corresponds to
a resource allocation problem, i.e., the case in which it
is necessary to maximize a cost function by distributing
optimally a resource denoted by m throughout n different
agents. Finally, it should be pointed out that the initial
conditions of this method should belong to the simplex,
i.e., x(0) ∈ ∆.

2.2 Population dynamics with mass dynamics (PD-MD)

This population-game approach has been introduced in
Barreiro-Gomez et al. (2016), where it is proposed that the
graph G = (S, E) exhibits the topology of a society, where
S is the set of n available strategies in a social game given
by S = {1, . . . , n}, and E ⊂ {(i, j) : i, j ∈ S} is the set of
edges of G that determines the possible interactions among
social strategies. The graph G is divided into π ∈ Z>0

sub-complete graphs known as cliques (see Bomze et al.
(2000), and Johnston (1976)) representing a population
within the society. The set of populations is denoted by
P = {1, . . . , π}, and the set of cliques is denoted by
C = {Cp : p ∈ P}. The clique of the population p ∈ P
is a complete graph given by Cp = (Sp, Ep), where the
set Sp represents the set of np available strategies in a
population game, and Ep = {(i, j) : i, j ∈ Sp} is the set
of all the possible links in Cp determining full interaction
among the population strategies. The number of cliques
that contain a node i ∈ S is given by G(i) =

∑
p∈P g(i, p),

where g(i, p) = 1 if i ∈ Sp, and g(i, p) = 0 otherwise. The
set of intersection nodes in a population p ∈ P is denoted
by Ip = {i ∈ Sp : G(i) > 1}, and the set of intersection
nodes in the graph G is denoted by I =

⋃
p∈P Ip. The set of

all the populations that include a certain node i ∈ S is de-
noted by Pi = {p : i ∈ Sp}, where Pi ⊆ P. The scalar xi ∈
R≥0 (xpi ∈ R≥0) corresponds to the proportion of agents in
the society (population) selecting the strategy i ∈ S (i ∈
Sp in the population p ∈ P). Moreover, the distribution of
agents throughout the available strategies in the society or
populations is known as the social state and the population
state denoted by x ∈ Rn

≥0, and xp ∈ Rnp

≥0, respectively.

The set of possible social (population) states is given
by a simplex denoted by ∆ =

{
x ∈ Rn

≥0 :
∑

i∈S xi = m
}(

∆p =
{
xp ∈ Rnp

≥0 :
∑

i∈Sp xi = mp
})

, where m ∈ R>0

(mp ∈ R>0) is the mass of agents in the society (popu-



lation p ∈ P). Furthermore, there is a relationship be-
tween the social states and the population states given by
xi = G(i)

−1∑
p∈Pi

xpi . Fitness functions for society are

defined as in Section 2.1. Furthermore, let fpi : ∆p 7→ R
be the mapping of the fitness function for the proportion
of agents playing the strategy i ∈ Sp in the population
p ∈ P. The fitness corresponding to a strategy i ∈ S
is the same as the fitness for a strategy j ∈ Sp for all
p ∈ P if i = j. Consequently, for all i ∈ I and for all
p ∈ Pi, fi(x) = fpi (xp), if xi = xpi . Besides, there is a
relationship between the population and social mass given
by m =

∑
p∈P m

p − ∑i∈S (G(i)− 1)xi. Then, a game
is solved for each population with constraints given by
the population mass mp, for all p ∈ P, which varies
dynamically. Dynamics associated to each population are
shown in (3a). There are π different dynamics of this form,
i.e., one for each clique Cp for all p ∈ P as follows:

ẋpi = xpi

fpi − 1

mp

∑
j∈Sp

xpjf
p
j − ϕp

 , ∀ i ∈ Sp, (3a)

ϕp = β

 1

mp

∑
j∈Sp

xpj − 1

 , (3b)

where β is the convergence factor for the whole system
that takes a positive and finite value. On the other hand,
there are as many mass dynamics as intersection nodes
in the graph, i.e., one for each i ∈ I. The dynamics for
population masses mp are given by

ṁp
i = mp

i (xi − xpi − ψi) , ∀ p ∈ Pi, (4a)

ψi = β

 1

κi + (G(i)− 1)xi

∑
q∈Pi

mq
i

|Iq| − 1

 , (4b)

where κi ∈ R>0 is a distribution of the social mass m.
Then, it should be satisfied that

∑
i∈I κi = m. There

is a relationship between mp
i , for all i ∈ Ip, and the

population masses mp given by mp = |Ip|−1∑i∈Ip m
p
i ,

for all p ∈ P. The population-game approach presented
in (3), and (4) may also be used to solve, in a distributed
manner, constrained optimization problems of the form
in (2) applying Theorem 1. The difference with respect
to the DPD is that the initial conditions for this method
should only satisfy the fact that they belong to the positive
orthant.

2.3 Dual decomposition (DD)

This optimization approach mainly uses the Lagrangian
function associated to the optimization problem (2) as in
Boyd and Vandenberghe (2004). This method is presented
as a minimization problem. Then, in order to treat the op-
timization problem as a minimization, let minx −V (x) =

Ṽ (x) where V (x) is a concave function, and for simplicity
it is assumed that the argument, which maximizes it, be-
longs to the positive orthant. For the specific constrained
optimization problem presented in (2), and omitting the
positiveness constraint (2c) (since it is assumed the opti-
mal point corresponds to an argument that belongs to the
positive orthant), the Lagrangian function with mapping
l : Rn × R 7→ R is defined as

l(x, µ) = Ṽ (x) + µ

(
n∑

i=1

xi −m
)
,

where µ ∈ R corresponds to the Lagrange multiplier
associated to the coupled constraint (2b). The dual de-
composition method consists in the following algorithm:

xi(k + 1) = arg min
xi

l(x(k), µ(k)), ∀ i ∈ S, (5a)

µ(k + 1) = µ(k) + α

(
n∑

i=1

xi(k + 1)−m
)
, (5b)

where k ∈ Z≥0. For this method, notice that the Lagrange
multiplier µ in (5b) requires information from all the
decision variables xi, for all i ∈ S due to the existence of a
coupled constraint (2b). Furthermore, let G2 = (S2, E2)
be the graph representing the required communication
network for this optimization method and the particular
constrained problem (2), where S2 = {1, . . . , n + 1},
with n + 1 ∈ S2 representing the Lagrange multiplier µ.
Regarding the set of links, it is necessary to incorporate
the information required by the Lagrange multiplier, then

E2 = E ∪ {(n+ 1, j) : j ∈ S}.

Therefore, in comparison to the population-game ap-
proaches, one extra node and ε = n extra links are re-
quired, i.e., |S2| = |S|+ 1, and |E2| = |E|+ ε.

Making distributed DD algorithm for a unique coupled
constraint: The aspect that makes the DD algorithm
centralized is the coupled constraint in (5b), i.e., informa-
tion from all xi(k + 1), for all i ∈ S, is required in order
to determine the evolution of the Lagrange multiplier µ,
obtaining a communication graph G2. However, for the
particular optimization problem (2), where there is only
one coupled constraint, it is possible to solve the DD
algorithm (5) in a distributed manner.

The main idea is to compute the sum
∑

i∈S xi(k + 1) in
a distributed manner as an additional step within the
DD algorithm. The execution order consists on computing
(5a), then the sum

∑
i∈S xi(k + 1) is computed in a

distributed manner, and it follows to compute (5b). In
this regard, the DD algoritm can be performed by using
the same graph G. However, it is important to highlight
that an additional process, that is explained next, should
be considered.

Let ξ ∈ Rn be a vector of auxiliary variables, i.e., a variable
ξi ∈ R corresponding to a node i ∈ S. The variables
are initialized with the result obtained from (5a), i.e.,
ξi(0) = xi(k + 1), for all i ∈ S. Therefore, a continuous-
time standard average consensus algorithm is computed,
i.e.,

ξ̇i =
∑
j∈Ni

ξj − ξi. (6)

According to Olfati-Saber et al. (2007), if the communi-
cation graph G is connected, then the dynamics in (6)
converge to ξ? ∈ Rn, where ξ?i =

∑
i∈S ξi(0)/n, for all

i ∈ S. In this regard, it is obtained that the required value
is

ξ?i
n

=
∑
j∈S

xj(k + 1), ∀ i ∈ S,



then, each node in the graph G has information about∑
j∈S xj(k + 1) and each one can compute (5b) in a

distributed manner.

2.4 Alternative direction method of multipliers (ADMM)

Inheriting the minimization problem from Section 2.3,
i.e., minx Ṽ (x), an extended version of the Lagrangian
function with mapping l% : Rn×R×R 7→ R, and omitting
the positiveness constraint (2c), is represented as in Boyd
et al. (2011), i.e.,

l%(x, µ, %) = Ṽ (x)+µ

(
n∑

i=1

xi −m
)
+
%

2

∥∥∥∥∥
n∑

i=1

xi −m
∥∥∥∥∥
2

2

, (7)

where µ ∈ R corresponds to the Lagrange multiplier
associated to the coupled constraint (2b), and % ∈ R
penalizes decision variables that do not satisfy the coupled
constraint (2b). The ADMM consists in the following
algorithm:

xi(k + 1) = arg min
xi

l%(x(k), µ(k)), (8a)

µ(k + 1) = µ(k) + %

(
n∑

i=1

xi(k + 1)−m
)
. (8b)

Let G3 = (S3, E3) be the graph representing the required
communication network for the ADMM for the particular
constrained problem (2), where S3 = {1, . . . , n + 1}, with
n+1 ∈ S3 representing the Lagrange multiplier µ as in the
case of the DD method. Regarding the set of links, more
connectivity is required for the evolution of decision vari-
ables xi, for all i ∈ S, and for the evolution of the Lagrange
multiplier, i.e., E3 = E∪{(i, j) : i, j ∈ S, and (i, j) /∈ E}∪
{(n+1, a) : a ∈ S}. In comparison to the population-game
approaches, an extra node and ε = [(n− 1)n]/2 + n− |E|
extra links are required, i.e., |S3| = |S|+ 1, |E3| = |E|+ ε.

3. COMMUNICATION REQUIREMENTS
DISCUSSION

The required communication links comparison among dif-
ferent optimization methods corresponding to the resource
allocation problem in (2) is summarized in Table 1. Ac-
cording to this table, it is not necessary to add nodes
neither links in order to solve the optimization problem
in a distributed manner. This fact represents a solid ad-
vantage of the population-game approaches with respect
to the other considered approaches.

Table 1. Additional requirements for the opti-
mization problem in (2).

Optim. method Additional links ε Additional nodes

DPD 0 0
PD-MD 0 0
DD n 1

ADMM
(n−1)n

2
+ n− |E| 1

In order to illustrate a comparison of the number of re-
quired communication links among the different optimiza-
tion methods, consider for instance the example given by
the collection of serial triangles as presented in Figure
1. Suppose that an optimization problem of the form

2

1

. . .

3

4

5 n− 2

n− 1

n

Fig. 1. Collection of serial triangle cliques composing the
graph G.

(2) is desired to be solved satisfying the communication
established by the graph G (see Figure 1).

It is possible to solve the optimization problem with
the population-game approaches (i.e., DPD, or PD-MD)
without modifying the graph G. However, in case it is
desired to solve the problem by using DD or ADMM, it
is necessary to add a node corresponding to the Lagrange
multiplier associated to the coupled constraint, and it is
also necessary to add information links. Figure 2 shows the
number of additional links denoted by ε for the topology
presented in Figure 1 and for different number of nodes
(i.e., n = 3, 5, 7, . . . ).

a
d

d
it
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n

a
l

re
q
u

ir
ed

li
n

k
s
ε

number of nodes n

Fig. 2. Number of additional required links when imple-
menting the DD method or the ADMM technique
with respect to the population-game approaches for
the optimization problem in (2), and for the collection
of serial triangles in Figure 1.

It can be seen in Figure 2 that the ADMM requires more
information interaction than the DD method. Besides,
the difference in the amount of required extra links gets
bigger as the number of decision variables increases. In
addition, the population-game approaches do not require
the inclusion of more communication links under the
presented optimization problem. Therefore, the benefits of
using the population-game approaches are more significant
as the number of variables in the problem becomes larger.

4. ILLUSTRATIVE EXAMPLE AND
COMMUNICATION DEPENDENCE DISCUSSION

An example is presented in order to illustrate the commu-
nication requirements and performance of the presented
optimization methods, i.e., distributed population dynam-
ics (DPD), population dynamics with mass dynamics (PD-
MD), dual decomposition (DD), and alternative direction
method of multipliers (ADMM). Consider the following
QP problem:

max
x

V (x) = −
7∑

i=1

(ϑi − xi)2, (9a)

s. t.

7∑
i=1

xi = m, (9b)

xi ≥ 0, ∀ i = 1, . . . , 7, (9c)
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Fig. 3. Different graphs for the information requirements.
a) G = (S, E): DPD and PD-MD, b) G2 = (S2, E2):
DD, c) G3 = (S3, E3): ADMM.

where ϑ = [10 2 3 4 5 6 7]>, and m = 37. Sup-
pose that (9) has limitations in the information sharing
given by the graph shown in Figure 3a). Then, the opti-
mization problem is solved with the different methods as
follows.

Distributed population dynamics (DPD): In this particular
case, the set of strategies is defined as S = {1, . . . , 7}.
Moreover, this approach uses the function V (x) as the
potential function of a potential game. In addition, the
constraint (9b) defines the set of possible strategic dis-
tributions given by the simplex with population mass m,
i.e., ∆ = {x ∈ Rn

≥0 :
∑

i∈S xi = 37} 1 . The

fitness functions are ∇V (x) = F(x), i.e., fi = −2(xi−ϑi).
Notice that the required information for each proportion
of agents is satisfied, then the problem is solved with the
communication constraint given by the graph shown in
Figure 3a) and by using the distributed replicator dy-
namics (1). Finally, it should be taken into account that
this method requires that the initial condition belongs to
the simplex, i.e.,

∑
i∈S xi(0) = 37. The evolution of the

decision variables for this method is shown in Figures 4a)
and 4e).

Population dynamics with mass dynamics (PD-MD): Like-
wise, the function V (x) is used to construct a potential
game defining all the fitness functions as ∇V (x) = F(x),
i.e., fi = −2(xi − ϑi). Besides, the constraint (9b) defines
the social simplex with social mass m as in the DPD
method. Regarding the information sharing, notice that
the problem can also be solved with a social topology
given by the graph shown in Figure 3a), which have three
cliques and two intersection nodes. Then, the optimization
problem is solved in a distributed manner by using (3) and
(4). The initial conditions for this method must belong
to the positive orthant. The evolution of the decision
variables for this method is shown in Figures 4b), and 4f).

Dual decomposition (DD): Considering the problem (2)

as a minimization of the function Ṽ (x) = −V (x), the
Lagrangian function is as follows:

l(x, µ) =

7∑
j=1

(ϑj − xj)2 + µ

 7∑
j=1

xj − 37

 ,

then, the arg minxi l(x(k), µ(k)) is found for all i =
1, . . . , 7 by computing ∇xi l(x(k), µ(k)) = 0. In this case,

xi(k + 1) = ϑi −
µ(k)

2
.

Consequently, it is shown that each xi, for all i = 1, . . . , 7,
requires information from µ. The evolution of the Lagrange
multiplier is as follows:
1 This simplex set corresponds to the feasible set for the optimiza-
tion problem (9).

µ(k + 1) = µ(k) + α

 7∑
j=1

xj(k + 1)− 37

 .

Notice that the evolution of the Lagrange multiplier µ
also requires information about the whole system, i.e., the
required topology graph is the one shown in Figure 3b).
From this point of view, the DPD and PD-MD approaches
have an advantage in terms of information requirements.
The evolution of the decision variables for this method is
shown in Figures 4c), and 4g).

Alternating Direction Method of Multipliers (ADMM):
First, the same assumption as in the DD method with
respect to the cost function is considered, i.e., minx Ṽ (x) =
−V (x), then the augmented Lagrangian function is

l%(x, µ, %) =

7∑
j=1

(ϑj − xj)2 + µ

 7∑
j=1

xj − 37


+
%

2

∥∥∥∥∥∥
7∑

j=1

xj − 37

∥∥∥∥∥∥
2

2

,

and arg minxi
l%(x(k), µ(k)) is found for all i = 1, . . . , 7

by computing ∇xi
l%(x(k), µ(k)) = 0, i.e.,

xi(k + 1) =

2ϑi − µ(k)− %

 7∑
j=1:j 6=i

xj(k)−m


(

1

2 + %

)
, ∀i = 1, . . . , 7.

Each xi, for all i = 1, . . . , 7, requires information from
µ and from all the other decision variables xj for all
j = 1, . . . , 7, such that j 6= i. The evolution of the
Lagrange multiplier is given by

µ(k + 1) = µ(k) + %

 7∑
j=1

xj − 37

 . (10)

Notice that the evolution of the Lagrange multiplier µ
requires information about the whole system, i.e., the
required graph is the one shown in Figure 3c). From this
point of view, the DPD, and the PD-MD approaches have
an advantage in terms of information requirements. The
evolution of the decision variables for this method is shown
in Figures 4d) and 4h).

For the example in (9), the initial conditions can belong to
any point in the positive orthant for the PD-MD, DD, and
ADMM, i.e.,

∑7
i=1 xi(0) 6= m. Additionally, both the DD

and the ADMM approaches require more amount of infor-
mation than the population-game approaches (i.e., DPD,
PD-MD). It has been shown that the problem (9) can be
solved in a distributed way with the population approach
proposed in Barreiro-Gomez et al. (2017), Pantoja and
Quijano (2011), or Pantoja and Quijano (2012) if and only

if the initial condition is feasible, i.e.,
∑7

i=1 xi(0) = m.

Furthermore, consider the case with more constraints on
the proportion of agents, e.g., an optimization problem of
the following form:

max
x

V (x), s. t. Hx = h, Gx ≤ g, xi ≥ 0, ∀ i ∈ S,
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Fig. 4. Evolution of
∑7

i=1 xi, and evolution of variables x ∈ R7 for the problem (9) with different optimization methods.
Figures a) and e) correspond to DPD. Figures b) and f) correspond to PD-MD. Figures c) and g) correspond to
DD. Figures d) and h) correspond to ADMM.

where V : Rn
≥0 7→ R is concave, and H, G, h, and g are ma-

trices and vectors of suitable dimensions defining coupled
constraints. This optimization problem may be solved with
the PD-MD method, and by using a graph of information
dependence that is the same as the graph required by
the DD method. Besides, the mentioned graph is less
restrictive than the one required by the ADMM approach.
The fact ADMM requires more information depends on
the form of the augmented Lagrangian function in (7).
Therefore, even though the fact that the communication
graph required by the DD method is the same as the one
required by the PD-MD, the latter mentioned method has
advantages for solving resource allocation problems as it
has been presented in Section 4.

5. CONCLUSIONS

The communication requirements of two population-game
approaches, i.e., the distributed population dynamics, and
the population dynamics with mass dynamics, have been
compared with the communication requirements of two
classical optimization methods, i.e., dual decomposition
and alternative direction of multipliers. The advantages
of the population-game approaches have been highlighted.
These latter methods require less information with respect
to the former mentioned methods to solve the optimization
problem corresponding to a resource allocation. Further-
more, comparing the population-game approaches, it has
been shown that there is an advantage of the population
dynamics with mass dynamics (PD-MD) approach over
the distributed population dynamics (DPD) regarding the
initial condition, i.e., the DPD initial condition should
belong to the feasible region, whereas the initial condition
for the PD-MD has to belong to the positive orthant.
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