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Abstract: We propose a traceable approach for the control of the Barcelona wastewater system that
is subject to sudden weather-change events within the Mediterranean climate. Due to the unpredictable
weather changes, lack of appropriate control methodologies may result in overflow in the sewage system,
which causes environmental contamination (pollution). In order to improve the management of the
wastewater system and to reduce the contamination, we propose robust model predictive control, which
is an online control approach that designs the control actions (i.e., flows through network actuators) under
the worst-case scenario while minimizing the associated operational costs. We employ signal temporal
logic to specify the desired behavior of the controlled system once an overflow occurs and encode this
behavior as constraints so that the synthesized controller reacts in time to decrease and eliminate the
overflow. We apply our proposed technique to a representative catchment of the Barcelona wastewater
system to illustrate its effectiveness.
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1. INTRODUCTION

Many critical infrastructure systems in the water and wastew-
ater industry have undergone drastic changes in recent years
due to the growth in demand for water and wastewater services
with the increase of the population. In particular, the installed
infrastructure for water and wastewater management is being
continuously upgraded and extended to accommodate the new
demands. Automatic control systems work silently in the back-
ground to support much of these critical infrastructure. To this
end, the industry is examining the potential benefits of (and in
many cases using) more advanced control strategies.

The design and automatic control of sewer networks pose new
challenges to the control community. For example, the designed
methodologies should be able to handle a multi-variable model,
the effect of uncertainty in the amount of precipitation, the
physical and operational constraints of the network, and the ef-
fect of delays and nonlinear dynamics. Simple control strategies
such as on-off and PID controllers are not capable of handling
these issues. Thus, to control sewer networks, model predictive
control (MPC) seems to be a suitable approach that can deal
with the particular issues associated with such systems. MPC
is an online control technique that uses a mathematical model
of the considered system to compute the control actions that
minimize a cost function (Bemporad et al., 2002b; Lazar et al.,
2006; Maciejowski, 2002). Besides, MPC is capable of incor-
porating either linear or nonlinear dynamics of the system as
well as handling constraints on both inputs and outputs. Hence,
such controllers are quite suitable to the global control of urban

sewage systems within a hierarchical control structure (Schütze
et al., 2004; Marinaki and Papageorgiou, 2005).

The system under investigation in this paper is a subset of
the Barcelona wastewater system, which is subject to sudden
weather-change events within the Mediterranean climate. The
application of MPC to Barcelona wastewater system has been
already investigated in Ocampo-Martinez (2010) for a portion
of this system and its benefits have been examined toward the
potential percentage reductions in flooding and pollution in
Barcelona sewage network.

In this paper, we build on the work of Ocampo-Martinez (2010)
by including uncertainty in the amount of precipitation as a
bounded disturbance and by formulating robust MPC optimiza-
tion problem to synthesize control inputs. We also express the
desired properties of the closed-loop trajectories using signal
temporal logic (STL), which is a useful language to encode
such properties as constraints and enforce the system to follow
a certain behavior. Considering the nonlinear (or hybrid) nature
of the network model, we show that the optimization problem
behind the robust MPC controller can be formulated as a mixed
integer quadratic programming (MIQP) problem as follows.
First, the nonlinear dynamics of the wastewater network are
transformed into a mixed-logical dynamical (MLD) model.
Then, the nonlinear functions in the objective function and the
STL constraints are transformed into mixed integer linear con-
straints. Finally, we employ the dual reformulation of the min-
max optimization problem and relaxation of its binary variables
to obtain a minimization quadratic programming problem. This



results in still a non-convex optimization, which we solve it-
eratively by linear approximation of the quadratic objective
function. The simulation results show that the reduction can
nevertheless have better performance over other techniques.

Related Work. Signal temporal logic (STL) has been used
for controller synthesis in a variety of domains for uncertain
systems using receding horizon control techniques (Farahani
et al., 2017, 2015; Raman et al., 2015). Transforming STL
constraints into mixed integer linear constraints has been used
in Raman et al. (2014). Recent works related to this wastewater
system consider different models and cope with the design of
alternative MPC approaches (Joseph-Duran et al., 2015). Our
work is distinct from the previous works on wastewater systems
in 1) considering uncertainty in the amount of precipitation both
in the model and in the controller design; 2) employing STL to
encode desired properties of the closed-loop trajectories; and 3)
providing a method for computing an approximate solution of
the formulated optimization problem.

2. BARCELONA TEST CATCHMENT MODEL

We consider a portion of the sewer network of Barcelona that
is representative, in that it exhibits the main phenomena and
the most common characteristics found in the entire network.
This model, which is based on the one described in Ocampo-
Martinez (2010), consists of three state variables corresponding
to the volumes of the three tanks, three control inputs corre-
sponding to the manipulated flows, and three measured distur-
bances corresponding to the measurements of rain precipita-
tion 1 . A wastewater treatment plant is used to treat the sewage
before it is released to the receiving environment. To model the
physical system, we discretize the continuous dynamics of the
system with sampling time ∆t. Accordingly, the discrete-time
state space model of the system can be written as

x(k+1) = Ax(k)+Buu(k)+BwW (k), (1)

where k is the time step counter, x(·),u(·),W (·)∈R3 denote the
states, control input, and the disturbance, respectively. A, Bu,
and Bw are the corresponding system matrices with appropriate
dimensions. Let u(k) = [qu1(k),qu2(k),qu3(k)]T and W (k) =
[W1(k),W2(k),W3(k)]T such that Wi(k) = ϕiSiPi(k) specify the
amount of rainfall entered to each tank i, with ϕi denoting
the ground absorption coefficient of the i-th catchment, Si
denoting the corresponding surface area, and Pi denoting the
rain intensity. There are two types of tanks in the model under
consideration: one real tank and two virtual tanks. For the
sake of clearer illustration, Figure 1 shows this portion of the
Barcelona test catchment area with two redirection gates, and
one retention gate.

A virtual tank is a storage element that represents the total
volume of sewage inside the sewer mains associated with a
determined sub-catchment of a given sewer network (Ocampo-
Martinez, 2010). A real tank is a buffer that stores the wastewa-
ter and redirect it towards different pipes in the sewage network.
Redirection gates are used to change the direction of the sewage
and retention gates are used to retain the sewage flow at a
certain point in the network. There are also two T-pipes, the
role of which is either merging or splitting the sewage flow
(Figure 2). The flow equations inside these pipes can be written

1 The model described in Ocampo-Martinez (2010) consists of 12 state vari-
ables (one real tank and 11 virtual tank), four control inputs, five measured
disturbance, and two treatment plants.

Fig. 1. 3-tank catchment model

Fig. 2. Flow direction in a T-pipe

as qi(k) = qic(k)+qi f (k) with

qic(k) =
{

qi(k)− q̄i qi(k)≥ q̄i

0 qi(k)< q̄i
for i = 1,2, (2)

where q̄i denotes the maximum capacity of pipe i. On the
other hand, the outflow from each redirection gate satisfies
the mass conservation equation qi = qic,in− qui, where qic,in is
the inflow to the redirection gate Ci. Furthermore, the outflow
of the virtual tank i is proportional to the tank volume, i.e.,
qxi(k) = βixi(k) with βi denoting the volume/flow conversion
coefficient. Hence, the flow equations for the T-pipes in Figure
1 can be written as

q1(k) = qin(k)−qu1(k), and q2(k) = qx1(k)−qu2(k).
Moreover, in the case of overflow in virtual tanks T1 and T3,
flows denoted by qx1c and qx3c in Figure 1 will enter different
parts of the system. The corresponding in-out flow equations
for tanks 1 and 3 can be defined as

q̄x1c(k)=
1
∆t

x1(k)+W2(k)+qu1(k)−qx1,

q̄x3c(k)=
1
∆t

x3(k)+W3(k)+q1 f (k)+q2 f (k)+qu3(k)+qx1c−qx3,

where x̄i denoting the maximum capacity of tank i. Accord-
ingly, the overflow qxic , i = 1,3 is defined as

qxic(k) =

q̄xic(k)−
1
∆t

x̄i q̄xic(k)≥ x̄i/∆t

0 q̄xic(k)< x̄i/∆t
. (3)

Finally, the amount of flow redirected to the water treatment
plant, denoted by q3, can be specified as follows. Let q3,in(k) =
q1c(k) + q2c(k) + qx3(k) + qx3c(k) denote the amount of flow
entering the weir overflow device (cf. Figure 1). Then, q3(k)
can be defined as

q3(k) =
{

q3,in(k) q3,in(k)≤ q̄3

q̄3 q3,in(k)> q̄3
.



Having the flow equations for different parts of the system, the
state equations for tank i can be written as

xi(k+1) = xi(k)+∆t(Wi(k)+qui−qxi−qxic).

For the system shown in Figure 1, the state equations can then
be written as

x1(k+1) = x1(k)+∆t(W2(k)+qu1(k)−qx1(k)−qx1c),
x2(k+1) = x2(k)+∆t(qu2(k)−qu3(k)),
x3(k+1) = x3(k)+∆t(W3(k)+q1 f (k)+q2 f (k)

+qu3(k)+qx1c −qx3(k)−qx3c).

(4)

Replacing (2) and (3) in (4) results in a hybrid model for the
wastewater system. We explain the controller synthesis problem
for this model in the next section.

3. ROBUST MODEL PREDICTIVE CONTROL

In the Barcelona test catchment, the goal is to control the inflow
and outflow in (both virtual and real) tanks in order to avoid
flooding and contaminating Mediterranean sea. The uncertainty
in the wastewater system is in the amount of precipitation that
we consider to be a bounded quantity. As such, we solve robust
(worst-case) MPC optimization problem to control the flow in
the network. The control objective is to minimize flooding in
streets (overflow q1c and q2c in Figure 1) and pollution entering
the sea as well as to minimize the control actions to save
energy consumption. It is also required that the overflows in
the controlled network are reduced to zero as soon as possible.

For this purpose, we employ robust MPC in the shrinking
horizon fashion, since we are interested in the behavior of the
system only in a given finite time-interval. This approach can be
summarized as follows: at time step one, we obtain a sequence
of control input with length N (prediction horizon) to optimize
the objective function; we only apply the first component of the
obtained control sequence to the system and update its state. At
the next time step, the first component of the control sequence
is fixed by the one of the previously calculated optimal control
sequence, and we only optimize for a control sequence of length
N−1. Hence, the size of control sequence decreases by 1 at each
time step.

In the sequel, we first formulate the objectives as a cost func-
tion. Then, we write the desired temporal property in STL lan-
guage and formulate the closed-loop worst-case optimization
problem. In order to keep the discussion focused, we directly
give the STL specification and refer the reader to Appendix A
for a formal description of the syntax and semantics of STL.

The cost function for the sewage network is defined as
J(ū(k), ē(k))= ||ū(k)||1 +max(0,q1− q̄1)+max(0,q2− q̄2)

+max(0,q3− q̄3), (5)
which includes the control action, the overflows in q1 and q2,
and the pollution entering the sea. Note that minimizing the
latter term in 5 results in maximizing the sewage treatment
amount q3. We also define the STL specification as

ϕ :=2[0,N]

[(
q1c > 0→ 2[1,k′] q1c ≤ 0

)
∧(

q2c > 0→ 2[1,k′] q2c ≤ 0
)]

, (6)

which means always during the desired control time interval
[0,N], if there is an overflow in any of the pipes 1 or 2, i.e., if
q1c > 0∨q2c > 0, then the overflow in that pipe should be zero
within the next k′ time steps.

Define ũ(0 : k : N) = [u∗0, . . . ,u
∗
k−1, ū(k)]

T to be the vector of
input variables such that u∗0, . . . ,u

∗
k−1 are the obtained optimal

control inputs up to time k−1 and ū(k) = [u(k), . . . ,u(N−1)]T
are the input variables to be optimized over at time step k; and
let x̃(0 : k : N)= [x∗0, . . . ,x

∗
k , x̄(k+1)]T denote the vector of states

such that x∗0, . . . ,x
∗
k are the observed states up to time k and x̄(k+

1) = [x(k+1), . . . ,x(N)] denote the vector of states such that
each component satisfies (1). We also assume that there is an
uncertainty in the amount of rain, i.e., Wi(k) =Wi,ref(k)+ e(k),
where Wi,ref(k) is the amount of rainfall entered Tank i at time k
for i = 1,2,3 (cf. Section 2). We gather the uncertainty for time
steps k,k+1, . . . ,N−1 in vector ē(k) = [eT (k), . . . ,eT (N−1)]T
such that each component belongs to E = {e : Se ≤ q}, which
is a bounded polyhedral set.

Let ξN be a finite sequence representing trajectories of the
system that depends both on the observed states x∗0, . . . ,x

∗
k and

on the future state vector x̄(k+1). Using state equations (1), ξN
becomes a function of ū(k) and ē(k). Accordingly, at each time
step k, we can define the robust MPC optimization problem as

min
ū(k)

max
ē(k)∈E

J(ū(k), ē(k)) (7a)

s.t. for all τ, k ≤ τ < N
x(τ +1) = Ax(τ)+Buu(τ)+BwW (τ), (7b)
Pũ(0 : k : N)+Qẽ(0 : k : N)+q≤ 0, (7c)

ξN(ū(k), ē′(k)) |= ϕ, ∀ ē′(k) ∈ E (7d)
where P and Q are inequality constraint matrices, q is a constant
vector, and ϕ denotes the STL formula (6). The constraints (7c)
are related to the maximum and minimum capacity of the tanks
and the pipes, which appears in the inner optimization, while
the STL constraint (7d) belongs to the outer optimization.
Remark 1. Optimization problem (7) includes the specification
(6) as a hard constraint. Alternatively, one may use the quantita-
tive semantics of the specification and include it to the objective
function (5), which means the robustness function correspond-
ing to the STL formula will be subtracted from (5). In this way,
not only we have STL specifications as hard constraints which
needs to be satisfied for all values of e, but also we maximize
the robustness of satisfaction of the STL specifications.

Optimization problem (7) is nonlinear due to the hybrid nature
of the wastewater system. We explain in the next section how
to deal with this and provide a method to solve the formulated
robust MPC optimization problem.

4. SOLVING THE ROBUST MPC PROBLEM

In order to solve the optimization problem (7) efficiently, we
transform the hybrid system into a mixed-logical dynamical
(MLD) system, which is a mixed integer linear system with
continuous and binary variables. To this end, we apply the
MLD formalism, which allows the transformation of logical
statements involving continuous variables into mixed integer
linear inequalities. We employ the following equivalences (Be-
mporad et al., 2002a) to transform the nonlinear dynamics of
the system and nonlinear terms in the objective function into
linear functions and linear constraints:

[ f (x(k))≤0]↔ [δ (k)=1] iff
{

f (x(k))≤M(1−δ (k))
f (x(k))≥ε+(m−ε)δ (k)

z(k)=δ (k) f (x(k)) iff


z(k)≤Mδ (k)
z(k)≥mδ (k)
z(k)≤ f (x(k))−m(1−δ (k))
z(k)≥ f (x(k))−M(1−δ (k))

(8)



where M,m ∈ R are the upper and lower bounds on the linear
function f (x(k)) and ε is the machine precision.

Based on the equivalence relations (8), the MLD model of (2)
and (3) can be obtained by defining the following auxiliary
variables:

• [δi(k) = 1]↔ [qi(k)≥ q̄i], zi(k) = δi(k)qi(k) for i = 1,2,
• [δ j(k) = 1]↔ [xi(k)≥ x̄i], z j(k) = δ j(k)q̄xic(k) for i = 1,3

and j = 3,4,
• [δ5(k) = 1]↔ [q3,in(k)≤ q̄3], z5(k) = δ5(k)q3,in(k).

The inequality constraints corresponding to the above auxiliary
variables and logical statements can be obtained according to
(8).

In addition to these terms, we transform the STL constraints
and nonlinear terms in the objective function into mixed in-
teger linear constraints by introducing continuous and binary
auxiliary variables (cf. (Raman et al., 2014)). Denote by z(k) =
[z1, . . . ,zr]

T and δ (k) = [δ1, . . . ,δs]
T the vectors that contain

all continuous and binary auxiliary variables, respectively, for
both the MLD model and the STL constraints. Using these two
vectors, the state equations and constraints of the MLD model
can be written as

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)+B4W (k),
E1x(k)+E2u(k)+E3δ (k)+E4z(k)+E5W (k)≤ g,

where A,Bi, i= 1,2,3,4 are the corresponding system matrices,
Ei, i = 1, . . . ,5 are matrices related to the MLD constraints, the
physical constraints of the system (in this case flow constraints
on the input variables), and the constraints obtained from the
STL transformation, and g is a constant vector.

Let z̃(0 : k : N) = [z∗0, . . . ,z
∗
k−1, z̄(k)] such that z∗0, . . . ,z

∗
k−1 are

the auxiliary variables up to time k−1 uniquely specified based
on x∗τ ,u

∗
τ ,τ < k, and z̄(k) = [z(k), . . . ,z(N−1)] are the auxiliary

variables to be optimized over at time step k (δ̃ (0 : k : N) and δ̄

are defined similarly). Using these auxiliary variables, the cost
function (5) can be rewritten as J(ū(k), z̄(k), δ̄ (k)) =CT

1 ū(k)+
CT

2 z̄(k)+CT
3 δ̄ (k) where Ci, i = 1,2,3 are the weighting matri-

ces. Recall that some of the components of z̃(k) refer to the over
flow in the system. Note also that here we have chosen the one-
norm in the objective function, however, it is possible to choose
quadratic or infinity-norm as well.

Hence, the worst-case MPC optimization problem for the MLD
system can be defined as

min
ū(k),z̄(k),δ̄ (k)

max
ē(k)∈E

J(ū(k), z̄(k), δ̄ (k)) (9a)

s.t. x(k+ j+1) = Ax(k+ j)+B1u(k+ j)+B2δ (k+ j)
+B3z(k+ j)+B4W (k+ j) j = 0, . . . ,N−1, (9b)

Ẽ1x(0)+ Ẽ2ũ(0 : k : N)+ Ẽ3δ̃ (0 : k : N)+ Ẽ4z̃(0 : k : N)

+ Ẽ5W̃ (0 : k : N)≤ g̃, (9c)

where Ẽi, i = 1, . . . ,5 and g̃ are appropriately defined constraint
matrices and vector, respectively. Note that the STL constraints,
which are now part of the constraints in (9c), should hold for all
values of ē(k)∈E (cf. (7d)). In the following theorem, we prove
that, by using the shrinking horizon technique and keeping track
of the control input and observed states, the closed-loop system
satisfies the STL specification.
Theorem 1. For the STL formula ϕ and ε , if the optimization
problem (9) is feasible at each time step k, the optimal control
sequence τ∗(0 : N) = [u∗(0), . . . ,u∗(N − 1),z∗(0), . . . , z∗(N −

1),δ ∗(0), . . . ,δ ∗(N−1)] computed on a machine with precision
ε ensures that the closed-loop system satisfies ϕ .

Proof. We have chosen the prediction horizon N such that
N ≥ len(ϕ), where len(ϕ) is defined as the maximum over the
sums of all nested upper bounds on the temporal operators (cf.
Appendix A for details). Since we apply a shrinking horizon
approach, at each time step k, we fix the previously obtained
optimal input variables. As such, at time step N − 1, which
is the last time step in the closed-loop optimization proce-
dure, the vector of decision variables has the following form
τ(0 : N) = [u∗(0), . . . ,u∗(N − 2),u(N − 1),z∗(0), . . . ,z∗(N −
2),z(N−1),δ ∗(0), . . . ,δ ∗(N−2),δ (N−1)], in which the only
unknown variables are u(N−1),z(N−1) and δ (N−1). Hence,
if at this step an optimal input sequence [u∗(N − 1),z∗(N −
1),δ ∗(N − 1)] is obtained, we are assured that the STL spec-
ification is satisfied. �

In order to solve the worst-case MPC problem (9), we propose
a transformation of the min-max optimization into a minimiza-
tion that utilizes the (weak) dual reformulation of the inner op-
timization problem (the maximization w.r.t. ē(k)). This results
in an optimization problem that gives an upper bound on the
original problem. As such, the overall optimization problem can
be recast as an MIQP problem.
Remark 2. Encoding the STL specification (6) as hard con-
straint induces linear constraints in the optimization (9) that
should hold for all ē(k) ∈ E (cf. (7d)), and implicitly for
all δ̄i(k), and z̄i(k) for i = 1, . . . ,5, since these variables are
uniquely defined as a function of ē(k) and ū(k). A conventional
way of dealing with constraints having universal quantifiers
is the use of Farkas’ lemma (Boyd and Vandenberghe, 2004)
to replace them by equivalent constraints having existential
quantifiers. However, expressing STL specifications as hard
constraints prevents us to have such a transformation since
Farkas’ lemma does not apply to binary variables. Referring to
Remark 1, we only use the robustness of the STL specification
in the objective function. Therefore, the optimization problem
also maximizes robustness of the specification, which results in
satisfaction of the formula if the optimal value of robustness is
positive. Note that this has an advantage over hard constraint
encoding of the specification, since the optimization does not
terminate if the specification is not satisfiable by the closed-
loop system but it tries to find control inputs that violates the
specification the least.

Considering Remark 2, we assume in the following that the
robustness function of the STL specification ϕ is included in the
objective function without ϕ being encoded as hard constraints
in (9). As such, we first write the inner optimization problem in
the following form:

max
ē(k)

CT
1 ū(k)+CT

2 z̄(k)+CT
3 δ̄ (k)+µ

T (q−Sē(k))+

+λ
T (g̃− Ẽ1x(0)− Ẽ2ũ(0 : k : N)− Ẽ3δ̃ (0 : k : N)

− Ẽ4z̃(0 : k : N)− Ẽ5W̃ (0 : k : N)
)
, (10)

where µ and λ are the Lagrange multipliers. Note that for any
choice of µ,λ ≥ 0, the solution of (10) is always greater than or
equal to the solution of the inner optimization problem in (9).
Therefore, we over-approximate the inner optimization in (9)
by its (weak) dual problem as



min
µ,λ

(
CT

1 −λ
T Ẽ2

)
ū(k)+

(
CT

2 −λ
T Ẽ4

)
z̄(k)

+
(
CT

3 −λ
T Ẽ3

)
δ̄ (k)+µ

T q+λ
T G

s.t. ST
µ + ẼT

5 λ = 0, µ,λ ≥ 0,

(11)

where G contains all the constant terms that appear in the
multiplier of λ in (10). Using the dual of the inner optimization
problem, the optimization problem (9) can be then replaced by

min
ū(k),z̄(k),δ̄ (k),µ,λ

(
CT

1 −λ
T Ẽ2

)
ū(k)+

(
CT

2 −λ
T Ẽ4

)
z̄(k)

+
(
CT

3 −λ
T Ẽ3

)
δ̄ (k)+µ

T q+λ
T G

s.t. ST
µ + ẼT

5 λ = 0, µ,λ ≥ 0,

(12)

which is a (non-convex) MIQP optimization problem due to the
terms λ T

(
Ẽ2ū(k)+ Ẽ4z̄(k)+ Ẽ3δ̄ (k)

)
in the objective function.

Note that other approaches are used in the literature to solve
robust MPC optimization problems, which are based on either
multi-parametric MILP problem or Monte Carlo sampling (Ra-
man et al., 2015; Farahani et al., 2015). The former approach
does not scale properly for large number of variables. The
latter approach may not terminate properly or is computation-
ally quite time-consuming since a large number of samples is
needed in order to obtain a representative set of the disturbance.
In the next section, we compare our results of the proposed dual
approach with the one using the Monte Carlo approach to show
the effectiveness of the dual method.

5. SIMULATION RESULTS

We apply our proposed synthesis technique to the 3-tank
sewage network presented in Figure 1. Considering the state-
space equation (4) and the MLD representation of the system
discussed in Section 4, the state-space model can be written as
x(k+1)=Ax(k)+B1u(k)+B2δ (k)+B3z(k)+B4(Wref(k)+e(k)),
with the following matrices:

A =

[1−∆tβ 0 0
0 1 0

∆tβ1 01−∆tβ3

]
,B1 =

[
∆t 0 0
0 ∆t 0
−∆t −∆t ∆t

]
,

B2 =

[ 0 0 x̄1 0 0
0 0 0 0 0

∆tq̄1 ∆tq̄2 −x̄1 x̄3 0

]
,B3 =

[ 0 0 −∆t 0 0
0 0 0 0 0
−∆t −∆t ∆t −∆t 0

]
,

B4 =

[ 0 ∆t 0
0 0 0
∆t 0 ∆t

]
,

where ∆t = 300 s is the sampling time, q̄1 = 9.14, q̄2 = 3.4 and
q̄3 = 9.0 are the maximum flow capacity of pipe qi, i = 1,2,3
(all in m3/s), and β1 = 5.8×10−4,β3 = 1×10−3.

The amount of rain entering the systems is defined as Wref(k) =
[P1(k),α2P2(k),α3P3(k)]T where α2 = 0.5951,α3 = 0.1530,
and the rain intensities Pi(k), i = 1,2,3 are obtained based on
the available data from the rain gauges in the real system. These
parameter values are taken from Ocampo-Martinez (2010),
Table 3.1. Moreover, we assume the following bounds on states
and inputs:

x1(k) ∈ [0,∞), x2(k) ∈ [0,35000], x3(k) ∈ [0,∞),

u1(k) ∈ [0,11], u2(k) ∈ [0,25], u3(k) ∈ [0,7],

where the states are in
[
m3
]

and the flows are in
[
m3/s

]
.

Considering the MLD model, we select the objective function
of the optimization problem (9) at each time step k as

Fig. 3. States of tanks 1, 2, and 3 and input flow to each tank.
The dashed red lines corresponds to the minimum and
maximum trajectories of the Monte Carlo approach over
the 100 simulations, the starred blue line corresponds to
the dual approach, and the solid green line corresponds to
the state and input upper bounds.

J(k) = 0.4
3

∑
i=1

ui(k)+0.6
2

∑
i=1

zi(k)−δi(k)q̄i(k)

−0.6(z5 +(1−δ5)q̄3(k))−2ρ(x,k),
where ρ(x,k) refers to the robustness function associated with
the STL specification (6). The prediction horizon is N = 20
and k′ = 5, which means once the overflow occurs, the system
should eliminate it within the next 5 time steps. The uncertainty
in the amount of rain is assumed to be a random variable in the
interval [0,1].

Note that after applying the technique proposed in Section 4
to the system, the resulting MIQP optimization problem (12)
is non-convex and hence, cannot be solved using the avail-
able MIQP solvers. Hence, we iteratively approximate the non-
convex MIQP optimization problem by an MILP problem at
each iteration to obtain the optimal solution. For the sake of
comparison, we also solve the worst-case MPC optimization
problem (9) using the Monte Carlo approach reported in Fara-
hani et al. (2015). The optimization problems are solved using
the MILP solver from Gurobi in Matlab R2014b on a 2.6 GHz
Intel Core i5 processor. The simulation results are presented in
figures 3 and 4.

Figure 3 illustrates the state and inflow for each tank using
the dual approach presented in Section 4 and the Monte Carlo
approach. The closed loop simulation time using the dual ap-
proach takes 428.9 s. We fixed the same simulation time for
the Monte Carlo approach to have a fair comparison, which
required 450 number of samples from the uncertainty vector e.
We repeated the Monte Carlo simulation 100 times, each time
with 450 samples of vector e. The minimum and maximum of
the resulting 100 trajectories are presented in Figure 3, and it
indicates that the difference between the minimum and max-
imum trajectories is quite significant. Making this difference
smaller needs increasing the number of samples, which results
in a considerable increase in the computation time. As shown in
Figure 3, both states and inputs satisfy the constraints and the



flows are guided such that volumes of Tank 1 and 3 eventually
decrease while the one of Tank 2 increases. This is expected
as Tanks 1 and 3 are virtual and it is preferred to keep them
as empty as possible while Tank 2 is real and should work as
a buffer in the wastewater system to handle the flow routing
downstream while avoiding both overflow and pollution (which
in turn implies the maximization of the treatment plant inflow).
Note that the input flow trajectories obtained from the dual
approach is not as smooth as the ones obtained from the Monte
Carlo approach. This effect could be the result of approximating
the quadratic object function and can be overcome either by
adding an extra term in the cost function where the slew rate
was penalized or by adding hard constraints for doing so.

Fig. 4. Overflows and the flow sent to the treatment plant.
The dashed red lines corresponds to the minimum and
maximum trajectories of the Monte Carlo approach over
the 100 simulations, the starred blue line corresponds
to the dual approach, and the dash-dotted magenta line
corresponds optimization problem without having STL
specifications.

Figure 4 presents the overflows, i.e., q1c and q2c, and the
inflow to the treatment plant, i.e., q3. Here also, we present
the trajectories obtained using the dual approach, the minimum
and maximum trajectories obtained using the Monte Carlo
approach, and the trajectories obtained without considering the
STL specifications in the optimization problem. The advantage
of having an STL specification can be seen in this figure. For the
given rain profile, the overflow that occurs in q2c at time step 11
(55 min), only goes to zero in the last time step if there is no
STL specification to force the system to eliminate the overflow,
while in the other two approaches with an STL specification,
the overflow vanishes within the next 5 time steps once it
occurs for both q1c and q2c. Moreover, the water treatment is
maximized at all time steps, which also matches our objective.

The obtained results show that the proposed model and the
solution approach is quite effective in designing the control
strategy for this portion of Barcelona wastewater network.

6. CONCLUSION

The focus of this paper was on modeling and control of a
representative fragment of Barcelona wastewater network. To

this end, we have modeled the sample network as a hybrid
system including the possible overflows that may occur in the
considered catchment. We have employed model predictive
control (MPC) to optimally direct the flow into the network
with the aim of minimizing the overflow in the main pipes
and maximizing the amount of water treatment. We have used
signal temporal logic (STL) to specify the desired temporal
behavior of the system once overflows occur. Additionally, we
have included the uncertainty in the amount of precipitation
to the hybrid model and we assumed that this uncertainty is
bounded. Accordingly, we have solved the worst-case MPC
problem in the resulting optimization problem. In order to solve
the obtained nonlinear optimization problem more efficiently,
we used the mixed-logical dynamical (MLD) formulation of
the system as constrained linear representation of the hybrid
model of the network. Moreover, to solve the worst-case MPC
optimization problem, we applied dual optimization approach
together with Farkas’ lemma to transform the min-max opti-
mization problem into a minimization problem. The resulting
optimization problem could be then recast as a non-convex
quadratic programming problem. We have shown in the sim-
ulations that the synthesized closed-loop system exhibits the
desired behavior.
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Appendix A. SIGNAL TEMPORAL LOGIC

A run of system (1) is defined as a signal ξ = x(0)x(1)x(2) . . .
which is an infinite sequence of states satisfying (1). Hence, a
finite run of system (1) for the time interval [0 : N] can be de-
fined as ξN = x(0)x(1) . . .x(N). We consider STL formulas with
bounded-time temporal operators defined recursively according
to the grammar (Maler and Nickovic, 2004)

ϕ ::=> | π | ¬ϕ | ϕ ∧ψ | ϕU[a,b]ψ,

where> is the true predicate, π is a predicate whose truth value
is determined by the sign of a function, i.e., π = {α(x) ≥ 0}
with α : Rn → R being an affine function of state variables;
ψ is an STL formula; ¬ and ∧ show negation and conjunction
of formulas; and U[a,b] is the until operator with a,b ∈ R≥0.
A run ξ satisfies ϕ at time k, denoted by (ξ ,k) |= ϕ , if the
sequence x(k)x(k + 1) . . . satisfies ϕ . Accordingly, ξ satisfies
ϕ , if (ξ ,0) |= ϕ .

Semantics of STL formulas are defined as follows. Every
run satisfies >. The run ξ satisfies ¬ϕ if it does not sat-
isfy ϕ; it satisfies ϕ ∧ ψ if both ϕ and ψ hold. For a run
ξ = x(0)x(1)x(2) . . . and a predicate π = {α(x)≥ 0}, we have
(ξ ,k) |= π if α(x(k)) ≥ 0. Finally, (ξ ,k) |= ϕU[a,b]ψ if ϕ

holds at every time step starting from time k before ψ holds,
and additionally ψ holds at some time instant between a+ k
and b+ k. Additionally, we derive the other standard operators
as follows. Disjunction ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), the eventually
operator as 2[a,b] ϕ := >U[a,b]ϕ , and the always operator as
2[a,b] ϕ :=¬ 2[a,b]¬ϕ . Thus (ξ , t) |= 2[a,b] ϕ if ϕ holds at some
time instant between a+ k and b+ k and (ξ ,k) |= 2[a,b] ϕ if ϕ

holds at every time instant between a+ k and b+ k.

Formula Horizon. The horizon of an STL formula ϕ is the
smallest n ∈ N such that the following holds for all signals
ξ = x(0)x(1)x(2) . . . and ξ ′ = x′(0)x′(1)x′(2) . . .:

If x(k+ i) = x′(k+ i) for all i ∈ {0, . . . ,n}
Then (ξ ,k) |= ϕ iff (ξ ′,k) |= ϕ.

Thus, in order to determine whether signal ξ satisfies an STL
formula ϕ , we can restrict our attention to the signal prefix
x(0), . . . ,x(∆), where ∆ is the horizon of ϕ . This horizon can
be upper-approximated by a bound, denoted by len(ϕ), defined

to be the maximum over the sums of all nested upper bounds
on the temporal operators. For example, for ϕ =�[0,4] 2[3,6] π ,
we have len(ϕ) = 4 + 6 = 10. For a given STL formula ϕ ,
it is possible to verify that ξ |= ϕ using only the finite run
x(0)x(1) . . .x(N), where N is equal to len(ϕ).

STL Robustness. In contrast to the above Boolean semantics,
the quantitative semantics of STL (Jin et al., 2013) assigns to
each formula ϕ a real-valued function ρϕ of signal ξ and k such
that ρϕ(ξ ,k) > 0 implies (ξ ,k) |= ϕ . Robustness of a formula
ϕ with respect to a run ξ at time k is defined recursively as

ρ
>(ξ ,k) = +∞,

ρ
π(ξ ,k) = α(x(k)) with π = {α(x)≥ 0},

ρ
¬ϕ(ξ ,k) =−ρ

ϕ(ξ ,k)
ρ

ϕ∧ψ(ξ ,k) = min(ρϕ(ξ ,k),ρψ(ξ ,k)),

ρ
ϕ U[a,b]ψ(ξ ,k)= max

i∈[a,b]

(
min(ρψ(ξ ,k+ i), min

j∈[0,i)
ρ

ϕ(ξ ,k+ j))
)
,

where x(k) refers to signal ξ at time k. The robustness of the de-
rived formula 2[a,b] ϕ can be worked out to be ρ 2[a,b] ϕ(ξ ,k) =
maxi∈[a,b] ρ

ϕ(ξ ,k+i); and similarly for 2[a,b] ϕ as ρ
2[a,b] ϕ(ξ ,k)

= mini∈[a,b] ρ
ϕ(ξ ,k + i). The robustness of an arbitrary STL

formula is computed recursively on the structure of the formula
according to the above definition.

Mixed Integer Linear Encoding To synthesize a run that
satisfies an STL formula ϕ , we employ the robustness-based
encoding of STL constraints to a mixed integer linear formula-
tion, as in (Raman et al., 2014). We first represent the system
trajectory as a finite sequence of states satisfying the model
dynamics in (1). Then, we encode the formula ϕ with a set of
mixed integer linear constraints. This encoding in possible due
to the assumption that α(x) are affine functions of x.

Recall that the robustness function of an STL specification ϕ

can be computed recursively on the structure of the formula.
The max and min operations can be expressed in a mixed
integer linear formulation using additional binary variables and
a large constant M (commonly called big-M). The interested
reader is referred to (Raman et al., 2014) for details of this
encoding, the gist of which follows. For brevity, denote ρϕ(x,k)
by ρ

ϕ

k ; for a given formula ϕ , the mixed integer linear represen-
tation is extended with a variable ρ

ϕ

k and an associated set of
constraints such that having ρ

ϕ

k > 0 under the added constraints
is equivalent to the satisfaction of ϕ at time step k. This is
accomplished by recursively generating mixed integer linear
constraints for every subformula of ϕ according to its structure.
In contrast to these STL constraints, the system constraints
encode valid finite trajectories for a system of the form (1),
and are designed to be satisfied if and only if the trajectory
ξ (x(0), ū(0), d̄(0)) obeys the dynamics in (1).


