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Abstract

A data-driven methodology that includes the unfalsified control concept in the framework of fault
diagnosis and isolation (FDI) and fault-tolerant control (FTC) is presented. The selection of the ap-
propriate controller from a bank of controllers in a switching supervisory control setting is performed
by using an adequate FDI outcome. By combining simultaneous on-line performance assessment of
multiple controllers with the fault diagnosis decision from structured hypothesis tests (SHT), a diag-
nosis statement regarding what controller is most suitable to deal with the current (nominal or faulty)
mode of the plant is obtained. Switching strategies that use the diagnosis statement are also proposed.
This approach is applied to a non-linear experimentally validated model of the breathing system of a
polymer electrolyte membrane (PEM) fuel cell. The results show the effectiveness of this FDI-FTC
data-driven methodology.
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1 Introduction
Within the scientific community, there is nowadays a unified agreement indicating that hydrogen (H2),
as an energy vector generated from alternative energy sources, represents a viable option to mitigate
problems associated with hydrocarbon combustion. In this context, the change from the current energy
system to a new system with a stronger involvement of H2 requires the introduction of fuel cells as ele-
ments of energy conversion. However, several problems have to be faced in order to efficiently manage
these complex systems and, so far, some classical control solutions have been proposed. Several control
problems remain unsolved due to the fact that there is still a diversity of variables to regulate and indexes
to optimise, which should be further determined and described. In particular, a key issue to address con-
sists in introducing optimisation concepts for different operating modes of the system and fault tolerant
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control strategies capable to cope with non-linear uncertain behaviours. This is an unexplored area in
the automation of polymer electrolyte membrane (PEM) fuel cells — PEMFC — and requires tailored
solutions based on advanced control strategies.

An important aspect when controlling real systems in general is concerned with the occurrence of
component faults and their influence over the whole system performance. In fact, faults and model/sensor
/actuator uncertainty might play similar roles, then the distinction among them gives rise to concep-
tual differences between active1 and passive2 fault-tolerant control (FTC) design approaches [1]. In the
framework of fuel cells and assuming an active FTC architecture, several approaches for fault detection
and isolation (FDI) have been proposed. Model-based FDI for PEMFC systems based on consistency
relations for the detection and isolation of predefined faults has been proposed in [2], while in [3], a
comparison of both model-based and data-driven fault detection methods for fuel cells is addressed. The
work in [4] proposes a methodology to use the electrical model for fuel cell system diagnosis, while in
[5], a fault diagnosis and accommodation system based on fuzzy logic has been developed as an effective
complement for a closed-loop scheme. Regarding FTC, Feroldi [6] proposes an MPC scheme for adding
fault tolerance capabilities to a two-actuator PEMFC system.

An important research trend in adaptive control is focusing on the use of multi-model techniques
and switching supervisory control, where a bank of controllers is designed and a decision block decides
which controller is most suitable at each moment to achieve the performance specifications according to
the measurements of the plant; see, e.g., [7, 8, 9, 10], among others. A conceptually suitable technique
to implement a decision block is by means of unfalsified control (UC), see [11], since it is able to discard
large number of controllers from a given set without inserting them into the feedback loop. The use of UC
for fault tolerance was previously presented in [12], but not many application papers have been presented
regarding UC and its use for FTC [13, 14]. Notice that UC aims at excluding controllers according to their
closed-loop performance. Alternative approaches reported in [15, 16] performs model (in)validation by
introducing the model falsification concept, acting as the dual of the UC approach. The main difference
between these techniques relies on the way the fault is determined and used: while the model falsification
finds the model that matches the fault situation by using set-valued observers, UC seeks the best closed-
loop performance by testing several pre-computed controllers.

The objective of this work is to integrate the use of robust data-driven controllers, in particular those
based on the UC approach, to achieve fault tolerance within the framework of the structured hypothesis
tests (SHTs) proposed by [17] for PEMFC-based systems. Figure 1 shows how FDI and FTC blocks can
be integrated and consolidated in a single UC-based block, which combines tasks of both supervision
and execution levels to be made almost simultaneously. At heart, UC is a learning mechanism that
allows efficient, simultaneous and fast exclusion of unsuitable controllers from a previously defined set
of controllers without the use of models. The only online evaluation (instead of diagnosis) is based on the
ultimate goal of any practical control system: performance, and on real-time input/output data streams
from the PEMFC sensors.

The FDI-FTC architecture integrating UC is implemented in a switching supervisory controller setting
by the creation of a bank of controllers. This allows the construction of the FTC system in a modular fash-
ion, where controllers are added to the bank to handle specified/unspecified faults or covering/rejecting
system disturbance effects. This framework was presented in a previous work by two of the authors for
fuel cell systems [18], being also applicable to a wide range of FTC problems. In addition, an imple-
mentation of the UC approach has been also reported by three of the authors but considering the UC as
the supervisory controller and testing its fault tolerance capabilities [19]. Here the UC is integrated into
the FDI-FTC topology, which makes this paper the evolution of the work in [19] into the fault-tolerant

1Active FTC strategies aim at adapting the control loop based on the information provided by a fault diagnosis and isolation
(FDI) module within the fault-tolerant architecture.

2In passive FTC strategies, a single-control law is used in both faultless and faulty operation, assuming a certain degree of
performance degradation.
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Figure 1: General FDI-FTC architecture in PEMFC.

framework.
The remainder of the paper is organized as follows. In Section 2, the UC and the hypothesis testing

backgrounds are presented. Sections 3 and 4 introduce the main results, which combine the SHT and the
diagnosis and control strategies. These are combined in an algorithm presented in Section 5. The case
study description and the main simulation results on the experimentally validated simulator are presented
and discussed in Section 6. Finally, the most relevant conclusions are drawn in Section 7.

2 Background

2.1 The Unfalsified Control Concept
The UC core is based on ideas from Popper [20] about the philosophy of science. Learning (i.e., singling
out the appropriate controller) is achieved by using experimental data to falsify hypotheses. Basically, UC
is a selection algorithm that seeks the best controller K from a predefined set K at each time instant, in a
general feedback configuration. The controller selection relies on evaluating the closed loop performance
achieved by each K ∈ K from the input-output data.

UC consists in testing the intersection of three sets. The behaviour of the system up to the current
time is given by the time data records of the reference r, the input u and the output y (see Figure 1). This
measurement information gives a partial knowledge about the plant and is represented by the set Pdata,
which is the set of triples (r, y, u) consistent with past measurements of (u, y). A controller Ki ∈ K
defines another set

Ki
4
= {(r, y, u), | u = Ki(r, y)} ,

which represents the behaviour of such a controller Ki. Finally, the performance specifications can also
be expressed as a set Tspec in the triple (r, y, u), e.g.,

Tspec
4
= {(r, y, u), | V (r, u, y) < η} ,

where V (·) is a cost function and η > 0.
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With the previous definitions, a controller is said to be falsified by measurement information Pdata
if this information is sufficient to deduce that the performance specification (r, y, u) ∈ Tspec would be
violated if that controller would be in the feedback loop. Otherwise the controller is said to be unfalsified.
That is, a controller Ki is unfalsified if the statement

Pdata ∩Ki ∩Tspec 6= ∅ (1)

holds. This implies that the controller is falsified if there is no triple (r, y, u) consistent with the past
measures and the control mapping Ki fulfilling the performance specification established by Tspec.

One of the main advantages of the UC formulation is that the set Pdata ∩Ki can be characterized
even though the controller Ki does not integrate the feedback loop. When the controller is causally
left invertible3 in terms of r given u and y and when the performance specifications depend only on
behaviours measured at observation instances, a fictitious reference signal rf can be calculated as follows

rf,i = y +K−1i u,

where, in this context, K−1i denotes the inverse mapping, producing the input of the controller corre-
sponding to the measured system input u. This fictitious reference signal is the signal that would have
generated the data Pdata if controller Ki would have been placed in the closed loop.

With rf,i associated to the controller Ki, the performance specification set Ti
spec is given by a cost

function

V (rf,i, u, y, t) = max
τ≤t

||We ∗ (rf,i − y)||2τ + ||Wu ∗ u||2τ
||rf,i||2τ + α

, (2)

where α ∈ R>0 is a small constant to avoid numerical problems when rf,i is close to zero and We and
Wu are weights related to the error e , rf,i − y, and the control signal, respectively. The selection of
these weights is done in a similar way than in mixed-sensitivity optimal control, i.e., penalising certain
frequency content of the signals in order to reach a trade-off between tracking and control effort. In
particular, the weight We penalises the tracking error in low frequencies and Wu penalises the control

signal in high frequencies. Moreover, the notation ‖x(t)‖τ =
√∫ τ

0
x(t)Tx(t)dt denotes the truncated

L2-norm of a signal x(t) and ∗ is the convolution operator.
In addition, UC theory requires a detectable cost function in order for the system to be stable, see

page 20, Remark 2.2 in [21]. This cost function and the set of controllers guarantee that instabilities will
be detected even though the physical system is initially unknown. The proposed cost function in (2) has
this property.

Being Kj the controller active at the present time and M + 1 the total number of controllers in the
bank, the controller to be inserted in the loop in the next sampling time that satisfies (1) can be tested
online following Algorithm 1. In this context, M denotes the cardinality of a set of controllers designed
for facing faulty behavioural modes.

2.2 Problem Definition
The design of an active FTC architecture implies the suitable functioning of an FDI module. This section
deals with the way FDI is achieved, taking into account performance features related to the closed-loop
PEMFC system. For this purpose, the SHT framework for fault diagnosis presented in [17] and further
developed in [22] is adopted. As pointed out in the Introduction, this framework has many advantages
that make it interesting for FTC. Within this framework, this paper shows how the UC copes with the

3This assumption can be avoided by using matrix fraction descriptions, as indicated in Section 2.4. of [21].
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Algorithm 1 UC Controller Computation
1: for i = 0 to M do
2: compute rf,i = y +K−1i (u, y)
3: compute V (rf,i, u, y)
4: end for
5: set î← argmini V (rf,i, u, y)
6: if V (rf,̂i, u, y) ≤ V (rf,j , u, y) + η then
7: set Kj ← Kî

8: else
9: set Kj ← Kj

10: end if

closed-loop performance in the form of hypothesis sub-statement. For the purpose of brevity, several
simplifications of the framework are made and only subtle issues are omitted.

Remark 1 SHT may be seen as a generalization of the well known structured residual method in fault
detection and isolation discussed in [23]. It has the additional advantage of being theoretically grounded
in classical hypothesis testing and propositional logic. For decision making purposes, statistical tests
[24] would take into account probabilities and hopes while the proposed SHT-based method is supported
by (diagnosis) statements, which can be measured/inferred from the real process.

With the aim to control a PEMFC system P that can be found in several behavioural modes (nominal
or faulty), a bank of controllers

K = {K0,K1,K2, . . . ,KM} (3)

may be stated. Let F be defined as the set of behavioural modes

F = {F0, F1, F2, . . . FN , Fu}, (4)

where F0 is the nominal behavioural mode (no fault) and Fi, with i = 1, . . . , N , are faulty modes.
Moreover, Fu = FN+1 (unknown fault) denotes all abnormal behaviour that can not be explained by the
other fault modes. Now, the first N + 1 elements of the set F contain all behavioural modes that have
been considered sufficiently important so that a dedicated controller design to manage them has been
performed; FN+1 is excluded. The design can be motivated by the existence of redundancy, probability
of fault or any other reason that motivates an FTC strategy. The cardinality of both sets4 |F| = N + 2
and |K| =M +1 are, in principle, unrelated. Nevertheless, from the practical point of view, there should
be at least one controller for each fault mode, i.e., M ≥ N . It could also happen that several controllers
may handle a particular failure and vice versa, a single controller could handle several fault situations.

Each fault mode can contain a wide set of behaviours. For example, the plant can be fully operational
in a mode that represents a fault in a redundant sensor but only if the controller currently in the loop does
not depend on that sensor. It is not specially assumed that models exist for all faulty modes. On the other
hand, notice that the design of a controller based on an adequate control-oriented model (COM) for a
specific fault mode improves the closed-loop performance with respect to a non dedicated controller.

Moreover, when the system is undergoing a particular fault mode, a controller can be designed to cope
with it, assuming the necessary sensors and actuators have been taken into account. Therefore, previous
to the implementation, a set of controllers have been designed, each tuned to a particular fault dynamics,
see also [25]. On the other hand, if these controllers have a certain degree of robustness they can possibly

4In the sequel, the notation |A| denotes the cardinality of the set A.
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cope with neighbour dynamics for which they were not designed5. From these two facts:

• If the controller is falsified, the dynamics taking place are not the ones for which the controller was
initially tuned for.

• A controller, which has been tuned to a particular fault, might perform reasonably well for another
fault (or even for the nominal) if these dynamics are not far away from the initial fault it was
designed for.

In this paper, a controller Kj ∈ K designed to manage or handle each fault mode Fi ∈ F is assumed,
although Fi might be also handled by more than one controller. In addition, a priority order may be
assigned to controllers related to a certain fault Fi, e.g., according to the number of faults handled by the
controller Kj . On the other hand, the set of faults that the controller Ki is expected to handle is denoted
FKi and contains one or more fault modes. The FN+1 mode is never included in any FKi . Therefore,
1 ≤ |FKi

| < N + 1.
The bank of controllers can be complemented with controllers designed with maximum robustness

while satisfying some minimal performance criteria with the aim to cover a wide spectrum of unspecified
faults, e.g., Fu = FN+1, and maintain the system operational but with degraded performance6.

To test whether a controller fulfils its design specifications, its input/output signals need to be mea-
surable online. Controllers that consider back-up components (actuators or sensors) not used in normal
operation are therefore discarded here. If backup components are available, it is assumed they are used
only when all controllers in K have been falsified.

3 Using the Structured Hypothesis Tests

3.1 SHT for Fault Diagnosis
When the currently used controller is falsified, additional hypothesis tests using a priori data related to
the possible system behaviour can be created to aid in switching to the correct controller. Consider Fp as
the fault mode present in the system. The aim would be to reduce the set of which Fp could be a member
at the time of switching.

In this framework, several hypothesis regarding the present behavioural mode are continuously tested
on-line. The set of hypothesis tests is denoted

H = {H0, H1, . . . HL}. (5)

Here, the SHT is a function of the experimental data u and y. The null hypothesis for the k-th
hypothesis test H0

k is when the active fault mode belongs to a set of faults Zk. The alternative hypothesis
H1
k is when the actual fault mode does not belong to Zk. Therefore, if H0

k is rejected, H1
k is accepted,

and the actual fault mode does not belong to Zk (and belongs to its complement ZCk ).

5In addition, a broad robust controller, which will possibly provide low performance, is designed in case the system is in the
unknown mode Fu. This covers all possible cases.

6Here, it is assumed for the problem to be tractable that either the system is in Fi, i = 0, ..., N or in the unknown situation Fu.
But in the sequel, the maximum robustness controller should be able to provide at least stability, with a low performance, to the
closed-loop system. Otherwise, there is no way around the problem. This condition is in accordance with the usual assumptions in
UC.

6



For the k-th hypothesis test, the null hypothesis and its alternative can be written as follows:

H0
k : Fp ∈ Zk “some fault mode in Zk can explain the data (u, y)”,

H1
k : Fp ∈ ZCk “no fault mode in Zk can explain the data (u, y)”.

The convention regarding the hypothesis and its complement is as follows. When H0
k is rejected,

it is assumed that H1
k is true, but when H0

k is not rejected, nothing should be assumed. Therefore, the
following fact holds.

Fact 1 If H0
k holds (Hk is not rejected), then Fp ∈ S0

Hk
. If H1

k holds (Hk is rejected), then Fp ∈ S1
Hk

. O

Here, S0
Hk

and S1
Hk

are diagnosis sub-statements containing fault modes in F . In what follows, it
will be assumed that S0

Hk
= F , which means that if the k-th hypothesis is not rejected, this test gives no

information about Fp. Moreover, S1
Hk

always contains Fu. For further discussion about how S0
Hk

and
S1
Hk

can be constructed, see [17]. For the purpose of this paper, this section allows to define the output of
a Statement Diagnoser module within a FDI-FTC structure, which is defined as diagnosis statement and
denoted as S. This decision is made by processing several module inputs defined beforehand as diagnosis
sub-statements (see Section 5).

3.2 SHT for Controller Performance
In particular, the closed-loop performance can also be taken into account when designing the FDI module.
Specifically, the UC acts within this framework as a diagnosis sub-statement by considering (1) as the
hypothesis

HUC
4
= H0 : Pdata ∩Ki ∩Tspec 6= ∅. (6)

Therefore, a controller Ki is unfalsified if (6) is not invalidated. The following notation is applied:

H0
0 : Pdata ∩Ki ∩Tspec 6= ∅ (performance is achieved),

H1
0 : Pdata ∩Ki ∩Tspec = ∅ (fails performance, Ki is falsified).

Here, the terms falsified, rejected and invalidated will be used as synonyms. In other words, the hypothesis
H0, which stands forKi controlling the current feedback loop, is rejected when this controller is falsified.
Hence, the following fact holds.

Fact 2 When H1
0 holds (H0 is rejected), the controller is falsified and therefore Fp /∈ FKi

. Otherwise, if
H0

0 holds (H0 not invalid), nothing can be said, i.e., Fp ∈ F . O

A bank of controllers is created to handle specific fault modes. Fact 2 applies when this task has been
adequately performed. Notice that, by convention, H0 is considered as the first hypothesis statement of
the setH in (5).
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4 Combining Diagnosis and Control Strategies

4.1 The Diagnosis Statement
The information about the present fault mode obtained from the set of falsified controllers and the diag-
nosis sub-statements are combined to form a diagnosis statement S, which is the conclusion reached by
the set of hypothesis tests.

Each falsified controller excludes from consideration the fault modes FKi the controller is designed
to handle. Denote the set of falsified controllers as Kf ⊆ K. Using Fact 2, the information about the
current fault mode obtained from the set of falsified controllers is that the considered fault mode belongs
to set Fcf obtained by removing all fault modes related to the falsified controllers, i.e.,

Fcf = F \
⋃

Ki∈Kf

FKi , (7)

where \ is the notation for set complement. Notice that (7) provides the information concerning the final
decision of the control performance sub-statement, facing the selection of the appropriate controller from
the set of the unfalsified ones. According to Fact 1, each rejected hypothesis test Hk limits the current
fault mode Fp to belong to the sub-diagnosis statement S1

Hk
. Denote the set of rejected hypothesis tests

asHf ⊂ H. Then, combining the information of rejected hypothesis tests yields the set SHf
to which Fp

should belong to, i.e.,
SHf

=
⋂

Hi∈Hf

S1
Hi
, i = 1, . . . , L. (8)

In this case, (8) provides the evaluation of the remainder set of sub-statements (excluding the sub-
statement of control performance already evaluated in (7)). Notice that the information for individually
evaluating these sub-statements comes from signals measured from the system, which should not be nec-
essarily those used for the control performance sub-statement module (UC-based controller selection).
Hence, outputs y and z can be measured from the system, where z are not necessarily controlled.

Combining (7) and (8) yields the diagnosis statement S of the combined hypothesis tests to which Fp
should belong to, i.e.,

S = Fcf ∩ SHf
. (9)

Notice that S is never empty as it will always include Fu. Also note that by defining HUC
4
= H0 as

before and including it in (8), then S1
H0

4
= Fcf holds and (9) can be included in the general framework,

i.e., (8) holds for all i = 0, . . . , L.

4.2 Controller Switching Strategy
When a fault occurs, it is important to switch to the correct controller as soon as possible in order to
avoid further performance degradation. Furthermore, this paper considers that there will exist a controller
K? ∈ K of low performance and high robustness that will be used in case that the M + 1 controllers in
K are not selected. Hence, K? ensures that the system keeps working despite of this situation. It also
implies |K| =M + 2.

In this section, a switching strategy is presented, which takes advantage of the combined diagnosis
statement given by (9). Two possible situations can trigger switching. Firstly, if the controller currently
in the feedback loop is falsified and the sub-statements different from the one related to the control
performance produce the corresponding output, a switch is performed. Secondly, if a controller with
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Figure 2: Scheme of the proposed integration of UC into the SHT framework. Here, L different diagnosis
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higher priority (according to pre-established criteria) than the controller currently in the feedback loop
becomes unfalsified and again the other sub-statements allow to, then a switch is performed as well.
In both cases, the set S and the controller priority definition determine both the possible fault and the
controller to handle it. It means that the controller falsification performed by the UC strategy is not the
unique factor that determines the switching. Information about the status of other components within the
loop and acting as indicators of the current behavioural mode determine the output S1

H and hence the
decision S.

Among many priority criteria that may be used to distinguish among controllers handling faults within
the set S, the following can be enumerated:

1. The number of failure modes a controller can handle.

2. The ruggedness of sensors and actuators a controller is connected to.

3. The best performance according to a particular cost function, e.g., (2).

4. The amount of uncertainty a controller can handle (in cases a conservative design is sought). This
criterion confronts the previous one, therefore a compromise should be met.

5. The controller that achieves the least number of switching, e.g., a slight loss of performance could
be tolerated if the actual controller in the loop is kept, in order to avoid switching transients.

5 The Overall Proposed SHT Strategy
Different procedures described in previous sections are then merged to determine the suitable controller
according to the fault model currently affecting the system. Hence, Figure 2 depicts the entire proposed
approach and the corresponding outcomes, while Algorithm 2 summarizes the whole FDI-FTC procedure.
In order to clearly explain how the approach works, Example 1 is presented.

Example 1 Assume four faults are possible and three controllers have been designed to handle them.
The sets FKi

are:
FK1

= {F1}, FK2
= {F2, F3}, FK3

= {F3, F4}.
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Algorithm 2 FDI-FTC Procedure
Require: FK0

, . . . , FKM
, SH1

, . . . , SHL

1: loop
2: take u and y from the system
3: evaluate sub-statement H0 (control performance)
4: compute Fcf = F \⋃Ki∈Kf

FKi . with F in (4)
5: for i = 1 to L do
6: evaluate sub-statement Hi (diagnosis)
7: end for
8: compute SHf

=
⋂
Hi∈Hf

S1
Hi

9: compute the statement S = Fcf ∩ SHf

10: determine the controller index j ∈ {0, 1, . . . ,M} . by using criteria outlined in Section 4.2
11: insert the controller Kj ∈ K into the closed loop . with K in (3)
12: end loop

In addition, assume that hypothesis H1 relates faults {F2, F3} with the break-down of a particular sen-
sor and H2 with a short circuit in an actuator that relates with faults {F1, F4}. Controllers are pri-
oritized according to the number of faults they can manage (criteria (1) in Section 4.2). During the
closed-loop operation, both the nominal and the K1 controllers have been falsified and the sensor is
broken. Therefore, S1

H0
= Fcf = {F2, F3, F4}, and Hf = {H1}, and thus S1

H1
= {F2, F3} and

S = Fcf
⋂
SHf

= {F2, F3}. As a consequence, controller K2 is selected because it handles more faults
in S, i.e., {F2, F3} vs. F3 handled by K3.

6 PEMFC Simulation Results

6.1 System Description
The system considered consists of a PEMFC test bench station, which mainly comprises a main fuel-
cell stack and ancillary units. A schematic diagram of the system is depicted in Figure 3, and the main
subsystems are briefly described below [26].

• Air Compressor: 12V DC oil-free diaphragm vacuum pump. The input voltage Vcp of this device
is used as the control action.

• Hydrogen and oxygen humidifiers and line heaters: these are used to maintain proper humidity and
temperature conditions inside the cell stack, an important issue for PEM membranes. Cellkraftr

membrane exchange humidifiers are used in the current set-up. Decentralized PID controllers en-
sure adequate operation values.

• Fuel cell stack: an ZBTr 8-cell stack with Nafion 115r membrane electrode assemblies (MEAs)
is used, 50 cm2 of active area and 150W power.

A full-validated dynamic model of the overall PEMFC-based system, specially developed for control
purposes, is presented and deeply discussed in [27, 26]. This model retains parameters with physical
significance and adequately describes the interaction between the different subsystems (fuel cell stack,
reactant supply system and humidity management unit). Every subsystem has been modelled in terms of
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Figure 3: Schematic diagram of the PEMFC-based system

physical laws for the posterior adjustment of some specific parameters, combining a theoretical approach,
together with empirical analysis based on experimental data.

Accordingly, the system can be represented by the following continuous-time state-space model:

ẋ(t) = f (x(t)) + g(x(t))u(t), (10a)
y(t) = h(x(t)), (10b)

where x ∈ R7 is the state vector, whose variables are defined as

• x̃1 = ωcp: motor shaft angular velocity;

• x̃2 = mhum,ca: air mass inside the cathode humidifier;

• x̃3 = mO2,ca: oxygen mass in the cathode channels;

• x̃4 = mN2,ca: nitrogen mass in the cathode channels;

• x̃5 = mv,ca: vapour mass in the cathode channels;

• x̃6 = mH2,an: hydrogen mass in the anode channels;

• x̃7 = mv,an: vapour mass in the anode channels.

Besides, u ∈ R is the control input corresponding to the compressor voltage denoted Vcp and y ∈ R in the
system output corresponding to the inlet stoichiometry of the PEMFC cathode, namely λO2

. Additionally,
f : R7 → R7, g : R7 → R7, h : R7 → R are nonlinear mapping functions of the states, inputs and
output, respectively. The system is affected by the external disturbance Ist ∈ R (through the mapping
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functions), which corresponds to the stack current. The objective of a nominal control design consists in
tracking λO2

such that
lim
t→∞

(λO2,ref − λO2
(t)) = 0, (11)

while rejecting the effect of changes in Ist (disturbance), where λO2,ref corresponds with a given stoi-
chiometry reference.

The reason for presenting this mathematical model under a data-driven controller design is twofold.
First, it allows to have a simulation-oriented model (SOM) used as the virtual reality for the simulations.
On the other hand, it is possible to obtain control-oriented models from the SOM such that the bank
of controllers used within the UC framework can be obtained. Notice that there is an offline part of
the design where the nominal behaviour of the system is known so that not only COM but also fault
models/scenarios can be established.

6.2 System Status Scenarios
In this paper, two faults are explicitly considered:

• Fault 1 (F1): This fault is related to the capacity of the air supply from the compressor connected
to the PEMFC cathode. This fault is induced in the model by modifying the combined inertia of the
compressor motor and the compression device, denoted by J [27]. Basically, this fault implies that
the air feeding to the fuel cell is reduced, which implies that the stoichiometry is directly affected,
a fact that in turn produces harmful effect over the membrane.

• Fault 2 (F2): This fault is related to the cathode output flow, which is restricted in order to induce
the fault. In this case, the fault causes the increment of the internal pressure of the system, which
in turn affects the proton exchange and reduces the stack current that feeds the load. The latter is
reached by conveniently modifying the cathode output constraint Kca of the PEMFC model [27].

The reason for considering these particular faults in this case study is twofold. First, this faults
make sense from the practical viewpoint, therefore they can happen suddenly in a PEMFC-based system.
Second, since the faults can be reproduced in a real experiment, their simulation is quite interesting in
order to know the potential consequences for a future implementation over an available testbench.

Therefore, taking both faults into account, three scenarios are defined according to the system status:
the nominal scenario (F0), where the system shows no faults, and the F1 and F2 scenarios, considering
the corresponding faults. Hence, in this case M = 2. Notice that the approach presented in this paper
handles single-fault situations. However, the extension to multiple simultaneous faults just implies the
inclusion of more scenarios and controllers.

6.3 FDI-FTC Setup
As mentioned in Section 3.1, the design of the entire FDI-FTC architecture combines different pre–
established hypothesis from the system behaviour and the operation of its devices. In this case, several
hypotheses are considered:

• Hypothesis related to the UC criteria: This hypothesis, denoted H0, is based on the decision taken
by the UC controller according to (1). To this end, three H∞ controllers (K0,K1,K2) have been
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designed such that
FK0

= {F0, F2},
FK1

= {F1},
FK2

= {F2}.
(12)

• Hypotheses related to a membrane voltage drop alarm: The setup contains an alarm that indicates
a faulty operation of the PEMFC in relation with the stack voltage. This alarm turns on when either
Fault 1 or 2 hold. Hence, two hypotheses are defined

H1 = {alarm OFF},
H2 = {alarm ON}.

When H1 is rejected, i.e., H1
1 holds, then S1

H1
= {F1, F2}. In turn, when H2 is rejected, i.e., H1

2

holds, then S1
H2

= {F0}.

Regarding the UC controller, the performance for each Ki is based on the cost function in (2), with
We = 10, Wu = 8 and α = 10−3. These weights provide a tradeoff between performance and robust-
ness. The controllers are designed with standard tools from the Robust Control framework (H∞ optimal
control) and computed by means of a Linear Matrix Inequality (LMI) optimization procedure [28]. Each
H∞ controller has been designed based on a model that corresponds to the faultless (F0) case, and for
the two faults described previously (F1 and F2). For each case, the complete nonlinear model has been
linearised at different loads, i.e. Ist = 2, 4, 6, 8 A, hence 12 linear models have been obtained. In each
Fi, i = 0, 1, 2, four resultant models have been combined in a nominal model Gi(s) and an uncertainty
weight W i

unc is set in order to produce a robust controller. Finally, three H∞ controllers Ki(s), for
i = 0, 1, 2, have been designed for all cases. It turns out that the nominal controller K0 works adequately
not only for the faultless case but also for the second fault F2, i.e., FK0 = {F0, F2}. According to the dis-
cussion presented in Section 4.2, there should exist a controller K? ∈ K that ensures the coverage of the
possible behavioural mode Fu. In this case, no other controller different from Ki(s), for i = 0, 1, 2 was
considered. Therefore, the Fu mode is handled here by using K0(s). The switching among controllers
is based on the decision of the FDI module (evaluation of sub-statements including the one related to
the control performance handled by the UC approach) and the switching strategy explained previously
(Section 4.2). The controller state-space matrices can be found in the Appendix.

6.4 Results and Discussion
The example considers a load perturbation of Ist = 6A, which is a quite common assumption for station-
ary applications. Notice that different values of Ist can be taken into account by increasing the bank of
designed controllers according to new system models. However, this paper considers a reduced number
of cases, seeking for the simplicity and clarity of the presentation. All three controller designs are based
on the linearised models corresponding to this current in the nominal, Fault 1 and Fault 2 scenarios, re-
spectively. In addition, a small amount of model uncertainty around each of these operation points has
been considered in order to have a minimum robustness margin and a high level of performance. The
desired stoichiometry is λO2,ref = 3 for all cases.

Figure 4 shows the curves obtained from the proposed simulation. The top graph corresponds to the
different scenarios associated with the system status. They induce the behaviour of the system reflected
in its output. Moreover, the status of the alarm associated to the stack voltage is presented in the fifth plot.
Taking into account the system output λO2

and the control signal Vcp (related to the current controller
Ki), the UC procedure provides the index of the most suitable controller according to the cost function
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Figure 4: Case study simulation results.

selected. This decision, related to the hypothesis test H0, is combined with the alarm status in order to
determine the fault currently affecting the system.

In the proposed simulation, all hypotheses contribute in obtaining the FDI output. Considering the
situation from t = 9 s up to t = 23 s, the UC hypothesis H0 determines no controller switching even
though the system status changes from the nominal scenario to the F2, due to the fact that K0 also
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handlesF2. However, the hypotheses related to the alarm status (ON) combined with the priority criterion,
based on the maximum number of fault handling that minimizes controller switching, are instrumental in
selecting the proper FDI outcome. Here, Kf = {K1} and Fcf = {F0, F2}. In addition, H1

1 holds and
S1
H1

= {F1, F2}, therefore according to (9) yields

S = Fcf ∩ S1
H1

= {F2}. (13)

The last part of the simulation scenario where t ∈ (89, 100] follows the previous discussion but consider-
ing that H1

2 holds (alarm OFF).
From t = 24 s up to t = 89 s, since H1

1 holds (alarm ON), the proper FDI output is based on the
intersection in (9):

• The UC-related index indicates K1, therefore Fcf = {F1} → S = {F1}.

• The UC-related index indicates K2, hence Fcf = {F0, F2} and S1
H2

= {F1, F2}. Therefore
S = {F2}.

During the elapsed time from t = 9 s up to t = 89 s (corresponding with alarm ON), the only sub-
statement that changes is Fcf , which corresponds with the falsification of controllers performed by the UC
strategy (in this case, the result of the SHT of H0). According to the fourth graph of Figure 4, the index
changes as the proper controller is chosen, which implies the falsification of the rest of controllers. This
falsification procedure follows the design established in (12). The outcome of this example illustrates that
the combination of the diagnosis sub-statements with the UC procedure determines the correct choice of
the fault scenario, i.e., the coincidence between the first and last plots in Figure 4.

7 Conclusions and Future Research
This paper proposes and discusses the integration of the robust unfalsified control (UC) strategy with the
fault diagnosis and isolation scheme based on structured hypothesis testing, inserted in a fault-tolerant
control scheme for its use in the management of PEMFC-based systems. Here, UC acts as a real-time
learning mechanism that efficiently excludes unsuitable controllers without the use of PEMFC models.
The FTC scheme works in a modular fashion: a fault affecting the system just implies the addition
of a new controller into a bank of controllers to cope with it. The approach has been tested with a
realistic simulator of the breathing system for a PEMFC-based system, obtaining successful results when
different faults affected the system. The case of multiple simultaneous faults and their effect in system
performance will be the matter of future research and the implications in the design of the controllers
of the bank. Moreover, the dynamic influence of the controller currently placed in the closed loop and
the falsification/unfalsification of the rest of controllers is another topic of future interest. Moreover, the
implementation of the proposed approach to the real test bench the SOM was obtained from, is also a
challenge to reach in the coming future.
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A Appendix
The state-space matrices for all three controllers used in the example are presented below.

K0

A =



−6.7829 −0.0037 0.0001 3.9715 −220.3413 −59.0786 179.7676
0.0050 −0.0064 −0.0000 −0.0000 0.0023 0.0008 −0.0023
0.0391 −0.0002 −0.0072 −0.0015 0.0155 0.0055 −0.0167
−4.7632 −0.0001 −0.0023 −0.0339 −2.7012 −0.8747 2.6597
216.2607 −0.0039 −0.0388 3.7455 −27.4785 1.3811 −3.9073
−96.3049 0.0033 0.0177 −3.5833 116.4761 19.6490 −61.0929
−330.0259 0.0080 0.0600 −7.2706 123.8101 46.4117 −137.5476


,

B =
[
−92.7 0 0 −1.3 −1.7 −1694.7 −2041.1

]T
C =

[
−45.8786 0.0040 −0.0000 −4.2879 237.4097 63.6404 −193.6486

]
,

D = 99.8065.
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K1

A =



−2.6940 13.5819 −0.0167 −0.4572 −6.4127 −10.5250 37.0514
−15.5808 −0.3058 0.0004 0.0108 0.1174 −0.6021 1.9980
0.0123 0.0004 −0.0066 −0.0001 −0.0001 0.0010 −0.0033
0.3318 0.0099 −0.0002 −0.0082 −0.0015 0.0294 −0.0960
3.8733 0.1247 −0.0001 −0.0010 −0.0671 0.3651 −1.2173
12.8354 −0.9643 0.0012 0.0323 0.5091 −6.6624 21.7635
−90.6640 39.4620 −0.0487 −1.3259 −19.0496 32.3284 −99.5904


,

B =
[
−81 −4.4 0 0.2 2.7 −53.1 −2391

]T
C =

[
−56.3643 −16.3028 0.0199 0.5470 7.6641 12.5496 −44.1792

]
,

D = 96.6336.

K2

A =



−3.9146 0.0046 −0.5139 6.3732 134.0345 −33.6667 −93.5428
−0.0000 −0.0281 0.0000 −0.0001 0.0014 −0.0007 −0.0018
0.3972 0.0000 −0.0302 0.0169 −0.0233 0.0362 0.0996
−6.1935 −0.0003 0.0206 −0.1885 −0.2688 −0.2997 −0.8257
−132.9598 −0.0023 0.1958 −2.1387 −21.2025 −2.9375 −7.7631
24.4698 0.0016 −0.1317 1.7434 25.6023 −19.1737 −49.9312
217.0745 0.0068 −0.6228 7.4867 108.2153 −34.9274 −92.5914


,

B =
[
−74 0 0.1 −0.7 −6 −89.6 2052.6

]T
C =

[
−60.0003 −0.0062 0.6918 −8.5838 −180.3063 45.2286 125.6666

]
,

D = 99.3740.
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