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Abstract—A real-time nonlinear model predictive con-
trol (NMPC) for the thermal management (TM) of the
electrical components cooling circuit in a Plug-In Hy-
brid Electric Vehicle (PHEV) is presented. The elec-
trical components are highly temperature-sensitive and
therefore working out of the ranges recommended by
the manufacturer can lead to their premature aging or
even failure. Consequently, the goals for an accurate
and efficient TM are two: to keep the main component,
the Li-ion battery, within optimal working temperatures,
and to consume the minimum possible electrical energy
through the cooling circuit actuators. This multi-objective
requirement is formulated as a finite-horizon optimal
control problem (OCP) that includes a multi-objective
cost function, several constraints and a prediction model
especially suitable for optimization. The associated NMPC
is performed on real-time by the optimization package
MUSCOD-II and is validated in three different repeatable
test-drives driven with a PHEV. Starting from identical
conditions, each cycle is driven once being the cooling
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versitat Politècnica de Catalunya, Institut de Robòtica i Informàtica
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circuit controlled with NMPC and once with a conventional
approach based on a finite-state machine. Compared to the
conventional strategy, the NMPC proposed here results in
a more accurate and healthier temperature performance,
and at the same time, leads to reductions in the electrical
consumption up to 8%.

Index Terms—nonlinear model predictive control
(NMPC), thermal management, plug-in hybrid electric
vehicles (PHEV), Li-ion battery cooling.

I. INTRODUCTION

IN electrified vehicles, an accurate TM of the electric
traction components is crucial to avoid premature

costly repairs and ensure safety and performance require-
ments [1]. Among them, the Li-ion battery package is
the most critical due to its cost and its direct relation to
the vehicle autonomy, which is definitely the electro-
mobility market penetration bottleneck. Accurate TM
solutions for Li-ion batteries are based usually on liquid
cooling systems with complex pipes configurations that
allow several options for heat dissipation. To control
these circuits, multiple electrical actuators are needed.
Since a misuse of electrical actuators contributes to a
further decrease in vehicle autonomy, optimal control
methods become quite attractive for accurate and effi-
cient TM. Compared to the classical approach of using
tuned Proportional-Integral-Derivative (PID) controllers
according to a set of rules learned from experience,
optimization-based methods such as NMPC exploit their
potential in systems with, among others,

• multiple inputs multiple outputs (MIMO),
• several goals that can be contradictory,
• numerous constraints to be fulfilled.
Although the many advantages, there are also some

challenges for NMPC to spread in the automotive sector.
The computational burden is one of them. A proof of this
fact is the large number of existing offline applications in
literature compared to the online category. Moreover, it
is common that real-time capable NMPC applications are
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not validated directly in the real vehicle, but in a simpler
context. This is the case of [2], where NMPC for adaptive
cruise control is tested in a Hardware in the Loop
(HIL) configuration on a dynamic engine test bench or
[3], where an NMPC application for optimal trajectory
generation in Long Heavy Vehicles Combinations that
validated the controller in a motion simulator. In [4], the
real-time NMPC strategy for an hybrid electric vehicle
(HEV) power management is validated in simulations
and the same is done in [5] to show the potential of
NMPC for HEV fuel and emissions minimization. The
validation through simulation/test bench environments in
all these examples and many more is a necessary first
step for every real-time application.

The purpose of this article is to use NMPC for the
TM of the Li-ion battery (BAT) and the power elec-
tronics (PE) in a PHEV prototype. The validation of the
feedback control designed by using the optimization tool
MUSCOD-II [6] is done by means of a comparison to
a finite-state machine control. The novelty of this paper
is that the optimizer runs on an Intel R©CoreTM i5-3320M
Processor with the two cores operating at 2.6 GHz and
with 8 GB of RAM on real-time and overtakes the TM
control by means of an electronic control unit (ECU)
bypass performed on a rapid prototyping (RP) module.
This NMPC implementation corresponds to a new step
in the NMPC standardization road map suggested in Fig.
1, where the final goal is to have the algorithm running
embedded in the vehicle. In this sense, [7] points FPGA
or multicore microprocessors as the suitable platforms to
exploit parallelization of the NMPC controller design.

Offline NMPC
Online 
NMPC 

Simulations

Online 
NMPC 
HIL

Online 
NMPC RP 

embedded

Online 
NMPC  

embedded
FPGA?

SIMULATION VEHICLE

Fig. 1: NMPC roadmap in the automotive sector.

The remainder of this paper is structured as follows.
Section II presents a brief description of the control
plant. Section III gives an overview of the model, more
extensively treated in [8], and defines the goals and
constraints of the control problem. Section IV deals
with the numerical solution of the NMPC problem. In
Section V, the hardware implementation in the vehicle is
presented and Section VI describes the driving scenarios
in which validation took place. Finally, Section VII
shows the results and the conclusions and final remarks
are drawn in Section VIII.

Fig. 2: The studied cooling circuit.

II. PROBLEM STATEMENT

The cooling circuit to be controlled by NMPC can
be seen in Fig. 2. The purpose of the circuit is to keep
the BAT, PE and charger modules in the temperature
regions that assure safety, suitable operation and reduce
ageing caused by thermal stress. With this circuit, the
heat generated in the electrical components due to the
Joule Effect can be dissipated to the air or to the Air
Conditioning (AC) circuit. Notice that:

• Only the driving situation is treated here, not the
charging one. For this reason, the charger represents
only a passive thermal mass in the circuit.

• The coolant is a water/glycol mixture and its pos-
sible paths are shown in the blue and black contin-
uous lines in Fig. 2.

• The heat transfer with the air is done by means of
a coolant/air heat exchanger, the cooler in Fig. 2.

• The heat transfer to the AC-circuit is done by a
coolant/refrigerant heat-exchanger parallel to the
evaporator called chiller in Fig. 2.

The heat transfer can be controlled through the
coolant flow by six electrical actuators: two pumps, three
solenoid valves and one fan, all in gray in Fig. 2. The
control signals for these actuators are from the right top
clockwise:

• V alveCOOLER: Enables/disables the coolant flow
through the cooler. Here, “0”: the valve allows the
cooler path; “1”: stands for the bypass.

• PWMFAN : The fan increases the air mass flow rate
in front of the cooler and thus the heat exchange.
It is controlled by a pulse width modulated (PWM)
signal.
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• PWMPE : The electrical pump before the PE is
also governed by a PWM signal.

• V alveCHILLER: Enables/disables the coolant flow
through the chiller. The value “1” is for chiller
active, “0” stands for chiller inactive.

• V alveCIRCUIT : Enables switching between
big/small circuit configurations. If V alveCIRCUIT

is set to “1”, the big circuit configuration is
active and the coolant flows through the charger,
the cooler, the chiller, the BAT and the PE,
consecutively. On the contrary, if V alveCIRCUIT

is set to “0”, the coolant flows through two
separate circuits: the BAT-chiller circuit and the
charger-cooler-PE circuit. Consequently, in this
mode, the heat transfer between the BAT-chiller
and the PE-charger-cooler is disabled. Notice that
to propel the coolant in two different separated
circuits, two electric pumps are required.

• PWMBAT : The electrical pump in front of the
chiller is also governed by a PWM signal.

As previously said, the high number of electrical
actuators offers an accurate TM but also supposes a chal-
lenge in efficiency: to spend as less electrical energy as
possible. With the control strategy discussed in Section
III, the aim is to formulate and solve this problem.

III. MODELING AND OPTIMAL CONTROL PROBLEM

FORMULATION

The development of a system model is a crucial step
for the NMPC strategy since it provides the predictive
ability. The model of the cooling circuit in Fig. 2 is a
system of ordinary differential equations (ODE) of the
form ẋ(t) = f(x(t), u(t), p), where x ∈ Rnx represents
the states of the plant, u ∈ Rnu stands for the control
inputs and p ∈ Rnp for the time-invariant parameters. It
is important to highlight that all the states x are available
from sensors equipped in the real vehicle.

Given the complexity and length of the mathematical
model of the considered system, the reader can find its
main lines in [8], as well as the interaction of the vari-
ables and constitutive elements of the resultant model.
The model has been written in the software Dymola [9],
which is based on the object-oriented language Modelica
[10] and is a combination of physical equations and
measurements stored in look-up tables that describe the
cooling circuit behavior in multiple domains.

The physical equations of the model come mainly
from energy balances. In the thermal domain, for in-
stance, at each electric component the first thermody-
namic law, (1), is applied to describe how the heat flow
induced by the Joule effect Q̇induced is dissipated in
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Fig. 3: Cost terms included in the objective function to
evaluate accuracy and efficiency of the TM.

the coolant Q̇coolant, the ambient air Q̇ambient and the
component itself, that is,

dU(t)

dt
= Q̇induced(t)− Q̇ambient(t)− Q̇coolant(t).

The model consists of around 500 equations and 1300
variables that arise from the equations explicitly de-
scribed inside the different submodels and the automatic
generated connection equations. With the help of the
model-export methodology described in [11], it is quite
straightforward and error-free to pass the high number
of equations to the MUSCOD-II. To get an overview of
the system states contained in the dynamic model, (1)
corresponds with a condensed form of the model, where
the relation between variables used here and control
inputs are found in [8].

Furthermore, to measure the performance of the sys-
tem, a so called objective or cost function was devel-
oped. This cost function is an indirect measurement of
the system performance. To this end, the performance
indices of Fig. 3 are used to evaluate the TM in terms
of accuracy and efficiency. The cost term cT (on the left
of Fig. 3) describes, with the following polynomial, the
effect of the working temperature on the battery, so that
the further from the optimal range, the more promoted
the aging mechanisms, i.e.,

cT (T ) = a4 T
4 − a3 T

3 + a2 T
2 − a1 T + a0,

where a0, a1...a4 are the corresponding parameters re-
sultant from the curve fitting. The penalty term cP (on
the right of Fig. 3) is the linear function cP (P ) = P−b0

b1
,

which depends on the electrical power P of the actua-
tors and where again b0, b1 are calibration parameters.
Besides, cP indicates that the more electrical power is
used for the TM, the less attractive it is. Table I shows
the electrical actuators used according to their requested
amount of electric power.
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(1)

The total cost associated to the TM is given by c,
which is the sum of the two penalty terms in Fig. 3, i.e.,
c = cT + cP . Besides the model and objective function,
the physical constraints definition is an important step in
the control problem formulation. Hence, the saturation
limits of the control signals, middle column in Table
I, were defined as minimal and maximal constraints.
Nevertheless, for PWM input signals of the pumps, more
restrictive minimal constraints were used, i.e.,

umin[
16
30

]
≤

u[
PWMBAT

PWMPE

]
. (2)

With these restrictive constraints it is assured that a
minimal coolant amount flows through the components
to protect them from a sudden change in temperature.
Similarly to the control signals, the constraints for the
system states are defined as follows:

xmin

−10 ◦C
−10 ◦C
−10 ◦C
−10 ◦C
−10 ◦C
−10 ◦C
1 kWh
−10 ◦C
−10 ◦C
−10 km/h
−500 Nm
−104 rpms
−10 ◦C



≤

x

TinPE−PUMP

TinBAT−PUMP

ToutJUNCTION

ToutCHILLER

ToutCHARGER

ToutPE

EBAT

ToutBAT

ToutCOOLER

v
M
n

Tambient



≤

xmax

65 ◦C
65 ◦C
65 ◦C
65 ◦C
65 ◦C
65 ◦C
8 kWh
65 ◦C
65 ◦C

200 km/h
500 Nm
104 rpms

65 ◦C



, (3)

TABLE I: Actuators electrical power

Actuator Control Signal Electrical
power

Cooler valve V alveCOOLER ∈ {0, 1} low
Fan PWMFAN ∈ [10, 90] high
BAT pump PWMBAT ∈ [0, 100] medium
Chiller valve V alveCHILLER ∈ {0, 1} low
Compressor V alveCHILLER ∈ {0, 1} high
Circuit valve V alveCIRCUIT ∈ {0, 1} low
PE pump PWMPE ∈ [0, 100] medium

where it must be highlighted that the maximal working
temperature for the coolant in this circuit is 65◦C. Hence,
the open-loop optimal control problem (OCP) associated
to the cooling circuit is formulated as follows:

min
x∗(·),u∗(·)

∫ t0+Hp

t0

(cT + cP )dt (4a)

subject to

ẋ(t) = f(x(t), u(t), p) ∀t ∈ τ (4b)

xmin ≤ x ≤ xmax ∀t ∈ τ (4c)

umin ≤ u ≤ umax ∀t ∈ τ (4d)

0 = x(t0)− x0. (4e)

Given an initial value of the states, x0, at time t0, the
goal of the strategy is to find the optimal sequence of
control inputs and states, u∗(·), x∗(·), that minimizes the
objective function in (4a), and satisfy the constraints in
(9b-9e), for a given prediction horizon of length Hp.
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Fig. 5: Control scheme of NMPC

IV. NUMERICAL SOLUTION OF THE NMPC PROBLEM

To attend model-plant mismatches and overcome pos-
sible disturbances, the open-loop scheme in Fig. 4 must
be closed resulting in the NMPC scheme in Fig. 5.
The main idea behind NMPC is to formulate and solve
repetitively a new OCP at each time instant according
to the receding horizon strategy. At a certain instant k,
the measurement of the plant x is used to initialize the
ODE with x(t0) = x used in the constraint (4e) and the
OCP is solved to find the optimal control sequence u∗ for
the given prediction horizon. From the solution sequence
u∗, only the first element is applied to the system
and the whole procedure is repeated for the next time
instant k + 1 with new sensors measurements coming
as the closed-loop system feedback, thus receding the
prediction horizon.

There exist several numerical methods for solving an
OCP, as reported in [12]. The optimization tool used in
this research, MUSCOD-II, relies on efficient and robust
DMS algorithm [13] that reformulates the OCP as a non-
linear programming (NLP) problem that is then solved
by an iterative solution procedure, a specially tailored
Sequential Quadratic Programming (SQP) algorithm [6].
Notice that the discretization of the continuous optimal
control problem is done inside MUSCOD-II.

Finally, it must be added that MUSCOD-II relies
on the so called Real-Time Iteration (RTI) scheme for
achieving robust online performance. The main idea
of this algorithm is to exploit the similarity between
subsequent OCP for performing the SQP steps in a
different order as accustomed, prioritizing this way a
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Fig. 6: Hardware implementation for the cooling circuit
control manipulation.

fast response time to disturbances. For more information
about the RTI scheme, the reader is referred to [14].
It must be added that the state of the plant, available
from several CAN buses, was sampled every 10 ms.
Nevertheless, the communication between the vehicle
and MUSCOD-II was asynchronous, being states and
controls exchanged as soon as MUSCOD-II performed
a new step with the RTI scheme. Using a prediction
horizon of 200 seconds and two shooting points, the
maximal measured response time of MUSCOD-II was
2.5 s, which is quite acceptable amount in this case.

V. HARDWARE IMPLEMENTATION

The PHEV used in this research is a prototype of
a Golf GTE equipped with extra sensors placed in the
cooling circuit to read all relevant information. In total,
17 thermocouples of type K with accuracy of ±1◦C
were used to measure 15 coolant temperatures, the air
temperature in front of the cooler and the air temperature
on the roof of the vehicle. In addition, three turbine flow
meters with a linearity of 0.1% were used to measure
the coolant volume flow rate. With the aim of being
able to compare the standard control with the NMPC
in successive driving tests, the design in Fig. 6 was
implemented. With this implementation, it can be switch
between two operation modes as explained next.

A. NMPC Mode

MUSCOD-II runs in the Laptop held by the co-pilot,
being connected to a rapid prototyping (RP) module
through an Ethernet connection. The control signals are
sent by means of the Universal Serial Bus (USB) con-
nected Controller Area Network (CAN) card to the RP
module. The electronic control unit (ECU1) is equipped
with an emulator test probe (ETK) that allows that the
control signals arriving to the ECU1 via the RP ETK



6

connection, are taken instead of the original code in the
ECU1 software. This way the original physical electric
connections to the actuators in the cooling circuit can
be kept. Furthermore, the states of the controlled plant,
output signals of the temperature sensors installed in the
cooling circuit and other signals running in the CAN
buses of the vehicle are sent to MUSCOD-II through
the RP module.

Since the chiller valve is physically stimulated from
another ECU (ECU2) that is not equipped with ETK, a
CAN logger is needed (top right corner of Fig. 6). The
CAN logger performs a gateway that splits the CAN bus
containing the original command for this valve. This way
the V alveCHILLER calculated in MUSCOD-II can be
used instead of the original vehicle demand.

B. Standard Mode

The RP deactivates the bypass of ECU1 and the CAN
logger sends the signal arriving from the original CAN
bus to the ECU2. In this mode, the original control
signals of the vehicles for the cooling circuit and AC
circuit are taken. These control signals are set to constant
values output by a finite-state machine with four possible
states: heating, temperature maintaining, mild cooling
and maximal cooling. The conditions for changing from
one state to another depend on the current BAT temper-
ature and some sensors describing the availability of the
heat exchangers to dissipate the heat.

VI. DRIVING SCENARIOS

A requirement for testing the TM of electric compo-
nents is to choose a driving cycle in which significant
thermal load is generated. This can be achieved with
a heavy load cycle driven in the pure electric mode
since the heat generated in the components is caused
by the Joule Effect. To design a driving cycle with a
heavy mechanical demand, three different scenarios were
chosen to be performed on an open-accessible street with
low traffic density:

• Long cycle mild: A long trip of 39 km in a road
with considerable slope in mild climate conditions.

• Long cycle hot: The same cycle in hot climate
conditions.

• Constant cycle: A trip at 100 km/h constant speed
in a 21 km road also with considerable slope.

A key aspect of these cycles is the effort put in the
design to make them as repeatable as possible. Quite
helpful for this task is the adaptive cruise control (ACC)
that is available in the car. Other cars are obstacles
in the road that prevent the vehicle from following

the repeatable cycle forcing the driver to accelerate or
break abruptly and therefore they can be considered as
external disturbances. Due to the usage of the ACC,
these disturbances are held to a minimum since the ACC
accelerates and decelerates smoothly, in contrast to the
driver natural reaction, thus generates minimal extra load
to the battery. Additionally to achieve always a similar
electrical power demand to the BAT, all the tests were
driven with the car being under the same conditions.
Auxiliary consumers like heating, air conditioning and
ventilation (HVAC) were turned off, as well as lights,
radio and other electrical gadgets. Windows were opened
to the same level and the weight of the car was held the
same.

To assure similar initial conditions, it is specially cru-
cial to monitor the BAT temperature before driving, since
as it takes direct influence on the objective function,
small discrepancies in it will lead to non comparable
conditions for the two cycles. Thus, the car is always
fully charged the day before in order to assure that all
temperatures in the car were close to the ambient tem-
perature and not disturbed by any heat source and that
the BAT draws always from with the same energy level.
This way, once enough similar conditions are observed,
ambient, battery temperatures and traffic congestion, a
comparable driving cycle can be assured and the test
can start. As it will be seen in the Section VII, this test
procedure enabled enough repeatable driving cycles to
compare the results of performing a different control in
the cooling circuit.

VII. RESULTS

Experimental results from the three different cycles
will be discussed in the following subsections. They are
also summarized in Table II, where the consumption, E,
cost terms, cT and cP and total cost, c, are compared for
the two operation modes, NMPC and standard, described
in Section V. Notice that in Table II a negative value
represents a decrease of the cost comparing NMPC to
the standard strategy.

A. Long cycle mild

As it can be seen in the top plot in Fig. 7, where the
left y-axis shows the vehicle speed and the right one the
altitude of the road, the long cycle consists of a highway
road section, in blue, followed by a mountain that is
ascended to the top, in red, discharging the battery and
then descended to the bottom, in white, charging the
battery again.

The aim of this driving cycle is to keep the BAT
working and thus generating heat as much time as
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TABLE II: NMPC vs standard results in TM for three different driving cycles.

Cycle ∆E* in kWh ∆E
E0

** in % ∆cT
cT0

in % ∆cP
cP0

in % ∆c
c0

in %

Long cycle mild -0.015 -6.25 -8.1 -20.71 -9.95
Long cycle hot -0.027 -8.14 -54.26 -17.12 -50.04
Constant cycle 0.003 3.49 -8.2 5.09 -7.78

* ∆x stands for the measured difference in the value “x”: xNMPC − xStandard.
** x0 stands for the measured value “x” in the Standard cycle: xStandard.
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actu in the long cycle mild.

possible under heavy conditions. To achieve this, in the
slope road section several strategic turning points were
predefined. This way, the vehicle faces the slope for
the first time at A and drives till the highest point B
is reached, where the vehicle turns over and starts the
descent to the initial kilometric point A, now named C
in Fig. 7. Again, the vehicle turns over and drives to
the next turning point, D, lower than B and so on till,
after the last turn over in G, the BAT is fully discharged
and the pure electric mode is no longer available. The
small variations in the speed profile during NMPC (blue
solid line) and standard control (black solid line) allow to
assume that the results discussed draw from comparable
conditions.

In the middle and bottom plots in Fig. 7, the TM
resulting from the NMPC and standard strategies in
a mild thermal scenario, ambient temperatures around
14◦C and initial BAT temperature 22◦C, can be com-
pared. Concerning the goal of keeping the battery within
optimal temperatures, it can be seen in the middle plot
that NMPC reaches the optimal range about 4 km faster
than the standard control strategy. Once inside this range,
the slope decreases to maintain the BAT at this level.
Moreover, the second goal, the electric consumption
shown in the plot on the bottom, is reduced by 6%. The
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cycle mild.

NMPC success in multiple objective achievements can
be seen in detail in Fig. 8.

Focusing on the temperature and consumption related
costs of NMPC, blue line in the top and middle plot in
Fig. 8, respectively, three differentiated strategic phases
for the control can be derived: 1) Battery heating phase
(blue area in Fig. 8) in which the main goal is to bring
the battery temperature to the optimum as it is shown in
the top plot with the faster decrease of the temperature
cost in NMPC inside the blue area. The prize to pay is a
slightly higher electrical consumption as represented in
the middle plot, 2) Energy saving phase (yellow area in
Fig. 8) where the priority is to minimize the actuators
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Fig. 10: NMPC vs standard components and ambient
temperatures in the long cycle mild.

electrical consumption as it can be seen clearly in the
yellow area of the middle plot and 3) Battery cooling
phase (red area in Fig. 8) in which the temperature
costs, this time associated to higher temperatures than
the optimal, are again high enough to invest resources.
Inside the different described phases, the control inputs
from the NMPC strategy show a tendency as it can be
seen in Fig. 9. For heating the BAT, the cooler valve
is bypassed and the circuit valve enables the big circuit
mode that couples the BAT and the PE. As Fig. 10 shows,
this is a clever way to heat the BAT since compared to
it, the PE has a higher temperature and the air flowing
through the cooler a lower one.

Once the optimal temperature is achieved, as shown
in Fig. 10, the cooler is activated as well as the two
circuit mode. The BAT is decoupled from the PE at
this moment, because the PE is warmer and the BAT
is already at its optimal temperature. The reason for the
cooler activation is to dissipate to the air the heat that
is being generated in the PE module due to the road
slope. This way, the constraint of not exceeding 65◦C in
this module is achieved. It must also be said that, in this
phase (yellow area), the battery pump is brought down to
its minimum in order to save energy. As soon as the BAT
temperature starts deviating from the optimal one, about
3◦C, the circuit valve enables and disables the coupling
to the PE circuit intermittently.

B. Long cycle hot

The same cycle was driven under hotter conditions
having been the vehicle parked outdoors, exposed to di-
rect sunlight: average ambient temperature around 20◦C
and initial BAT temperature 31-31.5◦C. Again, despite
some punctual speed discrepancies due to different traffic
situations, the cycles in Fig. 11 are enough similar to be
compared.
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Fig. 11: NMPC vs standard TM results in terms of
temperature accuracy and electrical consumption.
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Fig. 12: NMPC vs standard objective function costs in
the long cycle hot.

As it can be seen in Table II, in this cycle there
is even more potential than in the mild climate case.
The consumption is reduced this time by 8% while the
temperature trajectory is more accurate, temperatures
closer to the optimal range, than with the standard
control. The combination of these two goals leads to a
numerical improvement of 50% in the objective function.
In general, it can be said that the more cooling requiring
the situation is, the more potential NMPC has. This
is due to the fact that the studied cooling circuit has
several heat sinks for actively cooling the components
but no heat sources for heating the battery. That means
that under cold conditions, the only possibility is to take
advantage from the different inertias of the components
in the system while under hot conditions, the many
cooling alternatives lead to completely different results.

The blue and black areas in Fig. 12 show the inter-
vals in which most cooling resources are invested for
NMPC and standard control strategies, respectively. As
it can be seen, NMPC starts investing in keeping the
BAT temperature closer to the optimal sooner than the
standard control strategy. Fig. 13 illustrates the different
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Fig. 13: NMPC vs standard control strategies in the
long cycle hot.

use of the cooling resources of both strategies.
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Fig. 14: NMPC vs standard components and ambient
temperatures in the long cycle hot.

While NMPC invests in the chiller and moderately
in the pumps in an intermittent way to cool down the
BAT temperature, the standard control strategy shows
two clearly differentiated working points: previous to the
black region, it only uses the PE pump and the cooler
valve to cool down the PE and inside the black region, as
soon as the BAT temperature is too far from the optimum
it uses the pumps at full and the fan at medium power.

In Fig. 14 the BAT, PE and ambient temperatures
for both cycles are compared. Although the ambient
temperature at the end of the cycle, last 25 km, is lower
in the standard cycle, the NMPC strategy achieves a
more accurate regulation of the BAT temperature. Notice
also that both PE curves are far away from the critical
temperature of 65◦C for the component, imposed in the
NMPC case by means of a constraint.

C. Constant cycle

The constant driving cycle consists of the entrance to
the highway, first 4 km in Fig. 15, and then the drive on
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Fig. 15: NMPC vs standard TM results in terms of
temperature accuracy and electrical consumption of the

actuators in the constant cycle.

the highway at constant speed of 100 km/h. The highway
road has a considerable slope that, together with the high
speed, leads to the full discharge of the BAT in the 17
minutes duration of the whole cycle. Again, the TM with
the NMPC presents a decrease in the global cost function
c of Table II compared to the standard control. Although,
the electrical consumption of the actuators is increased
by 3.5%, as it can be seen in Fig. 15, the faster heating
of the BAT to the optimal temperature compensates this
loss.

One of the main reasons for these results being less
attractive than in the other driving cycles is that this one
starts at colder temperatures, the initial BAT temperature
is 14◦C, and thus the potential of the system is reduced.
The cooling circuit has several options for cooling the
BAT, the cooler and chiller, but for generating heat it can
only wait to use the heat generated in the PE, which has
a lower thermal mass.

As shown in Fig. 16 and in contrast to the costs within
the long cycle in Fig. 8, here NMPC follows nearly all
the cycle long the same strategy, to reduce the penalty
term cT . Only at the end, after 20 km, it starts to play
with the chiller valve as shows the red arrow in Fig. 16.

It must be added that the fact that this cycle is driven
at constant speed, places the standard strategy in an
advantageous situation, since finite-state machines are
usually defined with several static points at which control
experience is available. Therefore, the less transient and
the more common the driving conditions are, the more
accurate is this method. In this case, the standard finite-
state machine shows two fixed operation points as it can
be seen with the black solid lines in Fig. 17.

Moreover, it must be added that the last 5 km of this
cycle are not as comparable as desired, since as it is
shown in Fig. 18 the ambient temperature in the NMPC
case is around 3◦C above the standard control case.
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Fig. 17: NMPC vs standard control strategies in the
constant cycle.

This fact could be an extra disadvantage for the NMPC
since this happened when the BAT was already close to
the optimal temperature and hence the cooling potential
through the air is less. Furthermore, the presence of some
traffic before ending the cycle, as it can be seen in Fig.
15, leads to a more abrupt deceleration and thus to a
higher heat generation in NMPC, being this a further
disadvantage at temperatures close to the optimal, as it
is the case.

All in all, it can be said that even in an scenario
where the standard control strategy can show its major
performance, the NMPC still achieves a more accurate
TM. It must be also said that the fact that one goal, the
electrical consumption, becomes worse in favor of the
other goal, temperature regulation, is a mere strategic
matter. One of the advantages of the proposed NMPC
strategy is that terms in the objective function, cT and
cP , can be changed or modified to achieve other results.
Compared to a PID tuning method, this calibration is
simpler since the parameters adjusted have a physical
meaning whose effect on the goals can be reproduced
and observed with a limited number of experiments or
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Fig. 18: NMPC vs standard components and ambient
temperatures in the constant cycle.

simulations.

VIII. CONCLUSIONS

In this paper, a real-time NMPC for the Li-ion battery
and power electronics cooling circuit in a PHEV proto-
type has been validated with three different repeatable
driving cycles performed on the road. In all studied
cases, NMPC has shown a significant decrease, from 7%
up to 50%, in the total costs associated to an accurate
and efficient TM when compared to a standard control
strategy based on a finite-state machine.

Analyzing the results according to the two objectives
separately, it can be said that the temperature cost was
reduced in the three studied cases while the electrical
consumption was reduced, between 6 and 8 %, only
in the long cycle tests. In the constant cycle it was
increased by 3.5%. Although the overall cost for this
cycle is already satisfactory, if additionally both goals
should be improved at the same time, it would be quite
straightforward to achieve adjusting the cost functions.
This is a further advantage in comparison with a PID
tuning process where the effect of the P, I and D gains
on the several goals are not so intuitively and directly
attributable to them.

This may seem paradoxical, but there are two reasons
for the constant cycle presenting the most moderate im-
provement of the three cycles. On the one hand, the cold
temperatures in this cycle reduce considerably the poten-
tial of the control strategy because the studied cooling
circuit cannot generate any other heat than the induced
by the Joule Effect. On the contrary, in a hot scenario
as in the long cycles studied, the heat dissipation can be
done to the ambient air or to the A/C circuit through the
several actuators, thus leading to many control options
for cooling the components. Therefore, it can be said
that under complex situations with many control options
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NMPC methods show the highest potential. On the other
hand, the untapped potential of the standard strategy is
reduced in a quite steady cycle such as the constant cycle,
because finite-state machine are usually designed using
measured data at several stationary points. Nevertheless,
it was shown that even in this situation, the NMPC is able
to grasp part of the untapped potential of the standard
strategy.

Finally, it must be concluded that the OCP formulated,
by means of a simple and accurate model, and the DMS
and RTI algorithm implemented in MUSCOD-II, have
led to an NMPC control strategy that has shown a stable
and real-time capable performance. Future works will be
focused on the improvement through the use of a driving
cycle prediction and the mixed-integer optimal control
problem (MIOCP) formulation and solution.
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