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Abstract

In this paper, a fault-tolerant control (FTC) scheme is proposed for actuator faults,
which is based on tube-based model predictive control (MPC) and set-based fault detec-
tion and isolation (FDI). In the class of MPC techniques, tube-based MPC can effectively
deal with system constraints and uncertainties with relatively low computational complexity
compared with other robust MPC techniques such as min-max MPC. Set-based FDI, gen-
erally considering the worst case of uncertainties, can robustly detect and isolate actuator
faults. In the proposed FTC scheme, fault detection (FD) is passive by using invariant sets,
while fault isolation (FI) is active by means of MPC and tubes. The active FI method
proposed in this paper is implemented by making use of the constraint-handling ability of
MPC to manipulate the bounds of inputs. Whenever after the system has been detected
to become faulty, the input-constraint set of the MPC controller is adjusted to actively ex-
cite the system for achieving FI guarantees on-line, where an active FI-oriented input set
is designed off-line. In this way, the system can be excited in order to obtain more extra
system-operating information for FI than the passive FI approaches. Overall, the objective
of this paper is to propose an actuator MPC scheme with FI conservatism and computa-
tional complexity as little as possible by combing tube-based MPC and set theory under the
framework of MPC, respectively. Finally, a case study is used to show the effectiveness of
the proposed FTC scheme.

Keywords: Fault detection, fault isolation, set-theoretic method, fault-tolerant control,
model predictive control.

1 Introduction

In general, all technical systems are prone to faults. In a controlled system, if the plant itself is
more reliable than the used sensors and actuators, when the closed-loop performance deviates
from its normal situation, it is possible to find sensors and/or actuators that have become faulty.



As faults can result in abnormal operation/failure, effectively dealing with faulty situations for
technical systems is an important specification to assess the global performance of those systems.
The objective of FTC is to maintain satisfactory performance for the controlled system even in
the presence of faults. In general, FTC is divided into passive FTC (PFTC) and active FTC
(AFTC) [2]. PFTC deals with faults by using controller robustness while AFTC handles faults
after obtaining fault information by fault diagnosis techniques. The former is relatively easy to
be implemented but only has restrictive fault-tolerant ability. Moreover, the larger the number
of faults is, the worse the control performance is. Comparatively, AFTC is more flexible because
it contains a fault diagnosis module to obtain the real-time fault information. With the obtained
fault information, AFTC can deal with the faults more effectively. The fault diagnosis procedure
embedded in an FTC scheme generally includes three steps: fault detection, fault isolation and
fault estimation. Although AFTC is the topic of the proposed FTC scheme, this paper focuses
more on the FD and FI tasks and assumes that actuator-fault magnitudes are known in advance.
However, for FTC based on fault estimation and accommodation, the readers are referred to the
works such as [6], [7] and [20]. Additionally, due to relatively low complexity and the ability of
dealing with system constraints, MPC is chosen as the control strategy for the proposed scheme
[4, 11, 22]. As an optimization-based method, robust MPC itself has a degree of PFTC ability
with respect to additive uncertainties [3].

In [13], an actuator FTC scheme using feedback-gain control and invariant sets was proposed,
where a bank of controllers were designed to handle faults in different actuators and the FDI
task was implemented by using invariant set-based passive FDI methods. However, this scheme
does not consider constraints on system variables and needs to wait until the residual has entered
into its invariant set to isolate faults. In [19], a fault-tolerant model predictive control (FTMPC)
scheme using the Kalman filter was proposed, which focused on the implementation of an FTMPC
scheme without addressing in detail the features such as feasibility. In [23], an actuator FTMPC
scheme with invariant set-based FDI was presented, which had relatively low complexity because
of the use of invariant sets for FDI. However, due to the passive implementation of FDI, the
set separation-based FDI condition is more conservative, which implies the loss of potential
FDI and FTC performance to some extent. The same authors extend the previous approach
to the sensor case using a multisensor scheme [24]. In [16], an FTMPC scheme using set-
membership FDI was proposed. This work used an approach that combined passive FD and
active FI but used a different implementing method. The active FI method proposed in [16] can
reduce FI conservatism but at expenses of high computational complexity due to the requirement
of computing fault-separating inputs online. Moreover, the proposed scheme in [16] does not
provide guaranteed FI conditions to check whether the considered faults are isolable or not in
advance.

Since faults in actuators and sensors generally have different features, the current paper
focuses on the actuator faults by exploiting the potential of the proposed scheme. In particular,
the objective of this paper is to propose a new scheme of actuator FTMPC to not only obtain
less conservative FI and FI guarantees but also implement FTC with relatively low complexity.
The proposed FTC scheme can also obtain a balance between FI complexity and conservatism.
In the scheme, FD is passively implemented with invariant sets and FI is actively carried out by
using MPC and tubes that can isolate faults during the transition induced by faults.

The principle of active FI consists in adjusting the input-constraint set of MPC controller to
an off-line designed Fl-oriented input set that can guarantee FI. In real time, whenever a fault
is detected, the designed input set is used as the temporary input-constraint set of the MPC
controller to implement FI during the transition. Moreover, since this input set is constructed
off-line, guaranteed FI conditions can be verified off-line by using invariant sets and established
on-line by MPC controller for on-line FI guarantees. The proposed FTC scheme is shown in 1,
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Figure 1: Actuator FTMPC scheme

where NS denotes Nominal System and the subscript & is only used to show that the discrete-time
system is considered in this paper.

The advantages of the proposed scheme are twofold. First, a new actuator FTC scheme
integrating MPC with set-based FDI to retain their advantages is proposed. Second, a new active
FI strategy based on tube-based MPC to obtain FI guarantees and a balance of FI conservatism
and complexity is implemented. The work presented in this paper is inspired by preliminary
results by the authors shown in [21].

The remainder of this paper is divided into five sections. Section II, introduces the proposed
FTC scheme. Section IIT presents the FDI strategy based on invariant sets and tubes. Section
IV introduces the FTC approach. In Section V, a case study is used to show the effectiveness of
the proposed scheme. Finally, Section VI gives some conclusions on the approach.

Note that, in this paper, the inequalities are understood element-wise, O, I and diag(:)
denote the zero, the identity and the diagonal matrices with suitable dimensions, respectively, ||
represents the element-wise absolute value, B" is a box composed of r unitary intervals and &
and © notate the Minkowski sum and Pontryagin difference, respectively.

2 System Description
2.1 Plant Model

It is assumed that the monitored system is described by a linear discrete time-invariant model
including actuator faults, disturbances and noises:

Tht1 = Azxy + BFuy, + wy,
yr = Cxp + g,

where A € R"*" B € R™*P and C € R?7*"™ are constant parametric matrices, z € R", u; € RP
and y; € RY are the state, input and output vectors at time instant k, respectively, wr and ny
are unknown process disturbances and measurement noise vectors, respectively and F' is used to
model actuator modes (healthy and faulty) important/critical for system performance/safety.

In (1), matrix F' incorporates the considered actuator modes. During real-time operation, a
mode switching implies a change of the value of F' (i.e. fault occurrence or system recovery to
the healthy situation). Moreover, F' is assumed to be constant for each mode but time-variant
during the whole dynamical behaviors where mode switchings are included.



Assumption 2.1 Disturbances and noises wy and ny are unknown and bounded by sets

W={weR": |w—-w’ <, (2a)
V={neR: [n—n°| <, (2b)
respectively, where w®, n°, @ and 7 are assumed to be known and constant vectors. ([l

Assumption 2.2 Considered faults Single, abrupt and multiplicative faults are considered and
the faults are assumed to be persistent, namely the duration of the faults is longer than the
detection and isolation time needed. O

Under Assumption 2.2, it can be observed that F' can take p+ 1 different values, i.e., ' = F;
(1€1=4{0,1,2,...,p}). Fp is the identity matrix denoting the healthy actuator mode while F;
(i # 0) modeling the i-th actuator-fault mode is denoted as

i
Fy=diag(l ... 1f;1...1), 3)

where f; is a scalar inside the interval [0, 1), which models the actuator-fault magnitude of the
i-th actuator.

Notice that it is possible to extend the proposed FTMPC scheme to deal with sensor faults,
multiple faults and additive faults. For example, if there are more elements rather than a single
element different to "1" in the fault-modeling matrix F', the proposed method can be used to
handle multiple faults (see [17]).

Assumption 2.3 Stabilizability and detectability The pairs (A, BF;) for alli € T and (A,C) are
stabilizable and detectable, respectively. O

In this scheme, the input and state constraints are taken into account, which are denoted as

X ={z eR": |z —2z° <z}, (4a)
U={ueRl: |u—u| <au}, (4b)
respectively, where the vectors ¢, u®, ¥ and @ are known and constant. W, V', X and U defined

in (2) and (4) can be rewritten into zonotopes. Thus, in this paper, all set manipulations are
implemented by zonotopes. The notion of zonotopes is given in Definition .1 in Appendex 6.

2.2 Output Setpoints

It is mentioned that p 4+ 1 actuator modes are considered. Thus, the proposed FTMPC scheme
should have p+ 1 different nominal models, each corresponding to one mode. For the i-th mode,
the corresponding nominal model is given as

Ty, = AT} + BFu, + w°, (5a)
U = Ca) +11°, (5b)
where 4y, T and 7 denote the nominal input, state and output vectors, respectively. For

simplicity, it is considered that w® and 7°, representing the centers of the sets in (1a) and (la),
are zero vectors.



The control objective under the i-th mode is to regulate the output vector around a given
setpoint y, i.e., in the absence of uncertainties,

lim (yx —y;) — 0. (6)
k—o0

In this paper, the model in (5) does not consider w® and 7n° for simplicity of explaination.
By using (5), a state-input setpoint pair (z7,u}) corresponding to y; in the i-th mode can be

computed by
A—-I BF| |zf| |0
et L) g

(3

However, without loss of generality, in the case that w® and 7° are non-zero, w® and n°¢ can
be added into (5a) and (5b), respectively.

Assumption 2.4 State-input setpoint pair For the i-th mode, the equation (7) is solvable for all
1€l (]

¥, u}) corresponding to y; can be ob-

Under Assumption 2.4, a state-input setpoint pair (z}, u}
tained by solving (7) or degrading the expected performance (i.e., changing the output setpoint)
in order to guarantee that (7) is solvable. For a given mode, (7) may have multiple solutions
(i.e., the state-input setpoint pair may be not unique) or no solution. Thus, the designer should
decide a satisfactory state-input setpoint pair according to particular requirements. Addition-
ally, although the given output can be time-variant (i.e., tracking problem), only the regulation

problem is considered in the current paper.

2.3 Observers and Controllers

The tube-based MPC technique used in this scheme is based on [12]. As in [12], for each MPC
controller, a state observer is designed. Thus, a bank of observers should be designed to match
all modes, each observer matching one mode !. Correspondingly, the observer matching the j-th
(5 € I) mode is designed as

ji—i—l =(A- Ljo)i“i + BFjuy + Ly, (8a)
i = Ci, (8D)

where fi and gi are the estimated states and outputs, respectively, and L; is the j-th observer
gain matrix that is selected to stabilize the observer dynamics (8), which is always possible under
Assumption 2.3.

In order to control the system under different actuator modes, a bank of tube-based output
feedback MPC controllers are used, each corresponding to one mode. The nominal system
corresponding to the i-th mode is obtained by neglecting wy and 7 in (5).

According to [12], the control law of the i-th tube-based MPC controller is

up, = U + Ki(&), — z},), 9)

where K is the corresponding feedback-gain matrix.

IThis is similar to the idea used in the Multiple Model Adaptive Estimation (MMAE) approach where a bank of
parallel Kalman filters, each with a different model, is used. However, in the MMAE approach [5], the hypothesis
testing approach is used to determine which is the model with the highest likelihood to explain the input/output
data.



3 Fault Detection and Isolation

3.1 System Analysis

In the i-th mode, F takes the value Fj;, and the i-th tube-based MPC controller, the i-th state-
input setpoint pair and the i-th observer are used in the closed-loop system. Moreover, the state
estimation error of the j-th observer is defined as

i = ap — 1. (10)
Regarding the superscript notation .Z'k’] ) the first index means the i-th system mode, the
second index denotes the j-th observer and the third index denotes that the i-th controller is
currently selected for closed-loop operation. Thus, Z;”"* denotes the state estimation error of the
j-th observer when the current closed-loop system is in the i-th mode and with the i-th MPC

controller.
If j # i in (10), the dynamics of Z;”" can be derived by using (1), (8) and (9) as

Bl =(A— L;O)ap" + B(F — Fy)ip +wie — Link
+ B(F; — Fj)K;(%}, — 7},), (11)
and the corresponding output-estimation error of the j-th observer can also be derived as
U7 =y — g1, = CFT + . (12)
Moreover, in the i-th mode, the term #i — Zi appearing in both (9) and (11) is denoted as
ek =, - 7, (13)
whose dynamics can be derived by using (5) and (8) as

623_11 (A+BFK)Z”+LC~Z”+Lmk, (14)
where 5:2” corresponds to the case 7 = 4 in (10) and its dynamics can be obtained from (11),
ie.,
~7,1,% ~1,1,% Wk
Ty = (A= LiC)z"" + [I — L] ol (15)
Due to wy € W and n,, € V, a robust positively invariant (RPI) set of 562”, denoted as X’i’i’i,
can be constructed. In this paper, the notion of RPI sets and the method to construct the RPI
sets are based on (8], [9] and [14], which are given in Appendix 6.
As long as 77" € X" holds, 7},"" € X1 % always holds for all k > k*. Similarly, considering
% e Xt and N, € V, an RPI set of ek *, denoted as E%%¢ can be constructed by using (14).
For the i-th mode, if a fault is detected, an 1nput set U} is defined for FI analysis as

Ui={a' eRP: ai—aif’c‘ <}, uy° € RP,u% € RPY,

which should be employed whenever a fault is detected and supposes that
uj, € U},

where ﬂ}’c and @ are constant and known vectors.



Remark 3.1 Input-constraint set for FI In this paper, an active FI strategy is proposed. The
rationale of the FI strategy is that, after FD, the input-constraint set of the i-th optimization
problem corresponding to the i-th MPC' controller is adjusted (to U}) to restrict inputs to values
that can excite the plant to enable FI. Besides, U} will only be used for FI when the system is in
the i-th mode after FD. Moreover, U’ is different from the input-constraint set U. Likewise, in
the proposed FI strategy, after a fault 1s 1solated and simultaneously the system is reconfigured,
Uf will not be used any longer. At this stage, Uf s introduced in order to help the readers
understand the following proposed FI method. However, the detailed introduction of Uf will be
given in Section 4. O

Similarly, if considering ep™" € E»» and @} € U} in (11), an RPI set of Z 717" denoted as

X®3 can be determined. Furthermore, the set of the corresponding output—estlmation error is
§idi _ oxiii e v, (16)

For the particular case j = 4, the output-estimation-error set 1:’”71' corresponding to X b5t
can also be determined and used for FDI. Generally, the RPI sets X*** E*** and X"7* should
be as small as possible, being ideally tight approximations of the minimal RPT set.

3.2 Fault Detection

The FD approach used in this paper is a passive approach based on invariant sets, which can
simplify the FD task into only testing whether or not the residual is inside its corresponding
invariant set. The advantage of the used FD method consists in its low computational complexity.

Considering (11) and (14), since wx, € W and n,, € V, if 4}, € (_]} always holds, it can be
observed that, as long as e}’ € E»* holds, #}"* € X*J% (j # i) can always hold. However, if
considering (15), it can be seen that X% is mdependent of the effect of e’ % and s while B¢
is dependent of X i Thus, theoretically, the most convenient way to detect faults is to test the

~le

inclusion ¥ ” b X2, But, practically, since Z, " is not obtainable, instead, only the signal
gy"" can be used. Thus, the first criterion for FD is to test whether or not

~1’LZ YZ’L’L (17)

is violated in real time. If a violation of (17) is detected, it means that a fault has occurred.
Otherwise, it is considered that the system still operates in the i-th mode.

Although (17) can be used for FD, if only (17) is used, the fault sensitivity of the proposed
FTC scheme will not be fully exploited. The reason is due to the fact that even though (17)

holds, it cannot be guaranteed that the inclusion xzz e X holds too, which means that the

Z?’L ~1,1,1

detection of g, € Y7 has a different fault sensitivity from that of ;"' € X®*7. In this case,
it is necessary to consider the second FD criterion to describe this s1tuat10n, i.e., to test whether
or not

vt e ghit (18)

2Under the framework of the proposed FTC scheme, the mode switching has several different cases including
the situations from the heathy mode to a faulty mode, from a faulty mode to another faulty mode and from
a faulty mode to the healthy mode. However, without loss of generality, the terms and/or concepts fault, fault
occurrence, fault detection and fault isolation are used in this paper for generally denoting mode, mode switching,
mode-switching detection and mode-switching isolation, respectively.



is violated in real time. If (18) is violated, it also implies that a fault has occurred. Note that,
as aforementioned, the FD criterion (18) can indirectly describe the inclusions corresponding to
the other observers, i.e.,

gt e Y A (19)

Thus, the FD strategy of this proposed FTC scheme is to use both (17) and (18). As long as
either of them is violated, it implies that the system has become faulty.

Remark 3.2 Fault detection The simultaneous use of the criteria (17) and (18) means that
the system information captured by all the observers has been used for FD. Additionally, for the
proposed FD strategy, even though some faults occur, it is possible that the FD criteria (17) and
(18) are not violated. This means that these faults cannot be detected and will not actively be
tolerated under the framework of this proposed active FTC scheme. Instead, they can only be
tolerated to some extent by the PFTC ability of the proposed scheme. O

3.3 Fault Isolation
3.3.1 Behaviors after Faults

In the scheme, the FI task is started up after a fault is detected by the proposed FD strategy.
In order to describe the FI strategy, without loss of generality, it is assumed that the I-th (I # )
fault occurs, i.e., after that, the system mode changes from 4 to [. Although the mode changes
from i to [, before the fault is isolated and the system is reconfigured, the closed-loop system
structure will not change yet, which implies that the closed-loop system is still composed of the
same controller and observer during the FI phase.

According to (1), (5), (8) and (9), when the I-th fault occurs, the state-estimation error of

the j-th observer changes from z;’" to i’i@’ﬂ " with the dynamics

Bl =(A = L;O)a" + B(F) — Fy)u + wy, — Ly
+ B(F — Fj) Kie"' (20)
and eff’i in (14) changes to eéfi’i with the dynamics
ey = (A+ BEK;)ey™ + LiC#"" + L. (21)

In order to collect all the available system-operating information for fault diagnosis after the
[-th fault from the i-th mode, a vector is defined as

il _ [0, RR: SLpd Ly
wo= [y Ty Ty ]

According to (20) and (21), the dynamics of £;~! can be obtained as

Gt = A&+ Bisatiy, + B wr, + E7 i, (22)



where

rA—LoC O - O B(F—-F)kK;
A= O A-L,Cc-- O B(F-F)K;
i—l =
o) O - A—L,C B(F—Fp)K;
L o L,C - O A+BF;K;

[ B(Fi—Fo) I —Lo
_ | B(F—F; |1 n | -L;
Bi—)l = (F 2 ) Eri»l - ) E17_)l = ‘
B(F,~Fp) l ~Lp
L o o L;

Remark 3.3 Stability Under Assumption 2.3, the observer and feedback gains Lo, L1,..., Ly
and Fy, Fi, ..., F, can be designed to make A,_,; a Schur matriz for all i, I € I. With (22), the
closed-loop system can be stable by designing the observer and feedback gains and the parameters
of open-loop optimization problem of the tube-based MPC controller, see [12]. (]

Furthermore, if considering ﬂ}c € U}, wr € W and n,, € V, an RPI set of f,’;"l can be

constructed, which is denoted as Z7!. By projecting =~ towards the component space, an

RPI set of each component of f,i_” can be obtained. For example, an RPI set (denoted as Xl )

of 502” can be obtained by projecting Z7! to the space of iﬁc’j’i. Similarly, an RPI set (denoted

as EL) of eif’“ can be constructed. This implies that, after the [-th fault, 5:2“ and esf’i will
converge into X" and E“%  respectively. Moreover, with (1b), the set of the corresponding

output-estimation error can be obtained as
ybit = oXbii g V. (23)

In the case that the system mode switches from 4 to [, all sets of output-estimation errors
can be constructed, which are listed in Table 1. Note that, in Table 1, each row excluding the
i-th one corresponds to one candidate mode after the mode switching from the i-th one.

Table 1: Sets of output-estimation errors

’ ‘ Observer 0 ‘ s ‘ Observer i ‘ Observer p
Mode 0 Yy 0,0: 0, 70.p.i
Modei | ¥ioi | .. | yaes ||y
Mode p yP.0i e Y Pt . y PP

3.3.2 Residual Tubes

Generally, the residual is defined as a signal sensitive to faults and with a manageable magni-
tude. In this FTC scheme, the output-estimation errors are defined as the residual signals. The

dynamics of #5 extracted from (22) are used for the FI implementation, which has the form

By =(A = LiO)i" 4wy, — L, (24)



while #59% (j # ) will not be used for the direct FI implementation but for the establishment of

guaranteed FI conditions. By using W and V to replace wy and 7y, the set-based description of

L .
LEtand gp' can be obtained as

X =(A-LOXM oW e (L), (25a)
v =cXiM e V. (25b)

Proposition 3.1 Estimation-error tubes Given that the l-th (I # i) fault occurs when the system
is in the i-th mode and the state-estimation error xﬁq*l of the l-th observer is bounded by a set
Xpb at time instant kx, if Xpb' is used to initialize (25) to generate tubes, Ty € XM and
gebt e YU will hold for all k > kx.

Proof : Since (25a) considers the worst case of the uncertain factors wy and nj, in (24), if at time
instant kx*, mél . X,i*l " holds, it implies that xl b X,i’l " and gjil ot Ykl’l’l will always hold for
all k > kx. O

It is assumed that the [-th fault is detected at time instant k4 when the system is in the i-th
mode. If an initial set is used to initialize (25a) at time instant kg, the tubes corresponding to

the state and output estimation errors generated by (25) can be denoted as

L, Ll Ll Ll
Tpbb ={ X Xy X, ) (26a)
l l,3 Ll Ll Ll
Tyb —{yhbi b oy (26b)

That initial set is used to initialize the dynamics (25) to generate tubes for FI and introduced
here for the discussion of the FI method. The detailed constructing method for set initialization
will be presented in Section 3.3.4.

When the system is in the i-th mode, a violation of (17) or (18) implies that a mode changing
from ¢ to another unknown mode has occurred (this unknown mode is denoted as f € I\ {i}),
i.e., there are p mode candidates except for the i-th one. Thus, for FI, all the p output-estimation
error tubes 'ﬁ‘zdl“ (I € I\ {i}) have to be obtained. At time instant k4, the proposed FI algorithm

generates p output-estimation-error tubes Tz;l’l’i (I € T\ {i}), each corresponding to a candidate
mode. Moreover, for the p corresponding observers, as long as

~fili — L .
FC XM f el (i) (27)
are guaranteed at the FD time such that
~fli —~ Ll
AR Faul (28)

Therefore, this implies that, among the p generated output-estimation-error tubes after FD,
there exists at least one tube (here it is assumed that this tube corresponds to the m-th actuator
mode) that can always satisfy

gt Y k> kg, m e T\ {4} (29)

If the fault is indexed by I (i.e., f =1) and (27) is satisfied, for all k& > kg, 'ﬁ‘zdl“ can always

satisfy g,{“ C Yé“ This implies that the fault will be indicated by one of the p tubes that can
always satisfy (29).

10



3.3.3 Fault Isolation Approach

In order to isolate a fault, it has to guarantee that one and only one tube can always satisfy its
corresponding inclusion (29) after FD and then the fault can be indicated by the index of this
tube. Based on this idea, guaranteed FI conditions are established in Proposition 3.2.

Proposition 3.2 Guaranteed FI conditions When the system is in the i-th mode, for any ob-
server out of the p+1 observers (assume that it is indexed by j ), if all the p+1 output-estimation-
error sets corresponding to this observer (i.e., the p+ 1 sets in the j-th column of Table 1) can
satisfy

P
Yrrn |yt =g, 1#4, 4,4, 1€l (30)

1=0
once a mode changing from the i-th mode to another considered mode is detected at time instant

kq, this mode can be isolated during the transition induced by the mode changing by searching
the output-estimation-error tube that satisfies (29) for all k > kqy.

Proof : As concluded, 'ﬁ‘y’j’j’i will converge into Y77, If (30) holds, ']Tzd]“ is able to confine the

output-estimation error g, by

Y,J,J,0 ~lJZ
de

only under the condition [ = j. If [ # j, at the first several steps,

is able to confine ¢,”"* due to the initialization condition (27). But, as 'ﬂ“ydj " approaches

Y3t ghht diverges from ’I['y 77 This implies that, under the condition (30), by searching the
tube that is always able to conﬁne yk’j " after FD, the fault can be isolated. O

3.3.4 Construction of Initial Sets

As mentioned in (26), one of the key points of the proposed FI strategy consists in constructing
the initial sets of state-estimation errors, which satisfy (27) at time instant k4 to initialize (25)
in order to generate the output-estimation-error tubes. For the j-th observer, according to (12),
it can obtain

Crt e " @ (V) oy

3% can be obtained in real time, it is always possible to construct a zonotopic

In (31), since g,

set containing Z) ” ‘ at the FD time. In [1], a method computing a zonotope containing the
intersection of a strlp and a zonotope is given in Property .4. Based on this method, a zonotope
containing ’j * can be constructed by considering (31) composed of ¢ inequalities (1 e., strips).
Besldes the method proposed in [10] can also be used to construct a zonotopic set containing
562’] **. This method can compute a zonotopic approximation of the intersection of a zonotope
and a polytope. With this method, (31) is considered as a whole that describes a polytope to
construct an initial zonotope, which can be seen in Property .5.

7]1

Remark 3.4 Construction of initial sets If C' is invertible, a set bounding .7 can be directly

obtained by (31) with the inverse of C. If C' is not invertible, an initial zonotope to bound I, ’J ‘
can be obtained by the method in Propositions .4 or .5. In the second case, it may need to gwe
a zonotopic starting set for the methods in Propositions .4 and .5 and this set can be designed

according to the physical constraints of the system. (I

According to (31), it can be observed that, for the j-th observer, the expression of (31) is
independent of system mode changing. This means that (31) can always be used to construct a
set to bound the state estimation error of the j-th observer in any mode. Since X, U, W and V
can be rewritten as zonotopes, from the computational point of view, all tubes are generated by
using zonotopes.
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4 Fault-tolerant Control

4.1 Steady-state Behaviors

In the proposed FTC scheme, the system operation is divided into the transient-state and steady-
state phases. The steady-state operation corresponds to the situation that all relevant system
signals corresponding to a system mode are inside their corresponding bounding sets, respec-
tively. Comparatively, the transient-state operation describes the operating process between
fault occurrence and the steady-state operation of the mode corresponding to this fault. In this
paper, these two operations will be discussed, separately. This subsection focuses on the system
behaviors during the steady-state operation.

At steady state of the i-th mode, the tube-based MPC technique proposed in [12] is adopted
to implement FTC and the control law of the i-th one is given in (9). For the tube-based MPC
controller (9), the key part ﬂ}c is the open-loop optimization problem based on the i-th nominal
system as in (5).

X and U are the hard system constraints that imply the indirect constraints on the nominal
system-based open-loop optimization problem. In the i-th mode, the indirect input constraint is
computed via (9), i.e., o

up = Uy + Kiep"".
As per Section 3.1, at steady state of the i-th mode,
i ¢ i

should hold. Thus, the input-constraint set of the open-loop optimization problem can be ob-
tained as

a, €U =U o K;E""". (32)

Additionally, taking o

_ it 50,0
Tp =2, +e] +x

into account, the hard state-constraint set for the steady-state functioning can be described as
i€ X' = X o (BE" @ XV, (33)

Assumption 4.1 Indirect constraint sets In the i-th mode, X' and U* are non-empty for all
i el O

The non-emptiness of X* and U’ is the precondition for using the tube-based MPC technique.
Assumption 4.1 is a well-known and accepted condition in the field. Under Assumption 4.1, the
open-loop optimization problem of the i-th tube-based MPC controller, based on the i-th nominal
system (5), has the following form

N-1 _ )
Ji = min 35 @~ a DI, + N ),
2

2
P;

+H(§32+N|k —x7)|
subject to fﬁ;ﬂ‘ke ):(l,
u§f+j‘k€ UZ? (34)
z € X
k+N|kS AT

7l — 7,
Lhik™ Ths
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where @' = [a};lk, %+1|k> cee 7:‘;;:+N71|k] is the optimized control sequence over the horizon N, Q;
R; and P; are positive-definite matrices and X i is the corresponding terminal state constraint set.
The purpose of adding the terminal constraint in (34) is for feasibility and stability. In (34), X%
is defined as the mazimal control invariant (MCI) set of the i-th nominal system corresponding
to the nominal constraint sets X* and U? such that the i-th tube-based MPC controller is feasible
(see Definition .6 in Appendex for the MCI sets). As mentioned in Remark 3.3, the tube-based
MPC controller can be designed to make the closed-loop system stable, see [3] and [12] for the
details of tube-based MPC.

4.2 Transient-state Behaviors before FD

As aforementioned, after fault occurrence, the system leaves from the steady-state operation and
enters into the transient-state operation. Different from the steady-state operation of the i-th
mode, the fault occurrence implies that the system mode changes from the i-th one to another
one that will be denoted by an index [ (I # i).

In order to analyze the transient-state behaviors induced by a fault, the transient-state op-
eration is divided into three different phases. The first phase starts from the occurrence till
detection of the fault, the second phase starts from the detection to isolation of the fault and
the third one begins from system reconfiguration to the steady-state operation of the [-th mode.
Considering that the second and third phases of the transition correspond to the FI task, this
subsection only focuses on the first-phase transition and the other two transient-state phases will
be discussed in the next subsection.

Remark 4.1 After-fault behaviors When the system is in the i-th mode at the beginning, after
the I-th fault, ;""" and e™" will change into gjif” and e;’“, respectively. O

During the first phase of the transition, even though the [-th fault has occurred, the FD
criteria (17) and (18) still hold, i.e., _
gi;l,l c yhii
and N o
el ¢ i,
Although the FD criteria (17) and (18) still hold during the first phase of the transition, it cannot
be guaranteed that

Fte Xt (35)

can still hold, which can be observed from (20) and (21). This problem is is inevitable. Be-
cause the satisfaction of (35) cannot be guaranteed, during this transient-state phase, the state
constraint N N
oy =L Fep i e X
may be violated. However, notice that, during the first phase of the transition, the input con-
straint N
up = Uy + Kieic’“ eU

always holds under the satisfaction of Assumption 4.1 and eﬁc’i’i € E%»'. As mentioned, since the
problem indicated in (35) is inevitable, the satisfaction of the state constraint has to be assumed
during this phase.

Assumption 4.2 First-phase transition During the first-phase transition, the inclusion x =
Fho+ el + 7 e X always holds. O

13



Considering that the open-loop optimization problem in (34) is not affected by the real system,
then its feasibility can always be preserved during the first phase of the transition. Moreover,
during this phase, the closed-loop system is still composed of the same elements with the i-th
fault-free mode. Although the I-th fault has occurred, the process considers that the system still
operates in the i-th mode as long as both state and input constraints are satisfied.

4.3 Transient-state Behaviors during FI

The active FI task corresponds to the second phase of the transition. During this phase, it is
already known that a fault has occurred in the system. Thus, the most important objective
is to isolate the fault. The basic FI principle here is to directly change the input-constraint
set of the i-th open-loop optimization problem on the i-th nominal system to indirectly change
the input set of the plant to force the satisfaction of the proposed FI conditions by means of
the constraint-handling ability of the open-loop MPC optimization problem behind the MPC
controller. In this way, the plant input vector can be confined into a predefined set U} to excite
the system and to obtain more system-operating information for FI implementation. Note that
U} for active FI has already been briefly introduced in Remark 3.1.

As observed from (22) and (23), when the system mode changes from i to [, the sets of the
state and output estimation errors are determined by the sets of ﬂ;lw wg and 7 and the fault
magnitudes if it is considered that the observer and feedback gains have already been designed.
Without explicitly considering the observer and feedback gains, a function is used to describe the
sets of the output-estimation errors to help the readers understand the proposed FI approach,
ie.,

Yt = UG W), G # (36)

which implies that whether the guaranteed FI conditions in Proposition 3.2 hold or not depends
on adjusting the set of the nominal inputs ut. Note that Y is decided by W and V and is
free from the effect of U}.

Assumption 4.3 Input-constraint set In the i-th mode, for all i € I, there exists an input set
U} such that the FI conditions proposed in Proposition 3.2 are satisfied. O

Thus, under Assumption 4.3, at the time instant when a switching from the mode 7 to [ is
detected, if @, can always be confined inside the FI input set U} by the open-loop optimisation
problem of the i-th MPC controller, the FI conditions in Proposition 3.2 can be forced to hold
on-line by U} and then the FI approach proposed in Section 3.3 can be used to isolate the fault.
Thus, when the system is in the i-th mode, the tube-based MPC controller has two objectives:

e steady-state operation (including the first-phase transition): no fault is detected and the
main task is to achieve system performance. Thus, in order to make full use of the poten-
tial performance of the system, the input-constraint set U? is used for the i-th open-loop
optimization problem.

e transient-state operation (only the second phase): a fault is detected and the main task is
to isolate the fault and reconfigure the system to obtain satisfactory performance even in
the presence of the fault. During this stage, the proposed FI approach actively adjusts the
input-constraint set of the i-th open-loop optimization problem from U’ to U} at the FD
time kg to establish the FI conditions on-line, which is the proposed active FI strategy.

During the second phase of the transition (i.e., the FI process), in addition to guarantee
the satisfaction of the FI conditions, the feasibility, stability and constraint satisfaction of the
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controller and system should also be considered. The optimization problem (34) is updated by
directly using the nominal state from the nominal prediction model. The nominal states are
generated by the nominal prediction model free from the effect of the real system. Thus, as long
as the i-th open-loop optimization problem can be designed to be feasible, the feasibility feature
of the optimization can be preserved during the whole FI process if the constraints X and U are
not considered. Since the set of the nominal input vector of the i-th nominal system is adjusted
for FI, the feasibility of the i-th optimization problem should be preserved by using a new pair
of constraint sets.

Thus, during the FI process, except that the input constraint of (34) is switched from U?
to U} to establish the FI conditions on-line, the state and terminal constraints are accordingly

switched from X* to )_(} and )_(% to X fiT, respectively. The set )_(} is the state constraint set

of (34) for the FI process and X o is a control invariant (CI) set of the i-th nominal system
corresponding to uj, € U} and zj, € X%. The sets Uy and X} are a pair of designing parameters
used to guarantee FI and constraint satisfaction in this FTC scheme.

Remark 4.2 Transient constraint satisfaction During the FI process, from the mode i to I,
U} @ Kiei’” € U and )_(} D eﬁc’” D ji’” € X should hold such that the hard input and state
constraints are not violated, which is the precondition of the proposed FTC scheme and is used
to ensure the availability of the tube-based MPC technique. The satisfaction of this condition can
be affected by system dynamics, faults, U} and X}. This means that a proper pair of U} and X}
should be designed to guarantee the effectiveness of the proposed FI strategy. (Il

Based on the explanation of Remark 4.2, in order to ensure the availability of the proposed
FTC scheme, Assumption 4.4 is further made.

Assumption 4.4 Transient constraint sets There exists a pair of U} and X} such that the
constraints uy, € U and xp € X are not violated during the whole FI phase. (I

Notice that the selection of the pair (ur € U and zp € X) plays an important role in the
proposed FTC scheme. Since the methodological procedure of selecting that pair is out of the
scope of this paper, U} and )_(} have been selected by trial and error towards the suitable opera-
tion of the proposed approach. During the FI task, in addition to the constraint satisfaction, the
feasibility and stability of the i-th open-loop optimization problem with a new pair of constraint
sets should be guaranteed as well. Based on the optimization (34), to guarantee its feasibility,
the nominal states generated from the nominal system internal model inside its terminal state
constraints should always be confined in the MCI set. Thus, at the FD time k4, when switching
the constraints of the i-th open-loop optimization problem for active FI, the nominal state i‘};d
should be considered for the sake of feasibility.

Proposition 4.1 Transient-state feasibility During FI, if :E}c € sz‘T holds at time instant k,
(34) will be always feasible at the next time instants.

Proof : Since XfiT is a CI set of the ¢-th nominal system under the constraint sets U} and X} and

the ¢-th optimisation problem is open-loop, :E}i e X sz implies the feasibility of the optimization
problem at all the next time instants according to the definition of the CI sets. O

For the proposed FI strategy, the constraint sets of the i-th open-loop optimization should be
adjusted for FI implementation at the FD time k;. Thus, based on Proposition 4.1, the following
strategy is proposed to guarantee the feasibility of the MPC controller during FI:

o if a’c};d €eX fiT, (34) is always feasible during the FI process according to Proposition 4.1.
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Figure 2: Flow chart of FTC

o if i};d ¢ X'fiT, the centre of X'f; is used to update (34) to guarantee feasibility at time
instant k4. For k > kg, at one time instant kx, if 7. € Xf;, the feasibility of (34) can
always be guaranteed for all k > k*. Otherwise, the centre of XfiT is still used to update
(34) till the inclusion zi € X fiT is satisfied at one time instant k& > k4.

The aforementioned strategy to guarantee the feasibility is from a practical viewpoint. More-
over, since the set operation and representation are based on zonotopes, X sz should also be a
zonotope and its center can always be obtained to update the open-loop optimization problem
as a remedial measure.

During the second phase of the transition, the feasibility of both the open-loop optimization
and constraint satisfaction problems can be guaranteed by using the aforementioned method.
However, another important aspect of the proposed FTC scheme is the stability of the closed-loop
scheme. Generally, to guarantee this feature, two points should be considered: the stability of the
closed-loop dynamics, which can be guaranteed by Remark 3.3, and the feasibility and stability
of the open-loop optimization problem (34), which can be guaranteed by using the terminal-state
constraint and selecting suitable control parameters as shown in (34). Particularly, this paper
follows the procedure presented in [12] in order to design a stabilizing tube-based MPC controller.

4.4 Transient-state Behaviors after FI

In the FTC scheme, when a fault is isolated at time instant k;, at the same time the system
should be reconfigured with a different tube-based MPC controller that corresponds to this new
mode. After the controller adjusting, the FTC scheme will face the same feasibility problem
as that during the second phase of the transition: it is assumed that the [-th actuator mode
is isolated. Thus, the [-th tube-based MPC controller with the corresponding input and state
constraints should be used, the I-th observer is used to obtain the state estimation and the I-
th nominal system is used to generate the nominal states for the I-th open-loop optimization
problem.

In order to guarantee the feasibility after system reconfiguration, two methods are proposed.
The first one is similar with the second-phase transition, which uses the center of X! to update
the [-th open-loop optimization problem till at one time instant when

zh e Xb

holds. The second method is to use a state value a’c%ﬁ € X! to initialize the I-th nominal system

and open-loop optimization at the FI time instant k;. With either of the two methods, according
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to Proposition 4.1, the feasibility of the [-th open-loop optimization problem can always be
preserved after reconfiguration. Additionally, the system can also keep stable during this phase.

During this third-phase transition, except for the feasibility, stability and constraint satisfac-
tion, it still needs to guarantee the right restart of the FD mechanism. After system reconfig-
uration, the closed-loop system is operating in the I-th mode. Thus, the restarting of the FD
mechanism should be considered to monitor the mode-switching behaviors in this new mode.
However, since in the FTC scheme, the implementation of FD is based on invariant sets, if the
FD mechanism is simultaneously restarted when the system is reconfigured, it is possible that
the FD strategy creates false FD alarms. This situation will appear if the signals g}é’l’l and eiﬂ’l’l
do not enter into their respective sets Y-b! and EL5E This implies that for the sake of right
restarting, it should be guaranteed that all signals gfj’l and eﬁf’l’l have already entered into their
respective sets.

In this paper, there are also two methods to avoid the false FD alarms. The first one is to
set a waiting time and as long as this waiting time is sufficiently long, after the waiting time,
the signals can enter into their sets and the restarting of the FD mechanism can be done in the
right way. The second one is that, after reconfiguration,

LU O 1l
Y € yhbl and ey € Ehb

are tested until at a time instant both inclusions hold. Then, at this time instant, the FD
mechanism is restarted in the new operating mode to avoid false FD alarms.

Remark 4.3 Waiting time The waiting time can be arbitrarily defined as long as it can assure
the right restarting of the FD mechanism such that the aforementioned false FD alarms can be
avoided. However, it is better to define the waiting time with proper length based on the settling
time of the system. (Il

4.5 Fault-tolerant Control Procedure

In previous sections, the FDI and FTC approaches have been introduced in detail. In this
subsection, the key point is to make a brief summary for the proposed FTC scheme, which is
presented as follows:

e it is assumed that the system is at steady state of the i-th mode. The FD task consists in
real-time testing whether (17) or (18) is violated or not. If no violation is detected, It is
considered that the system is still in the i-th mode. Otherwise, it implies that a fault has
occurred in the system.

e once a fault is detected at time instant kg, the active FI approach will be started up
to isolate the fault by adjusting the constraints of (34) from X*, U* and X! to X%, Us

and X fiT, respectively, to satisfy the FI conditions on-line. Notice that the corresponding
methods to guarantee the feasibility should be used during this phase.

e simultaneously, at k = kg, p output-estimation-error tubes (26) are initialized by using
initial sets constructed by (31). For each tube, (29) is tested in real time. Whenever a
tube violates (29), the index of this tube is removed from the fault candidates until there
is one and only one tube left, which implies that the fault is isolated and that the index of
this only left tube indicates the fault.

e once the fault is isolated (it is assumed that the fault is indexed by 1), the I-th observer, the
l-th tube-based MPC controller and the [-th state-input pair are selected to reconfigure the
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us

Figure 3: Two-tank system

system (now the constraint sets should be X}, U ch and X flT for the new MPC controller,
respectively). Notice that the corresponding methods to guarantee the feasibility of the
I-th open-loop optimization and the right restarting of the FD mechanism should be used.

e after the system enters into the steady state of the [-th mode, the whole working procedure
of the proposed scheme will be revisited to monitor this new mode and the control objective
is to regulate the system around the corresponding setpoint.

To further help the readers understand the the approach proposed in this paper, a flow chart
describing the FTC procedure is presented in Figure 2, where the whole procedure is divided
into five steps: FI conditions, fault detection, fctive fault isolation, Fault-tolerant control and
steady-state operation.

5 Illustrative Example

A two-tank system taken from [18], shown in Figure 3, is used as the example to illustrate the
proposed FTC scheme. The mathematical model of this two-tank system can be found in [15].
With a sampling time of 0.01s, the dynamics of the system can be represented in discrete-time
form as

Tp1 = Aqxy + BaFiuy + Eqwy, (37a)
Yk = Caz + Nk, (37b)
with

0.975 0 10
Aa = [0.025 0.975]  Ca= [o 1] ’
0.1 —0.05 01 0
Ba= [0 0.05}’Ed {0 0.1]’

where F; is used to model the actuator statuses (healthy or faulty), respectively, and it is further

assumed that |w| < [0.001 0.001]" and |n| < [0.001 0.001]"".
In this case study, faults in actuators are considered. In total, there are three actuator modes
considered, i.e., Fy (healthy mode), F; (a fault the first actuator) and Fy (a fault the second

actuator):
10 05 0 1 0
Fo{o 1}’F1{0 1}’F2[0 0.5]'
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The water levels of the two tanks should vary within a range because of the phylical limita-
tions. Moreover, actuators also have a limited range of operation. Thus, the system state and
input constraints describing the limits of water levels and valves are set as

ool [ <os ]}
- el

-1
Based on (37), three observers with the form (8) are designed, each matching one actuator
mode. Without loss of generality, the same poles are defined for the three observers for simplicity,
i.e., p=0.2, 0.1]7. Thus, the three designed observer gains are

1
1

1
1

0.775 0

Lo=hi=L= [0.025 0.875} '

Correspondingly, three tube-based MPC controllers corresponding to the three modes are
designed to control the system, whose feedback gains are designed as

Ko [—0.7913  —0.3189]
07102199 —0.4766°

o [—0.6727 —0.3012]
"7 103532 —0.4109]°

o, — [F0-8097  —0.3052]
701161 —0.3142)"

In this example, the output setpoints for the three actuator modes are given as

o]

Associated with these output setpoints, the state and input setpoint pairs are

*

Yo =Yi =Y =

o = [0.1] o = 0.0125 ]
07 0.05]70 " |-0.025]"
o [0.1] oyt — | 0-025
17 0.05) 0 1T [—0.025]°
oo [0.1] u 0.0125]
2700057 27 [-0.05]"

In this example, two fault scenarios are considered, each one corresponding to one actuator
fault:

e Scenario 1: from time instants 1 to 75, the system is healthy and from 76 to 150, the first
actuator fault occurs.

e Scenario 2: from time instants 1 to 75, the system is healthy and from 76 to 150, the second
actuator fault occurs.
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For these two scenarios, after the the fault occurrence, a pair of active FI input and state
sets needs to be designed for the nominal MPC optimization problem of the healthy tube-based
MPC controller, which are presented as

o [ o2 0.4
Uf{“' {0.2 SUS o4
S0 1 —0.973 0.973
Xy _{x' [—0.9306 =TS 0.9306) [
Remark 5.1 State-input sets for active FI The set pair U}) and XJQ is not unique. If only the

implementation of FI is considered, any set pair that satisfies the proposed FI conditions can be
used for active FI. O

IN

Without loss of generality, only scenarios from heathy to faulty are considered to illustrate
this FTC scheme. Thus, corresponding to U}), the after-fault sets of output-estimation errors
of the two actuator-fault modes switched from the healthy mode can be constructed, which are
shown in Figure 4. Figure 4 shows that the active FI set UJQ can satisfy the guaranteed FI
conditions in Proposition 3.2. This implies that, after detection of either of the two faults, it is
guaranteed that the fault can be isolated by using the proposed FI approach.

For comparison, Figure 5 shows the after-fault sets without active FI. In this case, the after-
fault output-estimation-error sets from the healthy mode should be constructed by using the
input set U° that can be computed by (32) (see Figure 5). In Figure 5, the sets Y11% and Y2207
are relatively small and shows that if the proposed active FI strategy is not used, it cannot be
guaranteed to isolate the faults after FD.

Note that, in Figures 4 and 5, the sets }71107 37210, }7220, }7110", Y210m and V220" are outer-
bounding interval hulls of the corresponding invariant sets for simplicity of computation, which
do not affect the checking of the proposed FI conditions.

Remark 5.2 Notations In the Figures 6, 7, 8, 9, 10 and 11, the notations E°°(1), ei%(1),
Y000(7), ¢i09(1), Y1), V222(1), gi°(1), §:2°(1) and y(l), u(l) denote the I-th components of
E00.0, 62,0,0, Yy 00,0, g}j”o, Ykl’l’l, Y5’2’2, gj}c’l’o, g;ﬁo, y and u, respectively. Since the output

matriz is the identity matriz, the figure of system states is omitted here for simplicity.

For the first fault scenario, the FD results are shown in Figure 6, where §3%°(1) ¢ Y°%°(1)
indicates that a fault is detected at this time instant. Thus, the proposed active FI process
is activated at the time instant k = 86. Furthermore, it is obtained that g}’ € Yg#! and
720 ¢ Y& hold, which implies that the fault in the first actuator has occurred. Then, the whole
system is reconfigured to tolerate the fault. Accordingly, the inputs and outputs of Scenario 1 are
presented in Figures 8, which show that the proposed FTC scheme can tolerate this fault with
satisfactory performance. Moreover, all the constraints can be well satisfied during the whole
process.

For the second scenario, the simulation results are shown in Figures 9, 10 and 11. In Figure 9,
it is shown that an actuator fault is detected at time instant & = 80 because §0°(1) & Y%0(1)
is detected. Thus, at the FD time k& = 80, the active FI process is started as seen in Figure 10.
Similarly, in Figure 10, 7i!° and §/2° correspond to the first and second observers, respectively.
It can be observed that §ii° & }781111 and §i3° € 5782122 hold, which implies that the second
actuator fault is isolated at time instant k¥ = 81. Once the second fault is isolated, the system
is reconfigured by the corresponding MPC controller and state-input setpoint pair. The results
in Figures 11 show that, although the output performance has a slight degradation, the AFTC
strategy can generally obtain the satisfactory performance and the constraints are always well
satisfied.
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Figure 4: After-fault sets with active FI
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Figure 5: After-fault sets without active FI

Remark 5.3 Restarting of FD mechanism In order to avoid false fault alarms, whenever the
system is reconfigured, a waiting time of 20 sampling times is set. During the waiting time, the
FD mechanism is frozen till this period elapses. Then, the FD mechanism is restarted again to
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Figure 10: FI of fault 2

monitor a new mode.

6 Conclusions

In this paper, an actuator FTC scheme combining tube-based MPC and set-theoretic FDI are
proposed. In the scheme, FD is passive by using invariant sets and F1 is active by relying on MPC
and tubes, which is the most important contribution of this paper. The use of tube-based MPC
and set-theoretic FDI is interesting because their relatively low computational complexity, FDI
robustness and their proper combination to implement the proposed active FI strategy. Thus,
the proposed FTMPC scheme owns robust FDI performance, low computational complexity and
less conservative FI conditions. The key of this FTC scheme consists in designing the input
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Figure 11: System outputs and inputs of scenario 2

and state sets for active FI. In this paper, these sets are chosen by off-line trial and error as a
pragmatic method, which can be improved if a systematic designing method can be proposed
for the input and state FI sets in the future. It should be emphasized that the proposed FTC
scheme cannot detect all faults. Thus, for undetectable faults, the PFTC ability of this scheme
can still tolerate them to some extent despite a possible degree of performance degradation may
appear. Due to tube-based MPC, the advantages of the proposed FTC scheme consist in its
relatively simple structure and less conservative active FI. In the future, the authors will focus
on designing state-input constraint sets to further improve this FTC scheme.
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Definition .1 Zonotopes An r-order zonotope Z is defined as Z = g@® HB", where g and H are
its center and segment matriz (or generator matriz), respectively.

Definition .2 Interval hull The interval hull OZ of a zonotope Z = g & HB"™ C R™ is the
smallest box containing Z, i.e.,

0Z ={x:|zi — gi| <| Hi |1},

where H; is the i-th row of H, x; and g; are the i-th components of x and g, respectively.

Property .1 Minkowski sum of zonotopes Given two zonotopes Z; = g1 & H1B™ C R" and
Zy=go® HyB™ CR", Z1 & Zy = (g1 + g2) ® [Hi Ha]B" 72,
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Property .2 Multiplication of zonotopes Given a zonotope Z = g ® HB" C R"™ and a suitable
matric K, KZ = Kg® KHB".

Property .3 Reordering of zonotopes Given a zonotope Z = g @ HB" C R™ and an integer s
(with n < s < r), denote by H the matriz resulting from the reordering of the columns of the
matriz H in decreasing Euclidean norm. Z C g ® [I;TT Q|B® where Hr is obtained from the
first s —n columns of the matriz H and Q € R™" is a diagonal matriz whose elements satisfy

Qii:Z;:s_n+1|FI¢j |, 1=1,...,n.

Property .4 Intersection of a zonotope and a strip Given a zonotope Z = g & HB" C R", a
strip S = {x € R" | |cx — d| < o} and a vector X € R", then ZNS C Z(\) = g(\) © HA)B™!
holds, where G(A\) =g+ Md —cg) and H\) =[(I — Ae)H o).

Property .5 Intersection of a zonotope and a polytope Given a matriz A € R™*™  a zonotope
Z = g@® HB", and an H-polytope P = {x € R" : |Cx — d| < [¢1, P2, ..., |}, with C € R™*",
deR™, ¢, e Ry (i=1,2,....,m), define a vector g(A) = g+ A(d — Cg) and a matric fI(A) =
[(I—AC)H A®], with a diagonal matriz ® = diag(p1, P2, ..., om). Then a family of zonotopes
(parameterized by the matriz A) that contains the intersection of the zonotope Z and the polytope
P is obtained as ZN P C Z(A) = g & HB™ ™.

Definition .3 RPI set A set X is an RPI set of the dynamics xx11 = Axy + wy, if for z, € X
and wy, €W, 241 € AX + W CAX (0 < X < 1) always holds.

Definition .4 Minimal RPI set The minimal RPI (mRPI) set of the dynamics xp+1 = Ay +wi
is defined as an RPI set contained in any closed RPI set and the mRPI set is unique and compact.

Theorem .1 Construction of invariant sets Considering the dynamics ry1 = Axy + Bdy, where
A and B are constant matrices and A is a Schur matriz, 0y, belongs to A = {5 : |6 —6°] < 6}
with §° and & constant, and letting A = VAV ™! be the Jordan decomposition, the set

o) =z eR": |[V7'z| < (I —|A)" |V 'B|6+ 6}
®E°, (38)

is RPI and attractive for the state trajectories, with 0 any (arbitrarily small) vector with positive
components, where £° = (I — A)~tB§°:

1. For any 6, the set ®(0) is (positively) invariant, that is, if xg € ®(0), then x € () for
all k > 0.

2. Given 6§ € R™,0 > 0, and z¢ € R", there exists k* > 0 such that xj, € ®(0) for all k > k*.
Definition .5 CI set A set X C X is a CI set of the dynamics 41 = Axy + Buy if for any
x € X, there always exists ux, € U such that xx41 € X for all k > 0.

Definition .6 MCI set A set Xy C X is said to be the MCI set of the dynamics xpy1 =
Axy + Buyg, if it is CI and contains all CI sets inside X.
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