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Abstract. This paper presents a nonlinear model predictive control (NMPC) strategy
combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter
describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs
and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling
errors of the control-oriented model of full dynamics can be transformed into the inequality
constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the
updated constraints generated by constraint satisfactions. Finally, the simulation results applied
to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

1. Introduction
The quadcopter has become one of the most popular unmanned aerial vehicles (UAVs), which
attracts considerable attention in both academia and industry. Due to its simple structure
and flexible flight ability, the quadcopter is playing a significant role in applications such as
video surveillance, agricultural service, mapping, goods delivery and other military applications
[1, 2, 3].

The motion of a quadcopter relies on the rotation of four propellers to generate thrusts and
to control its attitude and position. In general, a simultaneous increasing/decreasing of angular
speed of four propellers will make the quadcopter fly upward/downward. When keeping the
vertical component of total thrust from four propellers equal to the gravity of quadcopter, the
quadcopter can be controlled to fly forward/backward or /leftward/rightward by increasing the
angular speed of one propeller and simultaneous decreasing the angular speed of the propeller
on its centrosymmetric position, respectively. Additionally, simultaneous increasing the speed of
one pair of propellers centrosymmetric to each other and decreasing the speed of the other pair
can control the quadcopter to rotate in horizontal plane. However, due to the nonlinear dynamics
and high degrees of couplings between different control channels, to achieve high-performance
control of quadcopter is still an issue full of challenges.



The control problem of quadcopter has been widely investigated by using a variety
of approaches such as proportional-integral-derivative (PID) control, backstepping control,
feedback linearization, linear quadratic regulator and model predictive control (MPC). In [4, 5,
6], the PID control was used to control the quadcopter with the objective of achieving robustness
and fault tolerance. The application of backstepping control and feedback linearization to the
quadcopter could be found in [7, 8, 9, 10]. Related to the topic of the current paper, we can also
find MPC control of quadcopter in [2, 11, 12], where a common feature of these works is that
they are based on the linear MPC techniques.

Commonly, the quadcopter is normally considered as a system with high nonlinearities and
fast dynamics. Although it is possible to achieve some control objectives by using a linearized
model or a group of linearized models to approximate the nonlinear dynamics of quadcopter,
we have to face a degree of performance degradation. Motivated by this point, we propose to
directly use the nonlinear MPC technique to control the quadcopter. In this case, we can not
only simultaneously obtain better performance but also make use of the inherent capability of
MPC, i.e., explicit constraint handling, which is very helpful to deal with the constraints on
states, inputs and outputs. Additionally, turning to the constraint-handling capability, MPC is
quite convenient to be used for tolerance of faults in actuators (i.e., motors of quadcopter) by
adjusting its input constraints, which is also of vital important interest of many works [13, 14].

The main contribution of this paper is to present a nonlinear MPC (NMPC) strategy
combined with constraint satisfactions for a quadcopter. Paritial nonlinear constraints and
modeling errors are updated through the procedure of constraint satisfactions. Then, the NMPC
strategy is implemented by solving a nonlinear optimization problem through the nonlinear
programming technique. As a result, simulation results by applying the proposed NMPC
strategy to a quadcopter simulator implemented in MATLAB environment are shown in order
to verify the effectiveness of the proposed MPC strategy. Besides, comparison results show the
performance of the proposed MPC strategy.

The remainder of this paper is organized as follows: The nonlinear dynamics and control-
oriented model of the quadcopter are briefly introduced in Section 2. The constraint satisfaction
for the quadcopter control is addressed in Section 3. In Section 4, the NMPC design for the
quadcopter is presented. The simulation results as well as comparisons results with different
uncertain cases based on a quadcopter simulator are shown in Section 5. Finally, some
conclusions are written in Section 6.

2. Nonlinear Dynamics of the Quadcopter
2.1. Quadcopter Dynamic Description
The motion of the quadcopter is generated by the lift forces produced by the rotating propeller
blades, where the translations and rotations are realized by manipulating the difference between
velocities of four rotors. The quadcopter has 6 degrees of freedom (attitude and position)
according to the earth-fixed frame. The position of this helicopter is described by the position
vector [x, y, z]T and its attitude is defined by three Euler angles (pitch, roll and yaw) as [φ, θ, ψ]T ,
where these three angles are assumed to satisfy the following constraints [15]:
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− π ≤ ψ ≤ π. (1c)

Consider the earth-fixed frame as inertial frame and body-fixed frame with the origin in the
mass center of the quadcopter. It is further assumed that the body of quadcopter is rigid and



symmetric. The dynamics of the quadcopter can be characterized by a set of continuous-time
differential equations as follows [2]:

φ̈ = θ̇ψ̇a1 + θ̇a2Ωr + b1U2, (2a)

θ̈ = φ̇ψ̇a3 − φ̇a4Ωr + b2U3, (2b)

ψ̈ = φ̇θ̇a5 + b3U4, (2c)

z̈ = −g + (cosφcosθ)U1/m, (2d)

ẍ = (cosφsinθcosψ + sinφsinψ)U1/m, (2e)

ÿ = (cosφsinθsinψ − sinφcosψ)U1/m, (2f)
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(3)

and the parameters of the quadcopter are defined as

a1 =
Iyy − Izz
Ixx

, a2 =
Jr
Ixx

, a3 =
Izz − Ixx
Iyy

,

a4 =
Jr
Iyy

, a5 =
Ixx − Iyy

Izz
,

b1 =
`

Ixx
, b2 =

`

Iyy
, b3 =

1

Izz
.

where Ω1, Ω2, Ω3 and Ω4 denote the speeds of four rotors, respectively, Ixx, Iyy and Izz are the
moments of inertial of the quadcopter around three body axes, respectively, Jr is the propeller
rotational moment of inertia, ` denotes the arm length of the quadcopter, b and d represent thrust
and drag coefficients. Besides, the constraints on the rotor angular speeds can be formulated by

0 ≤ Ωi ≤ Ωmax
i , i = 1, 2, . . . , 4, (4)

where Ωmax
i denotes the maximum angular speed of the i-th rotor.

It is noticed that the dynamic model in (2) for designing the MPC controller is a simplified
one, where some modeling errors are ignored, such as the wind resistances. In the simulation,
the uncertain simulator model including some modeling errors will be used.

2.2. Control-oriented Model of the Quadcopter
Considering the dynamic equations of the quadcopter in (2), the variables of system states and
inputs are chosen as

x ,
[
φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

]T
, (5a)

u , [Ω1 Ω2 Ω3 Ω4]T . (5b)

Then, by means of the Euler discretization method, the discrete-time control-oriented model
of the quadcopter can be generally formulated as

x(k + 1) = F(x(k),u(k)) + w(k), (6a)

y(k) = G(x(k)) + v(k), (6b)



where x(k) and u(k) denote vectors of system states and inputs defined in (5) at time instant k,
respectively. F(·) denotes the nonlinear mapping function describing the system dynamics in (2)
and (3). G(·) represents the measurement function based on the characteristics of the available
sensors. Besides, w(k) and v(k) denote the vectors of the system disturbances of modeling
errors and the measurement noise of sensors at time instant k, respectively.

The quadcopter operates under some constraints, which can be written as follows:

xmin ≤x(k) ≤ xmax, (7)

0 ≤u(k) ≤ umax, (8)

where xmin denotes the vector of minimum values of the system states, xmax and umax denote
vectors of maximum values of system states and inputs.

2.3. Partial Nonlinearity Embeddings
Depending on (3), it is clear that the selected input of the quadcopter Ωi is hidden in

[U1, U2, U3, U4,Ωr]
T . Hence, the virtual inputs of the quadcopter are chosen as

ũ , [U1, U2, U3, U4,Ωr]
T . (9)

Therefore, the nominal and uncertain control-oriented model of the quadcopter (6) can be
reformulated with the virtual inputs as

x(k + 1) = F(x(k), ũ(k)) + w(k), (10a)

y(k) = G(x(k)) + v(k). (10b)

3. Constraint Satisfactions for the Quadcopter Control
In this section, the constraint-satisfaction approach is used to find the suitable bounds of the
defined virtual inputs (9) in order to guarantee the consistency (3). The utilized constraint-
satisfaction approach relies on an interval-based method, which has been popularly applied in
the robotics [16]. The interval-based constraint-satisfaction approach can be implemented by
a procedure of the forward and backward propagations to refine the value range from wide
intervals to short ones including eliminating the impossible values violated from some defined
equality and inequality constraints.

3.1. Constraint-Satisfaction Approach
As introduced in [16], a constraint-satisfaction approach on sets can be formulated as a 3-tuple
H = (Z,D, C), where

• Z = {z1, z2, · · · , zn} is a finite set of variables.

• D = {D1,D2, · · · ,Dn} is the set of domains of the variables.

• C = {c1, c2, · · · , cn} is a finite set of constraints, where each constraint ci is specified by
the pair (Zi,Ri), in which Zi, that is called as the constraint scope, is a subset of Z and
Ri, that is called as constraint relation, is a relation indicating the allowed combination of
values for the variables belonging to Zi.

The contractors are the useful tools for solving the constraint-satisfaction problem [16], [17].
Solving a constraint-satisfaction problem consists in finding all variable assignments such that
all constraints are satisfied. The variable value assignment (ẑ1, ẑ2, · · · , ẑn) ∈ D is a solution of
H if all constraints in C are satisfied. The set of all solution points of H is called the global
solution set and denoted by S(H). The variable zi ∈ Z is consistent in H if and only if ∀ẑi ∈ Di,

∃(ẑ1 ∈ D1, · · · , ẑn ∈ Dn)



such that (ẑi, · · · , ẑn) ∈ S(H).
The solution of a constraint-satisfaction problem is said to be globally consistent if and only

if every variable is consistent. A variable is locally consistent if and only if it is consistent with
respect to all directly connected constraints. Thus, the solution of the constraint-satisfaction
problem is said to be locally consistent if all variables are locally consistent. An algorithm for
finding an approximation of the solution set of a constraint-satisfaction problem can be found
in [16].

3.2. Constraint Satisfactions for the Quadcopter Control
As aforementioned, partial nonlinearities in (3) are embedded into the control-oriented model
of the quadcopter. Therefore, u(k) is replaced by ũ(k) in (9). The constraints on u(k) and
Equation (3) are transformed into the new constraints on ũ(k). The constraint-satisfaction
approach for the quadcopter control along the MPC prediction horizon Hp is implemented by
using the following algorithm.

Algorithm 1 Constraint Satisfaction applied to the Quadcopter
1: for k := 1 to Hp do
2: Xk ⇐ [0,xmax]
3: Uk−1 ⇐ [0,umax]

4: Ũk−1 ⇐ [0, ũmax]
5: end for

6: V ⇐
X︷ ︸︸ ︷

x(1),x(2), . . .x(Hp),

U︷ ︸︸ ︷
u(0),u(1), . . . ,u(Hp − 1),

Ũ︷ ︸︸ ︷
ũ(0), ũ(1), . . . , ũ(Hp − 1)

7: D ⇐ X1,X2, . . . ,XHp ,U0,U1, . . . ,UHp−1, Ũ0, Ũ1, . . . , ŨHp−1

8: C ⇐ Equation (3)
9: H ⇐ V,D, C

10: S = solve(H)
11: Implement the new constraint S into the MPC optimization problem.

4. Nonlinear Model Predictive Control of the Quadcopter
4.1. Closed-loop NMPC Scheme
The closed-loop NMPC scheme is shown in Figure 1. The constraint-satisfaction approach
presented in Algorithm 1 is solved off-line and the updated constraints can be found. A path
planner is usually required to generate a reference trajectory in order to let the quadcopter track
it, where the reference trajectory contains not only the position vector [x, y, z]T but also the
attitude of the quadcopter ψ. In this paper, the NMPC controller is divided into two layers: In
the upper layer, a nonlinear optimization problem is proposed in order to control the quadcopter
to track the given references generated by the path planner and subsequently the virtual inputs
ũ(k) can be obtained. In the lower layer, the actual input can be computed by solving a set
of algebraic equations. Besides, when there are no enough sensors available in the quadcopter
to feedback the values of the system states, an observer for the quadcopter is also required, for
instance, the zonotopic extended Kalman filter proposed in [18]. Finally, a quadcopter simulator
is used to test the effectiveness of the proposed NMPC controller.

4.2. The Upper Level: Nonlinear Optimization Problem
The MPC prediction model of the quadcopter is chosen by the nominal model of (10) without
considering system disturbances and measurement noise. The constraints on system states x(k),
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Figure 1. The closed-loop simulation scheme of the NMPC strategy with constraint
satisfactions for the quadcopter

the virtual inputs ũ(k) at time instant k can be denoted as

0 ≤ x(k + i | k) ≤ xmax, i = 1, 2, . . . ,Hp, (11a)

0 ≤ ũ(k + j | k) ≤ ũmax, j = 0, 1, . . . ,Hp − 1. (11b)

The control objective of the quadcopter is mainly towards controlling the quadcopter to
track the given position references and attitude references both generated by the path planner.
Therefore, the cost function for the NMPC controller mainly includes two parts: a tracking part
of the minimization of the deviations between x, y, z and ψ with their references xr, yr, zr and
ψr and a smoothness part with the minimization of the slew rate of the virtual inputs, which
can be defined as

L(x, ũ) ,
Hp∑

i=1

(
λx`x (x9(k + i | k), xr(k + i))

+ λy`y (x11(k + i | k), yr(k + i))

+ λz`z (x7(k + i | k), zr(k + i))

+ λψ`ψ (x5(k + i | k), ψr(k + i))
)

+

Hp−1∑

j=0

λ∆u`∆u (ũ(k + j | k)) , (12)

with

`x (x9(k + i | k)) = ‖x9(k + i | k)− xr(k + i)‖2 , (13a)

`y (x11(k + i | k)) = ‖x11(k + i | k)− yr(k + i)‖2 , (13b)

`z (x7(k + i | k)) = ‖x7(k + i | k)− zr(k + i)‖2 , (13c)

`ψ (x5(k + i | k)) = ‖x5(k + i | k)− ψr(k + i)‖2 , (13d)

and

`∆u (ũ(k + j | k)) = ‖∆ũ(k + j | k)‖2 , (14a)

∆ũ(k + j | k) = ũ(k + j | k)− ũ(k + j − 1 | k), (14b)



where λx, λy, λz, λψ and λ∆u denote the weights for each objective and ‖·‖2 denotes the 2-norm
operator.

The selected observer, here the zonotopic extended Kalman filter in [18], can be written as

x̂(k) = χ(y(k)), (15)

where x̂(k) denotes the estimated full states at time instant k and χ(·) represents the model-
based observer function based on the model of the quadcopter in (2).

In general, the NMPC strategy in the upper layer can be implemented by solving the following
nonlinear optimization problem Pq(k):

Problem 1 (NMPC-Quadcopter Problem)

min
ũ∗(k|k),...,ũ∗(k+Hp−1|k)

L(x, ũ), (16a)

subject to

x(k + i+ 1 | k) = F (x(k + i | k), ũ(k | k)), (16b)

0 ≤ x(k + i | k) ≤ xmax, (16c)

0 ≤ ũ(k + i | k) ≤ ũmax, (16d)

x(k | k) = x̂(k), (16e)

x̂(k) = χ(y(k)). (16f)

After solving the nonlinear optimization problem Pq(k) at time step k, a series of the virtual
inputs ũ∗(k | k), . . . , ũ∗(k + Hp − 1 | k) can be obtained. By means of the receding horizon
approach, the first value ũ∗(k | k) is used as the optimal control action ũ∗(k) at this time step.

4.3. The Lower Level: Algebraic Problem
As introduced in the previous subsection, the virtual input can be found by solving the nonlinear
optimization problem. Then, the actual input can be computed after the virtual input obtained
by means of the algebraic problem.

Depending on (3), the virtual input ũ(k) and actual input u(k) has the obvious algebraic
relationship, which can be written as follows:

ũ(k) =




b b b b
0 −b 0 b
b 0 −b 0
−d d −d d


u2(k). (17)

And then the actual input at time instant k can be computed by

u(k) =




b b b b
0 −b 0 b
b 0 −b 0
−d d −d d




− 1
2

ũ
1
2 (k). (18)

The solution u(k) of (17) satisfies the nonlinear optimization problem proposed in the upper
layer as well as (18). Therefore, the solution u(k) can be used for the actual input at time
instant k.



5. Simulation Results
In this section, the proposed NMPC controller combined with constraint satisfactions is tested
using continuous-time quadcopter simulator implemented in MATLAB. In order to evaluate the
inherent robustness of the NMPC controller, the simulator model includes the uncertainties in
(6), which are not explicitly considered in the prediction model in the NMPC controller.

5.1. Simulator Model
Taking into account the uncertainties discussed before, the mathematical model of the simulator
can be formulated as follows:

φ̈ = θ̇ψ̇a1 + θ̇a2Ωr + b1U2 + ω1, (19a)

θ̈ = φ̇ψ̇a3 − φ̇a4Ωr + b2U3 + ω2, (19b)

ψ̈ = φ̇θ̇a5 + b3U4 + ω3, (19c)

z̈ = Kz
a ż − g + (cosφcosθ)U1/m, (19d)

ẍ = Kx
a ẋ+ (cosφsinθcosψ + sinφsinψ)U1/m, (19e)

ÿ = Ky
a ẏ + (cosφsinθsinψ − sinφcosψ)U1/m, (19f)

where ω1, ω2, ω3 ∈ R denote the system disturbances that can be regarded as the Gaussian white
noise following some certain distributions, respectively. Kx

a , Ky
a and Kz

a denote the aerodynamic
friction coefficients for the axes x, y and z, respectively. All the parameters of the quadcopter
are obtained from [2].

The measurement outputs of the quadcopter simulator are selected as

y =
[
ẋ ẏ ż ψ̇

]T
. (20)

5.2. Results
The NMPC optimization problem is solved by using the nonlinear programming technique
implemented through YALMIP toolbox [19] and IPOPT solver implemented in OPTI toolbox
[20]. The constraint-satisfaction algorithm for the quadcopter control is implemented using the
Interval Peeler software [21]. The continuous-time quadcopter simulator is built by means of
the function of ode in MATLAB.

In this work, the reference trajectory is assumed to be available generated by a path planner.
The weights for each objective are set as λx = 10, λy = 10, λz = 10, λψ = 10 and λ∆u = 0.1.
The sampling time is chosen as 0.1s. The NMPC prediction horizon Hp is chosen equal to 10.

Besides, three scenarios are provided in the simulations defined as follows:

• Deterministic scenario:

ω1 = ω2 = ω3 = 0,

Kz
a = Kx

a = Ky
a = 0,

• Resistant scenario:

ω1 = ω2 = ω3 = 0,

Kz
a = 4.36,Kx

a = 2.91,Ky
a = 2.91,

• Noisy scenario:

ω1, ω2, ω3 ∼ N (0, 0.05),

Kz
a = Kx

a = Ky
a = 0,

where N (0, 0.05) denotes the Gaussian distribution with the zero mean and the variance of
0.05.
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Figure 2. Simulation results of x, y, z and ψ for three scenarios

The selected simulation results with the three scenarios are shown in Figure 2 and Figure
3. Four references for x, y, z and ψ are generated by the path planner in red dashed lines. It
can be seen that the control objective of tracking the given references is well achieved for all the
scenarios. The deterministic scenario presents the case that the simulator model is the same as
the prediction model in the controller. In this case, the real trajectories on each axis and angle
can follow the given references with a fast response, which means that the MPC is able to find
feasible solutions with the mathematical model of the quadcopter. For the resistant scenario,
the continuous resistant forces are included in order to simulate the quadcopter is operated in
an environment with the effect of the wind. Consequently, as shown in the simulation results,
the real trajectories of the quadcopter have some delays to reach the references compared to
the deterministic scenario. In terms of the noisy scenario, additive noise following a Gaussian
distribution with zero mean and variance of 0.05 is assumed, which is mainly generated from
sensors located in the quadcopter. Therefore, there exist small deviations around the given the
references on each axis. Besides, four actual control inputs Ω1, Ω2, Ω3 and Ω4 are plots. For the
deterministic and resistant cases, these inputs are quite smooth compared to the noisy case.

The real trajectory in 3-dimensional space ([x, y, z]T ) is plotted in Figure 4. The quadcopter
is controlled to do a set of motions including taking off, moving along x, y and z axis and turning
the head of the quadcopter through changing ψ. As shown in Figure 4, the quadcopter is able
to reach the end point from a given start point for the deterministic and resistant cases. For the
noisy scenario, the quadcopter arrives at an area around the target place (the end point) since
there are small deviations for the each axis. Hence, the tracking accuracy for the quadcopter full-
state control is quite significant. As a result, the quadcopter controlled by the NMPC controller
is able to track the given references.

In reality, the quadcopter could suffer some unexpected disturbances at a certain time. Hence,
it is necessary to test the behavior of the designed NMPC controller under these disturbances.
From Figure 5, two peak disturbances with the same magnitude of 0.5 in ż around two different
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Figure 3. Simulation results of Ω1, Ω2, Ω3 and Ω4 for three scenarios
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directions in z axis are tested. The NMPC controller is able to deal with these disturbances
within some transient periods. In particular, the tracking objective can be guaranteed by using
the proposed NMPC strategy as well.

6. Conclusions
In this paper, an NMPC strategy combined with constraint satisfactions is studied for a
quadcopter to track the given references. From the simulation results, the NMPC controller
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Figure 5. Result of adding disturbances: k=80, a disturbance towards positive z axis and
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is able to provide quite accurate tracking results and the inherent robustness of the NMPC
controller is able to deal with uncertainties.

On the other hand, the nonlinear optimization problem is not easy to be solved compared
with the linear one requiring more time to find a solution. Taking into account the continuous
hardware and software development in the computer science field, the nonlinear programming
technique is expected to find the solution that satisfies the required real-time constraints
allowing the real implementation. Thus, as future research, an important direction is to improve
nonlinear optimization algorithm by some possible ways, such as properly relaxing the nonlinear
constraints and updating the initial guess of the nonlinear solver. Besides, the MPC strategy is
normally considered as a flexible control strategy and a quite good framework for fault-tolerant
control because the system reconfiguration after faults appeared in the control system is easy
to implement in the MPC constraint settings. Hence, as another future work, the fault-tolerant
capability of the proposed control strategy will be investigated.
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