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Abstract— This paper proposes a linear parameter varying
proportional integral unknown input observer (PI-UIO) for
the diagnosis of actuator faults and icing in unmanned aerial
vehicles. It is shown that in presence of sensor noise, the
proposed PI-UIO has the advantage of being affected by the
noise, but not by its derivative. Another contribution of the
paper is the introduction of an icing to wind/noise ratio, which
allows performing an optimal tuning of some PI-UIO design
parameters. Results obtained with a Zagi Flying Wing simulator
are used to validate the effectiveness of the proposed approach.

I. INTRODUCTION

The problem of fault detection and isolation is the problem
of generating diagnostic signals sensitive to the occurrence
of faults [1]. In recent years, this problem has attracted a
lot of attention, and several approaches have been proposed
as possible solutions, e.g. the geometric [1], [2] and the
observer-based [3], [4] ones.

Among the most significant faults that affect aviation
safety, there is icing, i.e. the accretion of ice on aircraft wings
and control surfaces [5]. By decreasing the lift and increasing
the drag and the mass of the vehicle, icing has a profound
impact on the aircraft performance, inducing a safety risk that
can lead potentially to crashing [6]. When an aircraft flies
through clouds at an ambient temperature below freezing,
supercooled water droplets (SWD) suspended in the cloud
can impact the aircraft surface and freeze immediately, thus
accreting the ice [7]. The rate and the severity of icing are
determined by several factors, such as shape and roughness
of the impacting surface, vehicle speed, air temperature and
relative humidity [8].
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Recently, some anti- and de-icing systems for unmanned
aerial vehicles (UAVs) have been proposed. For example,
layers of coating material containing carbon nanotubes, that
can be heated up quickly using an onboard energy source,
have been used to paint the wing surfaces [9]. However,
due to the large power consumption, fault/icing detection
schemes [10] with fast and accurate responses are needed
for assuring high efficiency. The approaches recently applied
to icing detection in aircrafts and UAVs include unknown
input observers (UIOs) [11]–[13], adaptive multiple models
[14] and statistical methods [15]. Furthermore, a linear
parameter varying (LPV) UIO-based icing detection scheme
has been presented in [16], with the main advantage of being
consistent with the aircraft dynamics for a wide range of
operating conditions.

It is known that when noise affects the sensor measure-
ments, proportional integral (PI) observers achieve better
convergence and filtering properties [17]. For this reason,
the study of PI-UIOs has attracted some interest, as tes-
tified by the number of articles dealing with this subject,
e.g. [18]–[20]. The goal of this paper is to improve the
results obtained in [16], where the considered LPV UIO
had only a proportional action. It is shown that when the
sensor noise is included in the problem formulation, the
estimation error dynamics obtained with [16] is affected
by the noise derivative, which has a strong effect on the
achievable performances, due to the high-frequency content
of the noise signal. Even though the noise could be dealt with
using low-pass filters, the optimal design and tuning of such
filters would be a challenging problem, which motivates to
seek alternative solutions for dealing with the noise within
the observer design. For this reason, in order to overcome
the limitation of the proportional UIO, an LPV PI-UIO is
proposed. Moreover, another contribution of this work with
respect to [16] is the introduction of an icing to wind/noise
ratio (IWNR), which allows performing an optimal choice
of some PI-UIO design parameters.

The paper is structured as follows. Section II presents the
quasi-LPV model of the UAV subject to icing and faults.
Section III is dedicated to the design of an LPV PI-UIO for
the actuator fault and icing diagnosis. Section IV validates
the effectiveness of the proposed approach using a Zagi
Flying Wing simulator. Finally, Section V outlines the main
conclusions and suggests some future work.



II. QUASI-LPV MODEL OF THE UAV SUBJECT TO
ICING/FAULTS

Following [16], the longitudinal equations of motion of
an aircraft [21], under low-angle-of-attack condition, can be
brought to a quasi-LPV form using the nonlinear embedding
in the parameters approach [22], [23], as follows1 (see Table
I for a description of the symbols):

ẋ = A(u,w,q,θ)x+B(u,w)υ+d(θ) (1)

where x = (u,w,q,θ)T is the state vector, υ = (δ2
t ,δe)

T is the
input vector, and the matrices A(u,w,q,θ), B(u,w), d(θ) are
given by:

A(u,w,q,θ) =


a11(·) a12(·) a13(·) 0
a21(·) a22(·) a23(·) 0
a31(·) a32(·) a33(·) 0

0 0 1 0

 (2)

B(u,w) =


b11 b12(·)
0 b22(·)
0 b32(·)
0 0

 d(θ) =


−gsinθ

gcosθ

0
0

 (3)

where:

a11(·) =
ρuS
2m

[(
CL0 +CLα

α
)

sinα−
(
CD0 +CDα

α
)

cosα−
SpropCprop

S

]
a12(·) =

ρwS
2m

[(
CL0 +CLα

α
)

sinα−
(
CD0 +CDα

α
)

cosα−
SpropCprop

S

]
a13(·) =−w+

ρScVa

4m

(
CLq sinα−CDq cosα

)
a21(·) =−

ρuS
2m

[(
CD0 +CDα

α
)

sinα+
(
CL0 +CLα

α
)

cosα
]

a22(·) =−
ρwS
2m

[(
CD0 +CDα

α
)

sinα+
(
CL0 +CLα

α
)

cosα
]

a23(·) = u− ρScVa

4m

(
CDq sinα+CLq cosα

)
a31(·) =

ρScu
2Jy

(
Cm0 +Cmα

α
)

a32(·) =
ρScw
2Jy

(
Cm0 +Cmα

α
)

a33(·) =
ρVaSc2

4Jy
Cmq

b11 =
ρSpropCprop

2m
k2

m

b12(·) =
ρSV 2

a
2m

(
CLδe

sinα−CDδe
cosα

)
b22(·) =−

ρV 2
a S

2m

(
CDδe

sinα+CLδe
cosα

)
b32(·) =

ρV 2
a Sc

2Jy
Cmδe

Remark: It is worth highlighting that although (1) is in a
linear form, it is an equivalent representation of the nonlinear
equations that describe the longitudinal equations of motion
of an aircraft (no linearization is performed).

1To ease the notation, the dependence of variables on time t is omitted.

TABLE I
SYMBOLS DESCRIPTION

Symbol Description
u Horizontal velocity relative to the wind
w Vertical velocity relative to the wind
q Pitch rate
θ Pitch angle
g Gravitational acceleration
ρ Air density
S Wing surface area
m Airframe mass
α Angle-of-attack
c Mean aerodynamic chord of the wing

Sprop Area of the propeller
km Efficiency of the motor
Jy Element of the inertia matrix
Va Airspeed with respect to the mass
δt Throttle deflection
Ci Stability and control derivatives

A. Unknown inputs acting on the aircraft

The aircraft may be affected by undesired effects, such
as wind, actuator faults and accretion of ice on its surfaces
(icing).

More specifically, the wind effect is modeled as an additive
disturbance vector W given by:

W =


−cosθ −sinθ

−sinθ cosθ

0 0
0 0

( ω̇x
ω̇z

)
= H1(θ)ω̇x +H2(θ)ω̇z

(4)
where ω̇x and ω̇z are the wind accelerations in the horizontal
and vertical direction in the inertial frame, respectively. The
Dryden model [24], which uses spatially varying stochastic
processes with specified power spectral densities, is used to
represent the components of the wind gusts in a realistic way.

Actuator faults are represented as an unknown input term
F given by:

F =


b11 b12(·)
0 b22(·)
0 b32(·)
0 0

( ϕt
ϕe

)
= B1ϕt +B2(u,w)ϕe (5)

where ϕt and ϕe correspond to faults in propellers/motors
and elevator, respectively.

Finally, the icing effect is modeled as an additive time-
dependent disturbance E(u,w,q)η, where η is the icing
severity factor [25], and E(u,w,q) is given by [16]:

E(u,w,q) =
(

E1(u,w,q) E2(u,w,q) E3(u,w,q) 0
)T

(6)
with:

E1(u,w,q) =
ρV 2

a S
2m

[(KL0CL0 +KLα
CLα

α) sinα (7)

− (KD0CD0 +KDα
CDα

α)cosα

+
(
KLqCLq sinα−KDqCDq cosα

) cq
2Va

+
(

KLδe
CLδe

sinα−KDδe
CDδe

cosα

)
δe

]



E2(u,w,q) =−
ρV 2

a S
2m

[(KD0CD0 +KDα
CDα

α) sinα (8)

+(KL0CL0 +KLα
CLα

α)cosα

+
(
KDqCDq sinα+KLqCLq cosα

) cq
2Va

+
(

KDδe
CDδe

sinα+KLδe
CLδe

cosα

)
δe

]
E3(u,w,q) =

ρV 2
a Sc

2Jy
(Km0Cm0 +Kmα

Cmα
α (9)

+KmqCmq

cq
2Va

+Kmδe
Cmδe

δe

)
where the coefficients Ki depend on aircraft design and
operating conditions [25].

The undesired effects are added as additive terms (un-
known inputs) in the LPV state equation (1), modifying it as
follows:

ẋ = A(u,w,q,θ)x+B(u,w)υ+Bun(u,w,q,θ)υun+d(θ) (10)

where υun = (ω̇x, ω̇z,ϕt ,ϕe,η)
T is the unknown input vector,

and the matrix Bun(u,w,q,θ) is given by:

Bun(u,w,q,θ) = (H1(θ) H2(θ) B1 B2(u,w) E(u,w,q))
(11)

Assuming that the UAV is equipped with airspeed mea-
surement device (pitot tube), GPS and inertial sensors, all
state variables are supposed to be available and hence the
output matrix of the system verifies C = I4×4.

III. ICING/FAULT DIAGNOSIS USING AN LPV PI-UIO

For further reasoning, let us rewrite (10) in a more general
form:

ẋ = A(ϑ)x+B(ϑ)υ+Bun(ϑ)υun +d(ϑ) (12)

where ϑ is some varying parameter vector, containing ex-
ogenous variables, endogenous variables (e.g. states and/or
inputs), or a combination of them.

The output equation is given by:

y = x+ v (13)

where v is the measurement noise.
It can be shown that, by using the proportional UIO

proposed in [16], the dynamics of the estimation error ε =
x− x̂ (with x̂ denoting the state estimation provided by the
UIO) would depend on the noise derivative v̇, which has a
strong effect on the achievable performances, due to the high-
frequency content of the noise signal. In order to overcome
this problem, an LPV PI-UIO is proposed, as stated in the
following theorem.

Theorem 1: Let R(ϑ), F(ϑ) and T (ϑ) be some given
matrix functions, with det (R(ϑ)) 6= 0 and det (T (ϑ)) 6= 0
∀ϑ ∈ Θ, where Θ is the set of possible values for ϑ, and
calculate the following matrix function:

K(ϑ) = T (ϑ)−1 [A(ϑ)+R(ϑ)−1 (Ṙ(ϑ)−F(ϑ)R(ϑ)
)]

(14)

where Ṙ(ϑ) is the time derivative of R(ϑ). Then, an UIO for
the system (12)-(13) is given by:

ż = A(ϑ)z+B(ϑ)υ+d(ϑ)+A(ϑ)T (ϑ)w− Ṫ (ϑ)w (15)
ẇ = K(ϑ)(y− x̂) (16)
x̂ = z+T (ϑ)w (17)

where Ṫ (ϑ) is the time derivative of T (ϑ), with an estimation
error εR = R(ϑ)(x− x̂) that obeys:

ε̇R = F(ϑ)εR +R(ϑ)Bun(ϑ)υun−R(ϑ)T (ϑ)K(ϑ)v (18)

Proof: The estimation error dynamics, taking into account
(12) and (17), is given by:

ε̇R = R(ϑ)(ẋ− ˙̂x)+ Ṙ(ϑ)(x− x̂) = R(ϑ) [A(ϑ)x+B(ϑ)υ · · ·
· · ·+Bun(ϑ)υun +d(θ)− ż−T (ϑ)ẇ− Ṫ (ϑ)w

]
+ Ṙ(ϑ)(x− x̂)

(19)
Considering now (15)-(17), (19) can be rewritten as:

ε̇R =
[
R(ϑ)A(ϑ)−R(ϑ)T (ϑ)K(ϑ)+ Ṙ(ϑ)

]
(x− x̂) · · ·

· · ·+R(ϑ)Bun(ϑ)υun−R(ϑ)T (ϑ)K(ϑ)v
(20)

Then, it is easy to see that (18) results from (20) taking
into account (14), which completes the proof. �

Remark 1: The rotation through the matrix R(ϑ) is needed
in order to obtain a term of the form R(ϑ)Bun(ϑ) in the
estimation error equation (18). As shown in the following,
this term is of paramount importance in order to achieve the
unknown input effect decoupling.

A. Unknown input effects decoupling

The matrix function R(ϑ) can be chosen to constrain the
range of the matrix function R(ϑ)Bun(ϑ), in such a way that
different output directions of the residuals are assigned to
wind disturbance, actuator faults and icing effects, respec-
tively, with the aim of identifying the cause for some detected
system malfunctions. Even though a complete decoupling
of the wind disturbance and icing effects from the actuator
faults cannot be achieved due to the superposition of effects
and the lack of degrees of freedom in the UIO design, a
successful fault/icing diagnosis can still be achieved.

To this aim, let us notice that as long as cosθ 6= 0, the
following condition holds:

E(u,w,q,θ) = E(t) ∈ span
[

B1 B2(u,w) H2(θ)
]
∀t ≥ 0

(21)
Then, the target is to design the UIO matrix function R(ϑ)

with the following properties:

R(ϑ)B1 = b11e1 (22)

R(ϑ)B2(u,w) =V 2
a e2 (23)

R(ϑ)H2(θ) = cosθe3 (24)

where e1, e2, e3, e4 denote the canonical basis vectors of
R4. As discussed in the following subsection, together with
an appropriate choice of the matrix function F(ϑ), (22)-(24)
will assure that ϕt , ϕe and ω̇z will affect different components
of the vector εR, i.e. εR,1, εR,2 and εR,3, respectively.



It is easy to check that the following matrix satisfies (22)-
(24):

R(u,w,θ) =


1 tanθ r13(u,w,θ) 0
0 0 2Jy

ρScCm
δe

0

0 1 r33(u,w) 0
0 0 0 1

 (25)

r13(u,w,θ) =
Jy

mcCmδe

[(
CDδe

+CLδe
tanθ

)
cosα (26)

+
(

CDδe
tanθ−CLδe

)
sinα

]
r33(u,w) =

Jy

mcCmδe

(
CLδe

cosα+CDδe
sinα

)
(27)

Due to the presence of cosα and sinα in r13(u,w,θ) and
r33(u,w), the matrix function Ṙ(ϑ) will contain α̇, which
is affected by unknown faults and icing. However, these
elements can be assumed to be small in size, such that Ṙ(ϑ)
can be approximated with the following matrix, obtained
from (25) assuming a constant α:

˜̇R(u,w,q,θ) =


0 ˜̇r12(q,θ) ˜̇r13(u,w,q,θ) 0
0 0 0 0
0 0 0 0
0 0 0 0

 (28)

˜̇r12(q,θ) =
q

cos2 θ
(29)

˜̇r13(u,w,q,θ) =
Jy

mcCmδe

(
CLδe

cosα+CDδe
sinα

) q
cos2 θ

(30)

B. Optimal choice of the matrix function F(ϑ)

The matrix function F(ϑ) can be chosen as desired
through an appropriate choice of the matrix K(ϑ), see (14),
such that it is possible to assign the eigenvalues function
λ(·) : ϑ ∈ Θ 7→ λ(ϑ) ∈ R4. By choosing a diagonal matrix
function F(ϑ):

F(ϑ) =


λF

1 (ϑ) 0 0 0
0 λF

2 (ϑ) 0 0
0 0 λF

3 (ϑ) 0
0 0 0 λF

4 (ϑ)

 (31)

some desired properties are obtained. First of all, the con-
vergence to zero of the estimation error εR when νun = 0
and v = 0 can be obtained by constraining λF

i (ϑ) ∈ C−
∀ϑ∈Θ. This is advantageous with respect to the case of full
F(ϑ), where the stability should be proved using an LMI-
based Lyapunov approach [26]. Second, the eigenvalues of
F(ϑ) will correspond to e1, e2, e3, e4, i.e. F(ϑ)ei = λF

i (ϑ),
i = 1,2,3,4, such that it will be assured that ϕt , ϕe and ω̇z
will affect only εR,1, εR,2 and εR,3, respectively, thanks to the
unknown input effects decoupling discussed previously.

At this point, it remains to tune the matrix functions
λF

i (ϑ), i = 1,2,3,4, in some optimal way. To do so, let us
introduce the icing to wind/noise ratio (IWNR) for the i-th
residual εR,i, as follows:

IWNRi(·) =

∣∣∣ ε∞
R,i,η
η

∣∣∣∣∣∣ ω̇MAX
x
ω̇x

ε∞
R,i,ω̇x

∣∣∣+ ∣∣∣ ω̇MAX
z
ω̇z

ε∞
R,i,ω̇z

∣∣∣+ 3
∑
j=1

∣∣∣∣ vMAX
j
v j

ε∞
R,i,v j

∣∣∣∣
(32)

where ε∞
R,i,η, ε∞

R,i,ω̇x
, ε∞

R,i,ω̇z
and ε∞

R,i,v j
are the contributions

to the steady-state value of εR,i due to the icing, the wind
accelerations ω̇x/ω̇z and the j-th sensor noise, respectively.
Notice that a scalar factor is added to weigh the contributions
to ε∞

R,i brought by the different sources of perturbation in the
same way.

From the estimation error dynamics given by (18), ap-
plied to the LPV model of the UAV subject to icing/faults
described in Section II, taking into account (25)-(31), and
after some calculation, the following is obtained:

ε
∞
R,1,η =−

(
E1(u,w,q)+ tanθE2(u,w,q)+ r13(u,w,θ)E3(u,w,q)

λF
1 (ϑ)

)
η

(33)

ε
∞
R,1,ω̇x =

cosθ+ sinθ tanθ

λF
1 (ϑ)

ω̇x (34)

ε
∞
R,1,ω̇z =0 (35)

ε
∞
R,1,v1

=

(
a11(·)+a21(·) tanθ+ r13(u,w,θ)a31(·)

λF
1 (ϑ)

−1
)

v1 (36)

ε
∞
R,1,v2

=

(
a12(·)+a22(·) tanθ+ r13(u,w,θ)a32(·)

λF
1 (ϑ)

)
v2 (37)

+

( ˜̇r12(q,θ)
λF

1 (ϑ)
− tanθ

)
v2

ε
∞
R,1,v3

=

(
a13(·)+a23(·) tanθ+ r13(u,w,θ)a33(·)

λF
1 (ϑ)

)
v3 (38)

+

( ˜̇r13(u,w,q,θ)
λF

1 (ϑ)
− r13(u,w,θ)

)
v3

ε
∞
R,2,η =− r23

λF
2 (ϑ)

E3(u,w,q)η (39)

ε
∞
R,2,ω̇x = 0 (40)

ε
∞
R,2,ω̇z = 0 (41)

ε
∞
R,2,v1

=
r23a31(·)

λF
2 (ϑ)

v1 (42)

ε
∞
R,2,v2

=
r23a32(·)

λF
2 (ϑ)

v2 (43)

ε
∞
R,2,v3

=

(
r23a33(·)

λF
2 (ϑ)

− r23

)
v3 (44)

ε
∞
R,3,η =−

(
E2(u,w,q)+ r33(u,w)E3(u,w,q)

λF
3 (ϑ)

)
η (45)

ε
∞
R,3,ω̇x =

sinθ

λF
3 (ϑ)

ω̇x (46)

ε
∞
R,3,ω̇z =−

cosθ

λF
3 (ϑ)

ω̇z (47)

ε
∞
R,3,v1

=

(
a21(·)+ r33(u,w)a31(·)

λF
3 (ϑ)

)
v1 (48)

ε
∞
R,3,v2

=

(
a22(·)+ r33(u,w)a32(·)

λF
3 (ϑ)

−1
)

v2 (49)

ε
∞
R,3,v3

=

(
a23(·)+ r33(u,w)a33(·)

λF
3 (ϑ)

− r33(u,w)
)

v3 (50)

Hence, it is evident that the icing to wind/noise ratio for
the i-th residual, defined in (32), depends on ϑ due to the
eigenvalue λi(ϑ) and the presence of the state variables,



which are included in ϑ. In order to enhance the residual’s
ability to reject the wind acceleration disturbance and the
noise, and to increase the sensitivity to the icing, an optimal
choice of λF

i (ϑ) would be the one that maximizes the
corresponding icing to wind/noise ratio2, i.e.

λ
F
i,OPT (ϑ) = arg max

λF
i (ϑ)<0

IWNRi
(
ϑ,λF

i (ϑ)
)

(51)

The optimization problem (51) corresponds to an infinite
number of constraints, which can be reduced to a finite
number by gridding the set Θ, and calculating (51) for each
point of this grid. Then, for a given value of ϑ, the matrix
F(ϑ) would be calculated as a weighted convex combination
of the nearby gridding points. In this way, the convergence to
zero of the estimation error εR when νun = 0 and v= 0 would
still be guaranteed, due to the fact that a convex combination
of negative definite diagonal matrices would preserve the
property of being negative definite diagonal. On the other
hand, even though the optimality of the eigenvalues with
respect to the icing to wind/noise ratio would be guaranteed
only at the gridding points, it is reasonable that if the grid is
sufficiently dense, the sub-optimality for values of ϑ different
from the grid ones would be only a slight degradation with
respect to the optimality.

C. Fault/icing diagnosis algorithm

The following algorithm is proposed to decide about the
occurrence of faults and icing.

Decision Algorithm.

if
∣∣εR,1(t)

∣∣≤ εth
R,1 ∧

∣∣εR,2(t)
∣∣≤ εth

R,2 ∧
∣∣εR,3(t)

∣∣≤ εth
R,3

then “no faults/no icing”

if
∣∣εR,1(t)

∣∣> εth
R,1 ∧

∣∣εR,2(t)
∣∣≤ εth

R,2 ∧
∣∣εR,3(t)

∣∣≤ εth
R,3

then “fault in thrust”

if
∣∣εR,1(t)

∣∣≤ εth
R,1 ∧

∣∣εR,2(t)
∣∣> εth

R,2 ∧
∣∣εR,3(t)

∣∣≤ εth
R,3

then “fault in elevator”

else “possible icing”

The thresholds εth
R,1, εth

R,2, εth
R,3 should be calculated in such

a way that the residuals never exceed them due to the wind
turbulence.

IV. CASE STUDY

Let us consider the case study of a small UAV (Zagi Flying
Wing, see Table II for the parameters appearing in the quasi-
LPV model described in Section II) flying at an altitude
h = 150m and subject to wind accelerations calculated using
the Dryden model provided by the Aerospace Toolbox of
MATLAB, with a light probability of exceedance of high-
altitude intensity.

The aircraft is controlled by an autopilot, responsible of
maintaining the horizontal velocity u around the desired

2Notice that the proposed approach is akin to the H−/H∞ fault detection
observer design described in [27].

TABLE II
SYSTEM PARAMETERS VALUES

Param. Value Param. Value Param. Value
m 1.56kg CL0 0.09167 CDq 0
Jy 0.0576kgm2 CD0 0.01631 Cmq −1.3990
S 0.2589m2 Cm0 −0.02338 CLδe

0.2724
c 0.3302m CLα

3.5016 CDδe
0.3045

Sprop 0.0314m2 CDα
0.2108 Cmδe

−0.3254
ρ 1.2682kg/m3 Cmα

−0.5675 Cprop 1.0
km 20 CLq 2.8932

value ure f = 20m/s with the following reference pitch angle:

θre f =


0 t ≤ 100s

(t−100)
1500 100s < t ≤ 250s

(450−t)
2000 250s < t ≤ 450s
0 t > 450s

(52)

It is assumed that the noise affecting the sensor measure-
ments in (13) is uniformly distributed within the following
intervals: v1 ∈ [−1,1], v2 ∈ [−1,1], v3 ∈ [−0.001,0.001],
v4 ∈ [−0.008,0.012].

Three different fault scenarios have been considered, as
follows:

A. Fault scenario 1 (FS1)

The effective thrust input δt is subject to a loss of
efficiency with respect to its nominal value δ∗t :

δt(t) = 0.7δ
∗
t (t) (53)

The fault is linearly incipient, such that the loss of efficiency
starts at time t = 200s and equals (53) from time t = 210s.

B. Fault scenario 2 (FS2)

The effective elevator deflection δe is subject to a loss of
efficiency with respect to its nominal value δ∗e :

δe(t) = 0.9δ
∗
e(t) (54)

The fault is linearly incipient, such that the loss of efficiency
starts at time t = 200s and equals (54) starting from time
t = 210s.

C. Fault scenario 3 (FS3)

The aircraft is subject to icing, modeled as in (6)-(9),
taking into account the coefficients Ki listed in Table III. The
icing starts at time t = 200s and slowly increases η from 0
to 0.2, such that η = 0.2 starting from time t = 400s.

The optimization problem (51) has been solved in 1296
gridding points, that correspond to the partition of each
interval of variation of the state variables (u ∈ [15,25],
w ∈ [1,5], q ∈ [−0.001,0.001], θ ∈ [−0.01,0.01]) in 5 sub-
intervals, providing the optimal values for the eigenvalues
λF

i (ϑ), i = 1,2,3, that are shown in Fig. 1 (due to the
difference in order of magnitude of the optimal values for
the eigenvalues, a logarithmic scale is used for presentation
purpose).

Remark: Notice that the optimization of F(ϑ), which is
the most computationally demanding part of the proposed



TABLE III
COEFFICIENTS Ki FOR AN ALL ICED CONFIGURATION

Coeff. Value Coeff. Value Coeff. Value
KL0 0 KLα

−0.5000 KLq −0.0675
KLδe

−0.4770 KD0 2.5610 KDα
0

KDq 0 KDδe
0 Km0 0

Kmα
−0.4960 Kmq −0.1755 Kmδe
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Fig. 1. Optimal eigenvalues at the gridding points (logarithmic scale).

strategy, is performed offline. Only the weighted combination
of the matrices defined at the gridding points is performed
online, taking into account the value of the varying parameter
vector.

Figs. 2-4 show the residuals obtained in the considered
fault scenarios using a proportional UIO, as described in
[16]. On the other hand, Figs. 5-7 show the evolution of
the residuals obtained using the proposed PI-UIO. From a
qualitative comparison between the results, it is evident that
the latter exhibits a stronger rejection of the undesired effects,
i.e. sensor noise and wind acceleration disturbance.

It has been noticed that the frequency content of the
residuals εR,i(t), i = 1,2,3, changes under faults/icing oc-
currence. In fact, in absence of faults/icing, the residuals are
excited only by the wind acceleration, which is mostly a
high frequency disturbance. On the other hand, the actuator
faults and icing effects increase the low frequency content
of the variables εR,i(t). Thus, low-pass filtering the residuals
indicates more clearly the presence of faults/icing. More
specifically, the low-pass filtered residuals are obtained as
follows:

φ̇R,i(t) =−aiφR,i(t)+aiεR,i(t) i = 1,2,3 (55)

where ai is a design parameter that should be chosen to
guarantee that only the part of the frequency spectrum of
εR,i(t) affected by faults/icing is preserved. Then, the deci-
sion algorithm proposed in the previous section is slightly
modified by replacing all instances of εR,i with φR,i, i =
1,2,3.

Figs. 8-10 show the evolution of the low-pass filtered
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Fig. 2. Residual ε1(t) using a proportional UIO.
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Fig. 3. Residual ε2(t) using a proportional UIO.

residuals, obtained using the proposed PI-UIO and (55) with
ai = 0.01, in the considered fault scenarios.

Concerning the fault/icing diagnosis, it can be seen that
in fault scenario 1 (fault in the thrust), the only residual
that differs considerably from 0 after t = 200s is φR,1(t). On
the other hand, in fault scenario 2 (fault in the elevator), the
residual which exhibits an increase of its value after t = 200s
is φR,2. Finally, under icing occurrence all the residuals
increase their values considerably. According to the decision
algorithm proposed in the previous section, once appropriate
thresholds for the residuals have been chosen, the occurrence
of faults/icing can be detected and isolated successfully,
proving the effectiveness of the proposed approach.

V. CONCLUSIONS

This paper has proposed a linear parameter varying (LPV)
proportional integral unknown input observer (PI-UIO) for
fault/icing detection in unmanned aerial vehicles (UAVs).
The advantage of the proposed LPV PI-UIO is that it can
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Fig. 4. Residual ε3(t) using a proportional UIO.
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Fig. 5. Residual εR,1(t) using the proposed proportional integral UIO.

take into account operating point variations in an elegant
way using the LPV paradigm. Moreover, the presence of the
integral term avoids the appearance of the noise derivative
term in the estimation error equation, thus increasing the
noise rejection properties. It has been shown how an optimal
design of the PI-UIO may be performed by increasing the
sensitivity to icing, while decreasing the sensitivity to wind
acceleration disturbance and noise, through the introduction
of the icing to wind/noise ratio (IWNR).

The case study of a Zagi Flying Wing UAV has shown
the effectiveness of the decision algorithm, which identifies
correctly unexpected changes in the system dynamics due
to actuator faults or icing, using low-pass filtered residuals
obtained from the proposed PI-UIO.

Future research will extend the results to a 9-DOF aircraft
model, and will include parametric uncertainty in the model,
in order to perform a robust fault/icing diagnosis.
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Fig. 6. Residual εR,2(t) using the proposed proportional integral UIO.
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Fig. 7. Residual εR,3(t) using the proposed proportional integral UIO.
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