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Abstract— The main contribution of this paper consists in
solving the problem of fault tolerant control (FTC) for linear
parameter varying (LPV) systems subject to actuator saturation
and fault detection and isolation (FDI) delays. The FTC is based
on virtual actuators that reconfigure the faulty plant to maintain
the stability and to avoid the saturation of the actuators. On the
other hand, a design methodology that provides the nominal
output-feedback controller, which maximizes the tolerated delay
between the fault occurrence and its isolation, is developed. The
design process consists in finding the optimal feasible solution
to a finite set of linear matrix inequalities (LMIs). Finally, an
example is used to illustrate the theoretical results.

I. INTRODUCTION

Control systems are affected by saturations, which means
that the control action that can be delivered by the actu-
ators is limited in magnitude [1]. It is important to take
into account the presence of saturations during the design
of a control system, otherwise its real performance could
exhibit strong performance degradation and, in some cases,
instability could occur as well. For this reason, the problem
of stabilizing systems with saturated inputs is extensively
studied, as demonstrated by a number of works that have
appeared recently in the literature, see e.g. [2]–[5]. Several
control techniques have been extended to cope with input
saturations, such as sliding mode control [6] and adaptive
control [7]. Also, a few monographies have been published
about this topic, see e.g. [8] and [9].

The presence of actuator saturations becomes even more
problematic when actuator faults are considered. In the
last decades, fault tolerant control (FTC) techniques have
been investigated [10]–[12] with the objective of mitigating
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the effects of faults on the closed-loop performance and
stability. These techniques usually lead to a redistribution
of the control action among the healthy actuators, which
can potentially become saturated. In order to avoid this
potential actuator saturation, active FTC systems that include
a trajectory replanning algorithm have been proposed [13]–
[15].

Recently, an FTC strategy for unstable linear time invariant
(LTI) systems subject to actuator saturation and fault isola-
tion delay has been developed [16]. The proposed strategy
relied on virtual actuators, a fault-hiding technique that aims
at reconfiguring the faulty plant instead of the controller
[17]–[21]. In [22], this strategy has been extended to linear
parameter varying (LPV) systems, a standard formalism
for performing gain scheduling of nonlinear systems [23].
However, in [22], a perfect fault detection and isolation (FDI)
has been assumed. In some cases, the time delay between the
appearance of the fault and the moment in which the active
strategy is activated (at the fault detection or isolation time)
may destabilize the system. The main contribution of the
present work is to include a maximization of the tolerated
FDI delay within the design process, which is done by means
of a linear matrix inequality (LMI)-based design.

The paper is structured as follows. Section II recalls some
preliminary results. Section III describes the system, the
faults and the nominal controller. The virtual actuator-based
FTC strategy is presented in Section IV. The design of the
nominal controller through maximization of the tolerated FDI
delay is described in Section V. Section VI illustrates the
theoretical results through an example. Finally, Section VII
summarizes the main conclusions.

II. PRELIMINARIES

Consider the autonomous nonlinear system:

ẋ(t) = g(x(t)) (1)

where x∈Rnx is the state and g denotes a nonlinear function.
For x(0) = x0 ∈Rnx , let us denote the trajectory of the system
(1) as ψ(t,x0). Then, the domain of attraction of the origin
is:

S :=
{

x0 ∈ Rnx : lim
t→+∞

ψ(t,x0) = 0
}

(2)

Let P� 0, ρ > 0 and denote:

E(P,ρ) =
{

x0 ∈ Rnx : xTPx≤ ρ
}

(3)

and let V (x(t)) = x(t)TPx(t) be a candidate Lyapunov func-
tion. The ellipsoid E(P,ρ) is said to be contractively invari-
ant if V̇ (x(t)) < 0 for all x ∈ E(P,ρ)\{0}. A contractively



invariant ellipsoid E(P,ρ) is inside the domain of attraction
S [24].

Finally, throughout the paper, He{M} will be used as a
shorthand notation for the matrix M+MT .

III. SYSTEM, FAULT AND CONTROLLER DEFINITION

Let us consider the following LPV system subject to
actuator saturations:

ẋ(t) = A(θ(t))x(t)+B(t)sat (u(t)) (4)
y(t) =Cx(t) (5)

where x ∈ Rnx is the state, u ∈ Rnu is the control input,
y ∈ Rny is the measured output, A(θ(t)) ∈ Rnx×nx is the
parameter varying state matrix, whose values depend on the
vector θ(t) ∈Θ⊂ Rnθ , C ∈ Rny×nx is the output matrix, and
B(t) ∈ Rnx×nu is the input matrix, defined as follows:

B(t) =

{
B

B f ∈ {B
(1)
f , . . . ,B

(n f )

f }
t < t f
t ≥ t f

(6)

B ∈ Rnx×nu and the corresponding LPV system obtained
from (4)-(5) will be referred to as nominal input matrix
and nominal system, respectively, B f ∈Rnx×nu and the corre-
sponding LPV system obtained from (4)-(5) will be referred
to as faulty input matrix and faulty system, respectively, and
t f ∈ R+ is the fault occurrence time.

Remark 1: The fault definition provided by (6) is a gen-
eral formulation that may specify both faults in a single
actuator and in multiple actuators. For example, B(1)

f could

represent the total loss of actuator 1, while B(2)
f could

represent the total loss of actuators 1 and 2.
The saturation function sat : Rnu → Rnu specifies the

limited actuator capacity of the control input u(t) in (4). The
saturation is assumed to be a symmetrical, decoupled, sector-
bounded and static actuator nonlinearity with a constant
saturation limit uMAX

j in the j-th input, such that:

sat(u) =


sat1(u1)

...
sat j(u j)

...
satnu(unu)

 (7)

sat j(u j) =


uMAX

j
u j
−uMAX

j

i f u j > uMAX
j

i f
∣∣u j
∣∣≤ uMAX

j
i f u j <−uMAX

j

(8)

for j = 1, . . . ,nu, where uMAX =
(
uMAX

1 , . . . ,uMAX
nu

)T ∈Rnu is
a vector with positive entries.

The n f matrices B(1)
f , . . . ,B

(n f )

f ∈ Rnx×nu are such that:

rank
(

B(h)
f

)
< rank (B) (9)

and the pairs: (
A(θ),B(h)

f

(
B(h)

f

)†
B
)

(10)

are stabilizable, ∀θ ∈Θ and ∀h = 1, . . . ,n f .
The structure chosen for the controller is the LPV dynamic

feedback one [25]:

ẋc(t) = Ac (θ(t))xc(t)+Bc (θ(t))y(t) (11)

uc(t) =Cc (θ(t))xc(t)+Dc (θ(t))y(t) (12)

where xc ∈ Rnx is the controller state and uc ∈ Rnu is the
controller output, respectively. A strict requirement for the
closed-loop system obtained by considering the system (4)-
(5) and the controller (11)-(12) is that E(P,1) ⊆ S and
E(P,1)⊆ L(u,uMAX ), where L(u,uMAX ) denotes the region
of the state space in which the actuators are not saturated.

In other words, the controller must be such that for any
initial closed-loop state vector satisfying:(

x(0)T xc(0)T
)

P
(

x(0)
xc(0)

)
≤ 1 (13)

the control input never saturates, and the closed-loop state
trajectory converges to the origin.

IV. VIRTUAL ACTUATOR-BASED FTC

The FTC strategy used in this work relies on a reconfig-
ured control law, given by:

u(t) =


uc(t)

u(1)f (t)
...

u
(n f )

f (t)

t < tI
t ≥ tI ,B(t) = B(1)

f
...

t ≥ tI ,B(t) = B
(n f )

f

(14)

where tI ∈ R+, tI ≥ t f is the fault isolation time, that is
assumed to be provided by an FDI module. The values for
u(1)f (t), . . . ,u

(n f )

f (t) are provided by the LPV virtual actuators,
which have a structure as in [22]:

ẋ(h)v (t) =
(

A(θ(t))+B(h)
∗ M(h) (θ(t))

)
x(h)v (t)+

(
B−B(h)

∗
)

uc(t)
(15)

u(h)f (t) = N(h)
(

uc(t)−M(h) (θ(t))x(h)v (t)
)

(16)

where h = 1, . . . ,n f , x(h)v are the virtual actuators states with
x(h)v (tI) = 0, M(h) (θ(t)) ∈ Rnu×nx are the virtual actuators
gains to be designed, and the matrices N(h) and B(h)

∗ are
given by:

N(h) =
(

B(h)
f

)†
B (17)

B(h)
∗ = B(h)

f N(h) = B(h)
f

(
B(h)

f

)†
B (18)

Moreover, in order to obtain the fault-hiding characteristic,
the output equation (5) is slightly changed after tI , as follows:

y(t) =C
(

x(t)+ x(h)v (t)
)

t ≥ tI , B(t) = B(h)
f (19)

Given a controller (11)-(12), satisfying E(P,1) ⊆ S and
E(P,1) ⊆ L(u,uMAX ), the following theorem provides the
conditions to design the virtual actuator guaranteeing that, if
at the fault isolation time tI , the closed-loop system state
is inside the ellipsoid E(P,ν f ), with ν f ∈]0,1], the state



trajectory will converge to zero despite the change of the
input matrix from B to B(h)

f due to the fault.
Theorem 1: Let X−1

va ∈ Snx×nx and Γ(h) (θ) ∈ Rnu×nx , h =
1, . . . ,n f be such that:

He

{(
ν f Acl(θ)P−1 0
ν f A(h)

∗ (θ)P−1 A(θ)X−1
va +B(h)

∗ Γ(h)(θ)

)}
≺ 0 (20)

X−1
va Γ

(h)
(k)(θ)

T

Γ
(h)
(k)(θ)

 uMAX
j∥∥∥∥N
(h)
( j)

∥∥∥∥−µ f

2

n(h)ũ

� 0
j = 1, . . . ,nu∥∥∥N(h)

( j)

∥∥∥ 6= 0 (21)

hold ∀θ ∈Θ, where:

Acl(θ) =

(
A(θ)+BDc(θ)C BCc(θ)

Bc(θ)C Ac(θ)

)
(22)

A(h)
∗ (θ) =

( (
B−B(h)

∗
)

Dc(θ)C
(

B−B(h)
∗

)
Cc(θ)

)
(23)

µ f = max
E(P,ν f )

‖uc‖ (24)

n(h)ũ is the number of non-zero elements in N(h)
( j) , and k in

(21) takes values corresponding to the indices of the non-
zero elements in N(h)

( j) . Then, if the virtual actuators gains
M(h)(θ) in (15)-(16) are calculated as M(h)(θ) = Γ(h)(θ)Xva,
E(P,ν f ) is contractively invariant for the system (4)-(5) with
the control law (14), and E(P,ν f )⊆ L(u,uMAX ), ∀t ≥ tI .

Proof: See [22]. �
By relying on a polytopic representation, it is possible

to transform the infinite number of conditions provided by
Theorem 1 in a finite number of conditions, as stated by the
following corollary.

Corollary 1: Let the matrices A(θ(t)), Ac (θ(t)), Bc (θ(t)),
Cc (θ(t)), Dc (θ(t)) be polytopic, i.e.:

A(θ(t))
Ac (θ(t))
Bc (θ(t))
Cc (θ(t))
Dc (θ(t))

=
N

∑
i=1

µi (θ(t))


Ai

Ac,i
Bc,i
Cc,i
Dc,i

 (25)

with coefficients µi (θ(t)) such that:

N

∑
i=1

µi (θ(t)) = 1, µi (θ(t))≥ 0, ∀i = 1, . . . ,N, ∀θ ∈Θ (26)

and choose the virtual actuator gain as:

M(h) (θ(t)) =
N

∑
i=1

µi (θ(t))M
(h)
i (27)

If there exist X−1
va ∈ Snx×nx and Γ

(h)
i ∈ Rnu×nx , h = 1, . . . ,n f ,

i = 1, . . . ,N such that:

He

{(
ν f Acl,iP−1 O2nx×nx

ν f A(h)
∗,i P−1 AiX−1

va +B(h)
∗ Γ

(h)
i

)}
≺ O (28)


X−1

va

(
Γ
(h)
i(k)

)T

Γ
(h)
i(k)

 uMAX
j∥∥∥∥N
(h)
j

∥∥∥∥−µ f


2

n(h)ũ

� O
j = 1, . . . ,nu∥∥∥N(h)

j

∥∥∥ 6= 0 (29)

hold ∀i = 1, . . . ,N, where:

Acl,i =

(
Ai +BDc,iC BCc,i

Bc,iC Ac,i

)
(30)

A(h)
∗,i =

( (
B−B(h)

∗
)

Dc,iC
(

B−B(h)
∗
)

Cc,i

)
(31)

µ f is defined as in (24), n(h)ũ is the number of non-zero
elements in N(h)

( j) , and k in (29) takes values corresponding

to the indices of the non-zero elements in N(h)
( j) , and if

the vertex virtual actuators gains in (27) are calculated as
M(h)

i = Γ
(h)
i Xva, then E(P,ν f ) is contractively invariant for

the system (4)-(5) with control law (14), and E(P,ν f ) ⊆
L(u,uMAX ), ∀t ≥ tI .

Proof: See [22]. �

V. DESIGN OF THE CONTROLLER

Under the assumption of instantaneous fault isolation, i.e.
tI = t f , if the output-feedback controller has been designed
such that E(P,1) ⊆ S and E(P,1) ⊆ L(u,uMAX ) and if the
closed-loop state trajectory has reached E(P,ν f ), the virtual
actuator-based FTC described in Section IV guarantees the
state trajectory convergence under fault occurrence. However,
this is not the case when there is a delay in the fault isolation,
i.e. tI − t f > 0. In fact, between the occurrence of the fault,
that changes the system input matrix from B to some B(h)

f ,
and the fault isolation time, when the appropriate control
u(h)f begins to be applied, there is a time interval where the
system is driven by the nominal control uc(t). During this
period, there is no guarantee that, if the system has reached
E(P,ν f ) at time t f , it will stay inside this region until tI .
This fact can lead to severe consequences, because if the
state trajectory leaves E(P,ν f ) before tI , the system could
be destabilized [26]. Hence, it is interesting to improve the
overall system robustness against the fault isolation delay.

Given
[

x(t f )
T xc(t f )

T
]T ∈ E(P,ν f ), let us define, for

the faulty system (4)-(5) with B(t) = B(h)
f , h = 1, . . . ,n f ,

under control law u(t) = uc(t), the critical fault isolation

time
_
t
(h)
I (x(t f ),xc(t f ))≥ t f as the time instant such that:[

x
(

_
t
(h)
I

)T

xc

(
_
t
(h)
I

)T ]T

∈ E(P,ν f ) (32)

but: [
x(

_
t
(h)
I + tε)

T
xc(

_
t
(h)
I + tε)

T ]T
/∈ E(P,ν f ) (33)

for all tε > 0. The critical fault isolation time indicates
that the guarantees of non-saturating control input and state
trajectory convergence to the origin given by the virtual

actuator-based FTC are lost if tI >
_
t
(h)
I (x(t f ),xc(t f )). It is



worth remarking that the Lyapunov-based conditions pro-
vided in the following are sufficient, such that the system
may exhibit state trajectory convergence to zero with non-

saturating control input even if tI >
_
t
(h)
I (x(t f ),xc(t f )).

In the following, the output feedback controller (11)-
(12) will be designed in such a way that it maximizes
minh=1,...,n f t̂(h)I (x(t f ),xc(t f )) for all

[
x(t f )

T xc(t f )
T
]T ∈

E(P,ν f ), where t̂(h)I (x(t f ),xc(t f )) is an estimation of
_
t
(h)
I (x(t f ),xc(t f )).
As a first step to obtain the conditions for designing

the output feedback controller (11)-(12), let us consider the
following lemma.

Lemma 1: Let V (x(t)) = x(t)T Px(t), and let D be an LMI
region [27], i.e. a subset of the complex plane such that:

D = {σ ∈ C : fD(σ)≺ 0} (34)

where fD(σ) is the characteristic function defined as:

fD(σ) = α+βσ+β
T

σ̄ (35)

where α ∈ Sm×m, β ∈ Rm×m, and σ̄ denotes the complex
conjugate of σ.

If the autonomous LPV system:

ẋ(t) = A(θ(t))x(t) (36)

is quadratically D stable [27], i.e. there exists P � 0 such
that ∀θ ∈Θ:

α⊗P+β⊗PA(θ)+β
T⊗A(θ)TP≺ 0 (37)

then, V (x(t)) satisfies, for all x(t) 6= 0:

1
2

V̇ (x(t))
V (x(t))

∈D ∩R (38)

Proof: Pre-multiplying (37) by I ⊗ x(t)T, and post-
multiplying it by I ⊗ x(t), respectively, the following is
obtained for all x(t) 6= 0:

α⊗ x(t)TPx(t)+β⊗ x(t)TPA(θ(t))x(t)+β
T⊗ x(t)TA(θ(t))T Px(t)≺ 0

(39)
Recalling that:

1
2

V̇ (x(t)) = x(t)TPA(θ(t))x(t) = x(t)TA(θ(t))T Px(t) (40)

and dividing (39) by V (x(t)), this process leads to:

α⊗1+β⊗ 1
2

V̇ (x(t))
V (x(t))

+β
T⊗ 1

2
V̇ (x(t))
V (x(t))

≺ 0 (41)

which implies (38). �
Lemma 1 is used in the subsequent theorem

to obtain an estimation of t̂(h)I (x(t f ),xc(t f )) for all[
x(t f )

T xc(t f )
T
]T ∈ E(P,ν f ).

Theorem 2: Let λ(h) ∈R+, h= 1, . . . ,n f , be such that ∀θ∈
Θ:

−2λ
(h)P+He

{
P

(
A(θ)+B(h)

f Dc(θ)C B(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0

(42)

and let
[

x(t f )
T xc(t f )

T
]T

= x f ∈ E(P,ν f ). Then:[
x(t)T xc(t)T

]T ∈ E(P,ν f ) ∀t ∈
[
t f , t̂

(h)
I (x(t f ),xc(t f ))

]
(43)

with:

t̂(h)I (x(t f ),xc(t f )) = t f +
1

2λ(h)
ln

(
ν f

xT
f Px f

)
(44)

Proof: The faulty system (4)-(5), with B(t) = B(h)
f , to-

gether with the output feedback controller (11)-(12), can be
rewritten in the closed-loop autonomous form as:(

ẋ(t)
ẋc(t)

)
=

(
A(θ(t))+B(h)

f Dc (θ(t))C B(h)
f Cc (θ(t))

Bc (θ(t))C Ac (θ(t))

)(
x(t)
xc(t)

)
(45)

Let us apply Corollary 1 to (45) using the region Re(z)<
λ(h), that corresponds to (35) with α = −2λ(h) and β = 1,
such that (37) reads as:

−2λ
(h)P+He

{
P

(
A(θ)+B(h)

f Dc(θ)C B(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0

(46)
Hence, if (46) holds, (38) is true for the quadratic function:

V (x(t),xc(t)) =
(

x(t)T xc(t)T
)

P
(

x(t)T xc(t)T
)T

(47)
that implies:

V (x(t),xc(t))≤V (x f )e2λ(h)(t−t f ) = xT
f Px f e2λ(h)(t−t f ) (48)

By considering the condition V (x(t),xc(t)) ≤ ν f , that
defines E(P,ν f ), it is straightforward to obtain (43). �

From (44) it can be seen that, in order to maximize
minh=1,...,n f t̂(h)I (x(t f ),xc(t f )), it is necessary to minimize
λ = maxh=1,...,n f λ(h). The solution to this problem is given
by the following theorem.

Theorem 3: Let X ,Y ∈ Snx×nx , F(θ) ∈ Rnx×ny , K(θ) ∈
Rnu×nx , L(θ) ∈ Rnu×ny , F(h)(θ) ∈ Rnx×ny and N(h)(θ) ∈
Rnx×nx , h = 1, . . . ,n f , correspond to the solution to the
following constrained minimization problem:

minλ (49)

subject to λ≥ 0 and:

He{XA(θ)+F(θ)C} ≺ 0 (50)

He{A(θ)Y +BK(θ)} ≺ 0 (51) X I CL( j)(θ)
T

I Y K( j)(θ)
T

L( j)(θ)C K( j)(θ)
(

uMAX
j

)2

� 0 (52)

−2λ

(
X I
I Y

)
+He

{(
XA(θ)+F(h)(θ)C N(h)(θ)

A(θ)+B(h)
f L(θ)C A(θ)Y +B(h)

f K(θ)

)}
≺ 0

(53)
∀ j = 1, . . . ,nu, ∀h = 1, . . . ,n f and ∀θ ∈Θ.



Then, the output feedback controller (11)-(12), with ma-
trices calculated as:(

Ac(θ) Bc(θ)
Cc(θ) Dc(θ)

)
=

(
Z XB
O I

)−1
· · ·

· · ·
(
−(A(θ)+BL(θ)C)T−XA(θ)Y F(θ)

K(θ) L(θ)

)(
−Y O
CY I

)−1

(54)

Z = X−Y−1 (55)

maximizes minh=1,...,n f t̂(h)I (x(t f ),xc(t f )) for all[
x(t f )

T xc(t f )
T
]T ∈ E (P,ν f ), where t̂(h)I (x(t f ),xc(t f )) is

the estimation of
_
t
(h)
I (x(t f ),xc(t f )) obtained as (44) with P

defined as:

P =

(
X Z
Z Z

)
(56)

Proof: If conditions (50)-(52) hold, then the closed-loop
system obtained by considering the system (4)-(5) and the
controller (11)-(12), with matrices calculated as in (54)-(55),
is such that E(P,1) ⊆ S and E(P,1) ⊆ L(u,uMAX ), with P
defined as in (56).

On the other hand, the design condition (53) corresponds
to the analysis condition (42) with λ = λ(h). In fact, by
applying a congruent transformation to (42) with:

Γ =

(
I 0
Y −Y

)
(57)

and λ = λ(h), (53) is obtained using the following change of
variables:

N(h)(θ) =XA(θ)Y −ZAc(θ)Y +ZBc(θ)CY (58)

−XB(h)
f Cc(θ)Y +XB(h)

f Dc(θ)CY

F(h)(θ) = ZBc(θ)+XB(h)
f Dc(θ) (59)

K(θ) =−Cc(θ)Y +Dc(θ)CY (60)

L(θ) = Dc(θ) (61)

Since a common λ is being used, it is clear that λ =
maxh=1,...,n f λ(h), and by minimizing λ, we are maximizing

minh=1,...,n f t̂(h)I , defined as in (44). �
Also in this case, by relying on a polytopic representation,

it is possible to obtain conditions that can be applied for the
controller design, as stated by the following corollary.

Corollary 2: Let the matrices A(θ(t)), Ac (θ(t)), Bc (θ(t)),
Cc (θ(t)), Dc (θ(t)) be polytopic, as in (25)-(26), and let
X ,Y ∈ Snx×nx , Fi ∈ Rnx×ny , Ki ∈ Rnu×nx , Li ∈ Rnu×ny , F(h)

i ∈
Rnx×ny and N(h)

i ∈ Rnx×nx , h = 1, . . . ,n f , i = 1, . . . ,N, cor-
respond to the solution of the constrained minimization
problem (49):

minλ (62)

subject to λ≥ 0 and:

He{XAi +FiC} ≺ 0 (63)

He{AiY +BKi} ≺ 0 (64)


X I CLT

i( j)
I Y KT

i( j)

Li( j)C Ki( j)

(
uMAX

j

)2

� 0 (65)

−2λ

(
X I
I Y

)
+He

{(
XAi +F(h)

i C N(h)
i

Ai +B(h)
f LiC A(θ)Y +B(h)

f Ki

)}
≺ 0

(66)
∀i = 1, . . . ,N, ∀ j = 1, . . . ,nu and ∀h = 1, . . . ,n f .

Then, the controller (11)-(12), with matrices calculated as:(
Ac,i Bc,i
Cc,i Dc,i

)
=

(
Z XB
O I

)−1
· · ·

· · ·
(
−(Ai +BLiC)T−XAiY Fi

Ki Li

)(
−Y O
CY I

)−1 (67)

maximizes minh=1,...,n f t̂(h)I (x(t f ),xc(t f )) for all[
x(t f )

T xc(t f )
T
]T ∈ E (P,ν f ), where t̂(h)I (x(t f ),xc(t f )) is

the estimation of
_
t
(h)
I (x(t f ),xc(t f )) obtained as (44) with P

defined as in (56).
Proof: It follows from the basic property of matrices [28]

that any linear combination of negative (positive) definite ma-
trices with non-negative coefficients (whose sum is positive)
is negative (positive) definite. Hence, using the coefficients
µi (θ(t)), taking into account (26), (50)-(53) follow directly
from (63)-(66). �

VI. EXAMPLE

Let us consider the open-loop unstable LPV system subject
to actuator saturations proposed in [22], i.e. (4)-(5), with:

A(θ(t)) =
(

2+θ(t) 0
1 1.5

)
θ ∈ [−1,1]

B(t) =


B =

(
2 0
0 1

)
t < t f

B f =

(
2 0
0 0

)
t ≥ t f

C =

(
1 0
0 1

)

and sat(u) as in (7)-(8) with uMAX
j = 10, j = 1,2.

When the output-feedback controller designed in [22] is
applied (referred in the following as controller 1), i.e. when
the controller is designed without maximizing the tolerated
fault isolation delay, the application of Theorem 2 gives a
value λ = 1.9197. On the other hand, if the controller is
designed using Corollary 2 (referred in the following as
controller 2), a value λ= 0 is achieved. Notice that achieving
the case λ = 0, that would correspond to t̂I = ∞ using (44),
is equivalent to the existence of a nominal controller that is
robust against the considered fault. For the sake of additional
comparison, let us also consider a controller designed using
a prefixed value of λ, i.e. λ = 1, which will be denoted as
controller 3.

Let us consider a simulation that lasts 20s with x(0) =
(1 0)T , xc(0) = (0 0)T , θ(t) = sin(5t), and t f = 0.5s.
Since (x(0)T ,xc(0)T ) ∈ E(P,1) for all controllers 1,2 and
3, the state trajectories will converge towards the origin and
the control input will not saturate in the time interval [0, t f ],
as shown in Fig. 1.
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Fig. 1. State trajectories obtained with t f = 0.5s and no fault isolation during the simulation (tI → ∞).

Assuming that the fault is not isolated during the sim-
ulation (tI → ∞), it can be seen that the state trajectories
obtained with controllers 1 and 3 diverge after the fault
occurrence (see red and green lines in Fig. 1). On the other
hand, the trajectory of the closed-loop system obtained with
controller 2 keeps converging despite the fault occurrence
and the absence of fault isolation (see blue line in Fig. 1).
As a matter of fact, using Theorem 2, it can be calculated that
for controller 1 t̂I = 0.525s, while various simulations have
shown that

_
t I = 0.748s. On the other hand, for controller 3,

t̂I = 0.698s and
_
t I = 1.066s, which confirms that controller

1 is more sensitive to fault isolation delays than controller 3,
whereas controller 2, which has been obtained applying the
proposed methodology, is tolerant w.r.t. any fault isolation
delay.

The control inputs are shown in Fig. 2, where it can be
seen that, due to the state trajectory divergence, the control
inputs obtained with controllers 1 and 3 diverge as well. On
the other hand, the control inputs obtained with controller
2 are within the saturation limits both before and after the
fault occurrence.

Finally, Fig. 3 shows the state trajectories obtained for
tI = 3s. In this case, controller 1 is not able to recover the
system’s stability after the fault is isolated. On the other hand,
the trajectory obtained with controller 3 converges asymptot-
ically to the origin, although with a worse performance than
the one obtained with controller 2.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a virtual actuator-based FTC
strategy for LPV systems that are subject to saturation
of the actuators and FDI delays. The developed design
methodology allows maximizing the tolerated delay between
the fault occurrence and its isolation. Under the assumption
that the LPV system is polytopic, the design process consists
in finding the optimal feasible solution to a finite set of

time [s]
0 2 4 6 8 10 12 14 16 18 20

-10

-5

0

5

10
u

1
 controller 1

u
2
 controller 1

u
1
 controller 2

u
2
 controller 2

u
1
 controller 3

u
2
 controller 3

Fig. 2. Control inputs obtained with t f = 0.5s and no fault isolation during
the simulation (tI → ∞).

LMIs. The results achieved using an academic example have
shown that the proposed design improves the performances
with respect to a more traditional design that does not take
into account the presence of FDI delays. In particular, it has
been shown that, as a particular case, the proposed design
methodology provides a nominal controller that is robust
against the considered faults.

Future work will aim at improving the obtained results
by considering: (i) the presence of sensor noise and process
disturbances; (ii) parameter-varying input and output matri-
ces; (iii) different indices, which will allow analyzing the
trade-off between the tolerated fault isolation delay and the
controller performance.
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