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Abstract— When mobile robots are intended to be used
in hazardous environments or for long-time operations, it
is needed to increase their robustness against faults. This
could be achieved by means of the inclusion of Fault Tolerant
Control (FTC) mechanisms. In this paper, a FTC based on
fault hiding approach is proposed for a non-holonomic mobile
robot. First, a Sliding Mode Controller (SMC) is designed to
control the robost and to cope with modelling uncertainty.
Later on, it is enhanced to take into account actuator faults
leading to a fault hiding approach for the sliding mode fault-
tolerant control of the robot. Results using simulated fault
scenarios are presented to illustrate the performance of the
proposed approach.

I. INTRODUCTION

When mobile robots are intended to be used in
hazardous environments or for long-time operations, it is
needed to increase their robustness against failures. This
could be achieved by means of the inclusion of Fault
Tolerant Control (FTC) mechanisms in the robot. The
objective of FTC is to maintain current performances
close to desirable ones and preserve stability conditions
in the presence of faults [6], [13]. The existing FTC
design techniques mainly can be classified according
if they follow the passive or the active approach [3].
The passive FTC techniques are control laws that take
into account the fault as a system disturbance. Thus,
within certain margins, the control law has inherent fault
tolerant capabilities, allowing the system to cope with
the fault presence [10]. On the other hand, the active
FTC techniques compensate the faults either by selecting
a precalculated control law or by synthesizing online
a new control strategy. The adaptation of the control
law is done by using some information about the fault,
obtained from an on-line fault diagnosis system, so as to
satisfy the control objectives with minimum performance
degradation after the fault occurrence. Some examples of
successful FTC strategies are multiple-model-based [2],
learning-based [12] and adaptive backstepping-based [3],
among other. Another, appealing strategy of active fault
tolerant control is based on using the fault hiding approach
that relies on adding some block between the controller
and the system that hides the fault and avoids readjusting
the controller. In case of faults of sensors and actuators,
the virtual sensors and actuators are well known fault
hiding blocks [6].
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In the formulation of any practical control problem
using a model-based approach, there will always
be a discrepancy between the actual system and its
mathematical model used for the controller design. These
discrepancies (or mismatches) arise from unknown external
disturbances, system parameters, and parasitic/unmodeled
dynamics. Designing control laws that provide the desired
performance to the closed-loop system in the presence of
these disturbances/uncertainties is a very challenging task
for a control engineer. This has led to intense interest in
the development of the so-called robust control methods
which are supposed to solve this problem. One particular
approach to robust controller design is the so-called sliding
mode control (SMC) technique. SMC is a kind of robust
control technique that can deal with large uncertainty
with a discontinuous control strategy. The insensitivity
and robustness of SMC make it suitable for handling
the system under control with satisfactory performance
in both normal and faulty operating conditions. These
interesting features convert this control strategy in a very
suitable approach for FTC. Recently, some advances in
the design of FTC SMC have been summarised in the
book of Alwi [4].

The application of the FTC to mobile robots is quite
recent. Just few references can be found in the literature
and summarised in [7]. The problem of FTC in robotics to
increase their robustness against possible failures has been
addressed in [11]. Four-wheeled omnidirectional mobile
robots have the relevant characteristic that they can still
operate with three wheels in case some malfunctioning in
one wheel has been detected [9]. This makes them good
setups for testing techniques that provide fault tolerance
against actuator faults. Just recently, FDI and FTC
approaches have been considered for multi-robot systems
in [5], where a distributed controller-observer architecture
was proposed. This allows each robot to estimate the
global system state using local communication.

In this paper, a fault hiding approach for including
FTC in a SMC is designed for a non-holonomic mobile
robot. First, a SMC controller for trajectory tracking
based on a kinematic model of the robot is designed to
cope with modelling uncertainty. Later on, it is enhanced
to take into account actuator faults leading to a FTC
SMC by using a fault hiding approach. To the best of
our knowledge, the approach proposed in this paper
is novel and there is nothing similar in the literature



Fig. 1: Components of the four wheel non-holonomic
robot. (1) Extension module. (2) DC motor drivers. (3)
Acquisition card (NI). (4) HDD. (5) PC power supply. (6)
Permanent magnet DC motors. (7) Incremental encoder
4096 pulse/revolution (Avago). (8) Driving wheel and (9)
Castor wheel.

in mobile robotic applications. Results using simulated
and real fault scenarios are presented to illustrate the
performance of the proposed approach. The structure
of the paper is the following: In Section II, the mobile
robot is described. Section III presents the sliding mode
controller for the mobile robot. Section IV extends the
sliding mode controller to cope with faults and a new
fault hiding approach for the sliding mode fault-tolerant
control of a non-holonomic mobile robot is introduced.
In Section V, the proposed methods are illustrated in
some fault scenarios. Conclusions and on-going work are
outlined in Section VI.

II. MOBILE ROBOT DESCRIPTION

A. Robotic platform

The mobile robotic platform considered in this paper is a
four wheel non-holonomic robot built in the Autonomous
Systems Lab at The University of Manchester, UK. The
robot is presented in Fig. 1.

The purpose of this non-holonomic mobile robot is to
provide a robotic platform to be used for benchmarking
several fault monitoring (fault detection and isolation) and
fault tolerant control strategies. It is well known that using
off the shelf robotic platforms is not possible to access
all the sub-components of the system. In order to be
able to test the fault monitoring and fault tolerant control
algorithms we often need to measure the currents in the
DC motors, or to be able to send voltage as control signals
(PWM) directly to the DC motors. To the best of our
knowledge, the majority of off the shelf robotic platforms
accept as control signals the angular velocities for each
wheel since the voltage control is provided internally using
a microcontroller. In this way, the user does not have access
to the low level components of the robotic platform. To
cope with this issue, the proposed robotic platform was
designed in a modular way giving the possibility to the
user to access every low level component. Thus, some
components can be replaced with faulty ones in order to

Fig. 2: Schematic representation of the main components
of the robotic platform and the interdependencies among
them.

study several fault monitoring and fault-tolerant control
algorithms. Moreover, the robotic platform can be used
in two different configurations. The first configuration is a
mobile vehicle with four independent driving wheels. The
second configuration is a mobile robot with two driving
wheels and one caster wheel. The second configuration
can be easy obtained by replacing two of the driving
wheels with a caster wheel. In this way, two different
configurations of mobile robots (with two and with four
driving wheels) can be used as benchmark. In this paper,
the configuration with two driving wheels and one caster
wheel will be used to test the proposed fault tolerant
control algorithm. Fig. 1 shows the main components of
the proposed robotic platform. These components and the
interdependencies are schematically illustrated in Fig. 2.

B. Dynamic model for the robotic platform

Although the kinematic approach is useful for control
design, it is not accurate enough for the analysis of
controllers dealing with uncertainty (robustness) and faults.
Moreover, for an realistic simulation the kinematic model
is not enough, being neccessary to develop a complete
dynamic model. Using the Lagrange dynamical modeling
approach, the dynamical model of a non-holonomic differ-
ential drive mobile robot can be described by the following
equation:

M(q)q̈ + V (q, q̇)q̇ + τd = B(q)τ − FR(q̇)−ΛT (q)λ (1)

M(q) – n× n inertia matrix;
V (q, q̇) – Coriolis and centripetal matrix;
FR(q̇) – surface and rolling friction matrix;
τd – unknown disturbances and unstructured unmod-
eled dynamics;
B(q) – input matrix;
τ – input torque vector;
ΛT – kinematic constraints matrix;
λ – Lagrange multiplier;



Fig. 3: Block diagram for SMC control based on kinematic model for trajectory tracking of the mobile robot

III. SLIDING MODE CONTROL FOR TRAJECTORY
TRACKING BASED ON KINEMATIC MODEL

A. Introduction

In this section, the design of SMC based on the
kinematic model for trajectory-tracking for the mobile
robot described in Section II is described. The proposed
control strategy is illustrated in Fig. 3.

In order to develop a robust controller for wheeled
mobile robot trajectory-tracking, we assume that the
trajectory is a priori generated by a trajectory planner as
it is proposed in [22]. The problem consists in designing
a robust controller so that the robot will correctly track
the desired trajectory under a large class of disturbances.
The trajectory planner generates the desired positions,
velocities and accelerations. The SMC is designed such
that it will minimise the difference between the real
positions, velocities, accelerations and the desired ones.
The desired values are assigned to a virtual robot as it
is shown in Fig. 4. The sliding mode controller based
on kinematic model will provide the linear and angular
velocities for the real robot in order to track the virtual
one with as small errors as possible. The block “Robots
Pose Estimator” will compute the robot positions and
orientation xr, yr, θr (also known as robot pose or
odometry) as well as the linear and the angular velocities
of the robot vr, wr [21].

The trajectory parameters are defined as follows:

• xd, yd, θd - desired pose;
• vd, wd - desired linear and angular velocities;
• v̇d, ẇd - desired linear and angular accelerations;

Then, the following motion model is considered as the
model of the non-holonomic wheeled mobile robot:

ẋr = vr cos θr
ẏr = vr sin θr
θ̇r = wr

(2)

where [xr, yr, θr] is the robot pose (the position of the
middle of driving axis and the orientation), vr is the
forward velocity and wr is the angular velocity of the
robot.

The tracking error vector [xe, ye, θe]
T is defined as

a transformation in the robot frame: xe
ye
θe

 =

 cos θd sin θd 0
− sin θd cos θd 0

0 0 1

 xr − xd
yr − yd
θr − θd

 (3)

The corresponding error derivatives are:
ẋe = −vd + vr cos θe + yewd

ẏe = vr sin θe − xewd
θ̇e = wr − wd

(4)

Slotine proposes in [23] the following type of switching
manifold for trajectory tracking:

s = ˙̃x+ kx̃ (5)

where x̃ = x− xdesired.

In the ideal case, s = 0 and the unique solution of
this differential equation is x̃ = 0. An important aspect
of the invariant set s is that once on it, the system
trajectories are defined by the equation of the set itself,
namely ˙̃x + kx̃ = 0. Hence, the surface s is both a place
and a dynamic.

B. The Proposed SMC

In this paper, a new design strategy of the sliding sur-
faces is proposed. Since in the trajectory tracking problem
we have three variables (xe, ye, θe) and only two control
variables (the linear and angular velocity of the mobile
robot vc and wc respectively), we propose to couple the
lateral error ye and the angular error θe in one sliding
surface s2 as follows

s1 = ẋe + k1xe

s2 = θ̇e + k2θe + k0ye (6)



Fig. 4: The errors between the real robot and the virtual
one

where k0, k1, k2 are the parameters of the sliding surfaces.
The values for these parameters will be chosen such that
the surfaces s1 and s2 are stable, i.e., the tracking errors
converge to zero when s1 = 0 and s2 = 0 (see Proposition
1).

Proposition 1: : The sliding surfaces (s1 and s2) in (6)
are asymptotically stable if

k0 >
k2|θe|
|ye|

, k1 > 0, and k2 > 0 (7)

Then, the tracking errors xe, ye and θe converge asymp-
totically to zero.
Proof. Follows directly applying the Lyapunov approach.

Proposition 1 proves that once the errors are on the
sliding surfaces they will remain there forever. This
working regime is also known as sliding phase. If the
errors are not on the sliding surfaces, a control law is
needed in order to bring the errors back to the sliding
manifolds. This working regime is also known as the
reaching phase.

Proposition 2: If the system is in the reaching phase,
the control law given by [8],

ṡ = −Qs− Psgn(s) (8)

where s = [s1 s2]T , moves the system towards the sliding
phase in a stable way.
The time derivatives of s1 and s2 are

ṡ1 = ẍe + k1ẋe = v̇r cos θe + v̇r sin θe+ (9)
ẏewd + yeẇd − v̇d + k1ẋe

ṡ2 = θ̈e + k2θ̇e + k0ẏe = ẇr − ẇd + k2θ̇e + k0ẏe (10)

From (7), (9), (14), (16) and (17), and after some basic
mathematical manipulation, we get the derivatives of con-
trol signals, i.e., the derivative of the linear and angular

velocity of the mobile robot, v̇c and ẇc respectively.

v̇c = (−Q1s1 − P1sgn(s1)− vr θ̇e sin θe − ẏewd− (11)

yeẇd + v̇d − k1ẋe)
1

cosθe
ẇc = −Q2s2 − P2sgn(s2) + ẇd − k2θ̇e − k0ẏe (12)

where k0 >
k2|θe|
|ye| , k1 > 0, and k2 > 0 (see Proposition

1), and P1 > 0, P2 > 0, Q1 > 0 and Q2 > 0 (see
Proposition 2).

After integration, we get the control linear (vc) and
angular (wc) velocities of the mobile robot. These
velocities can be transformed in angular velocities for
left and right wheel wcL and wcR, respectively. The
angular velocities of the wheels will be applied to the
robots wheels by means of an inner control loop based
on a PI controller as it is shown in Fig. 3. Considering
that the wheels have a radius R with a distance of
separation L, and assuming a perfectly symmetric body
frame, the resultant forward velocity can be obtained as
an average of the two forward wheel velocities given by
R
(
wcR+wcL

2

)
. The steering velocity may also be reasoned

as proportional to the difference between wheel velocities
but inversely proportional to distance between the wheels,
i.e., R

(
wcR−wcL

2

)
. Thus

wcR =
vc + Lwc
RR

(13)

wcL =
vc − Lwc
RL

(14)

where wcR and wcL are the angular velocities applied to
the right and left wheels, respectively.

IV. INCLUDING FAULT HIDING MECHANISM

Previous SMC control scheme for the robot presented
in Section III can be adapted to handle faults. Here, for
illustrative purposes and without reducing the generality
of the proposed fault-tolerant control method, the case of
fault affecting the wheel radius (flat tire) is considered.
There are two ways of including the faults in the SMC
control scheme: the SMC could be readjusted on-line,
or alternatively, a fault hiding approach can be used
without need of retuning the controller. Here, the second
option is the one selected. In Fig. 5, the SMC scheme
proposed in Fig. 3 is modified by including a block which
contains the fault hiding mechanism for each of the active
wheels of the mobile robot. The role of this block is
to hide the effect of fault to the SMC avoiding to retune it.

In the following proposition, we will show that the
fault hiding mechanism is of the form ∆R

Rnom
ν̇c and

∆R
Rnom

ω̇c, where Rnom is the nominal radius of the
wheel and ∆R is the maximum range of radius variation.
Moreover, it will be shown that the sliding mode controller
based on kinematic model together with fault hiding block
is stable.



Fig. 5: Fault Hiding for the Sliding Mode Fault-tolerant Control of a Non-holonomic Mobile Robot for fault in the
actuators (flat tire).

Proposition 3: Given a robot with two active wheels,
the following fault accommodation mechanism

ν̇fault =
Rnom + ∆R

Rnom
ν̇c (15)

ω̇fault =
Rnom + ∆R

Rnom
ω̇c (16)

is stable and robust against faults in the mobile robot
wheels.

Proof. Follows directly applying the Lyapunov approach.

Remark 3: If ∆R = 0, the derivatives of linear and
angular velocities of the robot obtained using SMC based
on the simplified dynamic model becomes identical with
the ones obtained using SMC based on the kinematic
model, i.e., ν̇fault = ν̇c and ω̇fault = ω̇c.

Considering the faults which can occur in the wheels
of the mobile robot (flat tire) we can distinguish the
following three cases.

Case 1. Both wheels are faulty:

RRf < Rnom and RRf < ∆R (17)
RLf < Rnom and RLf < ∆R (18)

The angular velocities for each wheel will be:

ωcRf =
νfault + Lωfault

Rnom
(19)

ωcLf =
νfault − Lωfault

Rnom
(20)

where RRf , RLf are the radius of the right and left
faulty wheels, respectively. ωcRf and ωcLf are the angular
velocities of the right and left faulty wheels, respectively.

Case 2. Left wheel is faulty, right wheel is non
faulty:

RR = Rnom (21)
RLf < Rnom and RLf < ∆R (22)

The angular velocities for each wheel will be:

ωcRf =
νc + Lωc
RR

(23)

ωcLf =
νfault − Lωfault

Rnom
(24)

Case 3. Left wheel is non faulty, right wheel is faulty:

RL = Rnom (25)
RRf < Rnom and RRf < ∆R (26)

The angular velocities for each wheel will be:

ωcL =
νc − Lωc
RL

(27)

ωcRf =
νfault + Lωfault

Rnom
(28)

V. RESULTS

A. Testing set-up

In this section, using a validated mobile robot model
(presented in Section II.B), simulated results of the
proposed fault-tolerant control method are presented in
fault free scenarios and faulty scenarios. The simulation
is used in order to be able to “inject” faults in the wheel
at any time instant. Using the model in Section II.B
as virtual reality, it is possible to analyse the proposed
fault-tolerant control strategy for faults which appear at
any time instant. This is not possible for the real robot



in which case the fault is considered to be present before
we start the experiment.

We will consider a circular trajectory for all test
cases. The circular reference trajectory was generated a
priori using an algorithm based on quintic equations as
it was proposed by Solea in [22]. The dynamic model
was simulated in Matlab R© using the following physical
parameters identified from the real mobile robot:

Robot parameters:
Right wheel radius: RR = 0.1145m;
Left wheel radius: RR = 0.1145 m;
Half of wheel base: L = 0.245 m;
Distance between center of mass and centre of rotation:
d = 0.1 m;
Robot body mass: MB = 35 Kg;
Wheel mass: Ww = 0.35 Kg;
Robot body moment of inertia: IB = 1.5 Kg ·m2;
Wheel moment of inertia around robot axis of rotation:
IM = 0.0012 Kg ·m2;
Wheel moment of inertia around actuator axis of rotation:
IW = 0.0012 Kg ·m2;
Static friction for right wheel: CSR = 2.35;
Static friction for left wheel: CSL = 2.73;
Viscous friction for right wheel: CV R = 0.17;
Viscous friction for left wheel: CV L = 0.25;

DC motor parameters:
DC motor torque constant: Kte = 0.03;
The resistance of the armature windings: Re = 1.8 Ω;
The DC motor inductance: Le = 0.08 H;
Gearbox multiplication: NG = 40;

Input voltage:
The voltage applied in open loop to the right DC motor:
VR = 9.5 V;
The voltage applied in open loop to the left DC motor:
VL = 8.5 V;

B. Simulation results of SMC based on kinematic model
in non-faulty case

Design parameters of (6) and (8) were chosen in ac-
cordance with Proposition 1 and Proposition 2 in order to
guarantee the errors convergence by keeping the surfaces
s1 and s2 to zero (sliding phase) and to guarantee the
convergence of the control law (reaching phase). Moreover,
in order to reduce the chattering phenomenon the signum
functions in the control law (14) were replaced by satura-
tion functions with the threshold ±0.5. Fig. 6a–6g show
the results for trajectory-tracking using SMC based on
kinematic model in fault free scenario. It can be seen that
linear and angular velocities of the mobile robot (Fig. 6c
and Fig. 6d) follow the references generated a priori by the
Trajectory Planner. The simulated mobile robot is able to

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6: Simulation results of trajectory tracking using a
SMC based on a kinematic model in a non-faulty situation

track with small errors the virtual robot (see Fig. 6a). It is
also shown that the sliding surfaces s1 and s2 are kept to
zero (Fig. 6e and Fig. 6f). Consequently (see Proposition
1), the tracking errors converge to zero Fig. 6b, as well.
In Fig. 6h the angular velocities for both wheels right and
left are shown. These angular velocities are maintained by
means of a simple PI controller as it was shown in Fig. 3.

C. Simulation results of SMC based on kinematic model
in faulty case

The fault is introduced in the left wheel (flat tire of
the left wheel). The radius of the left wheel is changed
from RL = Rnom = 0.1145 meters to RLf = 0.0745
meters and it is “injected” to the robot model at t = 16
seconds and will be faulty for the rest of the simulation.
In this case, we do not consider the fault hiding block
and the trajectory-tracking is based on the control strategy
proposed in Section III (see Fig. 3), i.e., SMC based on
kinematic model of the mobile robot.

In Fig. 7a one can observe the tracking errors in
the moment when the fault occurs (t = 16 seconds).
After a finite time the control law [8] manages to make
both sliding surfaces zero (Fig. 7d and Fig. 7e) and
consequently the tracking errors (Fig. 7a). In Fig. 7g
it can be seen that the angular velocity of the faulty
wheel (dotted red line) increases as result of a big control
effort needed to overcome the fault effect (the control
velocities observed in Fig. 7f). In Fig. 7b and 7c it can
be seen the real linear and angular velocities of the robot
and their variations when the fault occurs. The SMC
based on kinematic model is robust even in presence
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Fig. 7: Simulation results of trajectory tracking using a
SMC based on a kinematic model in a faulty situation
without fault hiding block

of the fault in the left wheel thanks to the robustness
properties of the SMC strategy. Since the fault can be
of any magnitude, we cannot guarantee the robustness
against any possible faults. In order to deal with this
situation we have, somehow, to take into account during
the controller design phase, the fault magnitude and to
prove the robustness of the fault tolerant controller against
a maximum possible fault magnitude (∆R). In this way,
we can guarantee the robustness of the fault-tolerant
controller (SMC plus fault hiding block) for all possible
faults with magnitudes less or equal than the maximum
one considered.

Now, we will apply the fault hiding strategy proposed in
Section IV, see Fig. 5. Here, we consider the maximum
range of radius variation to be ∆R = 0.06 meters. From
Fig. 8a–8f, it can be seen that because of the fault hiding
approach considered, the SMC based on kinematic model
is almost insensitive to the fault in the left wheel, occurred
at t = 16 seconds, comparing with the sensitivity in the
case of SMC without the fault hiding block as it was
shown in Fig. 7a–7f. In Fig. 8f, it can be seen that after
just few iterations (the time need for the fault hiding block
to become active), the control signals (linear and angular
velocities of the mobile robot) have the same values as in
the case of fault free situation (Section V.B), Fig. 6g. The
responsible of the change in the angular velocity for the
left wheel (dotted red in Fig. 8g) after the fault occurrence
is the fault hiding block and not the SMC which remains
insensitive for the rest of the simulation (see Fig. 8f).

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 8: Simulation results of trajectory tracking using a
SMC based on a kinematic model in a faulty situation
with the fault hiding block

VI. CONCLUSIONS

In this paper, a fault hiding approach to include FTC
capabilities to SMC based on kinematic model for a
mobile robot was proposed. It has been proved that the
SMC based on kinematic model with the fault hiding
block can cope with faults in the actuators for a mobile
robot. Moreover, using a sliding mode controller based
on a reduced dynamic model for the mobile robot it was
possible to prove the stability of the sliding mode based
on kinematic model working together with the fault hiding
block in case of fault occurrence. In this way, we propose
a simple fault hiding block to be added to the SMC
based on kinematic model (used in the majority papers
and applications of trajectory-tracking for mobile robots)
in order to cope with faults in the actuators (flat tire).
Results using simulated fault scenarios were presented to
illustrate the performance of the proposed approach.

As future work we will take into account other possible
faults for mobile robots, as for instance the variance of
the robots mass and consequently the moment of inertia.
For this type of fault we will apply the same strategy as
the one proposed in this paper.
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