
Robust State Estimation and Fault Detection Combining Unknown
Input Observer and Set-membership Approach

Feng Xu1, Junbo Tan1, Xueqian Wang1,∗, Vicenç Puig2, Houde Liu1, Bin Liang1,3,∗ and Bo Yuan4

Abstract— This paper aims to propose a new robust state-
estimation and fault-detection method by combining the un-
known input observer (UIO) and the set-membership estimator
(SME). It is known that both the SUIO and the SME can be
used to estimate the states of a system. The former aims to
obtain a particular value by actively decoupling the effect of
unknown inputs, while the latter can obtain state-estimation sets
by prediction and correction based on the set theory. Instead
of particular state values, the latter can obtain state-estimation
sets guaranteeing to contain system states (i.e., robust state
estimation). In this paper, we propose to use the framework
of the UIO to actively decouple part of unknown inputs and
then further employ the set-membership estimation method
to estimate state sets and detect faults. The objective of the
proposed method is to reduce the conservatism of robust state-
estimation sets by using the UIO to remove the contribution of
part of unknown inputs to the sizes of state-estimation sets. At
the end of this paper, a numerical example is used to illustrate
the effectiveness and advantages of the proposed approach.

I. INTRODUCTION

For a system, it is not always possible to measure all
the states. Regarding those unmeasurable states, we have to
estimate them for the application purposes such as control
design and fault diagnosis. As an important topic in the
control field, the state estimation of a system has been
attracting considerable attention [4], [7], [9].

In general, there are two ways to estimate system states.
The first one is to use conventional observers such as
Luenberger observers, unknown input observers, Kalman
filters, adaptive observers to estimate a specific value for the
system states at each time instant [8], [14], [17]. In some
sense, it is difficult to assess the degree of approximation
of those estimated values with respect to the corresponding
accurate values. The second way is to obtain robust state
estimation using the set-based approaches [1], [6]. A well-
known robust technique is the set-membership estimation
[12], [15]. Instead of estimating a particular value, the set-
based robust state-estimation techniques aim to obtain a
state-estimation set that guarantees to confine the accurate
value of states inside at each time instant. Since these
techniques can give bounds to the states, we can assess the
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accuracy of state estimation in an intuitive way. Moreover,
the smaller the set is, the better the estimation is.

In this paper, a new set-based state-estimation method is
proposed to obtain better state-estimation sets, which inte-
grates the framework of the UIO and the SME to implement
the robust state estimation and fault detection. In order to
reduce the conservatism of state-estimation sets, we have to
reduce their sizes. The proposed idea is to take advantage of
the UIO to decouple the effect of part of unknown inputs on
the sizes of state-estimation sets [5], [10], [16]. In this way,
the state-estimation problem of the system can be converted
into that of a state-estimation-error system. Then, we use the
SME to estimate the state of this transformed system whose
state estimations are finally used to recover the corresponding
robust state-estimation sets of the original system.

As a novel robust state-estimation approach, its most
important feature is that the UIO framework is employed
to remove the effect of some unknown inputs. Moreover,
the design process does not require to satisfy the design
conditions of UIOs in [5]. Instead, by using the set-theoretic
unknown input observer (SUIO), it is quite easy to design it
for the robust state-estimation and fault-detecttion purposes.
Thus, a sufficient number of degrees of freedom can be
obtained for designing the robust state estimator proposed
in this paper. As a result, it is possible to obtain less con-
servative state-estimation sets by using this method, which
is its most important contribution.

The remainder of this paper is organized as follows.
Section II introduces the plant model and the principle of the
set-membership-estimation approach. Section III presents the
design of a robust state estimator proposed in this paper and
its application to fault detection. Section IV illustrates the
effectiveness of the proposed approach and compares it with
the SME by using a numerical example. Finally, the paper is
concluded in Section V with the future research directions.

II. SYSTEM DESCRIPTION

The system model, the UIO and the SME are introduced
in this section, respectively.

A. Plant Model

The plant is assumed to be represented by the following
linear discrete time-invariant model

xk+1 = Axk +Buk + Eωk, (1a)
yk = Cxk + Fηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p, E ∈ Rn×r, C ∈ Rq×n and
F ∈ Rq×s are time-invariant matrices, k denotes the k-th



discrete time instant, xk ∈ Rn and yk ∈ Rq denote the
state and output vectors, uk ∈ Rp and ωk ∈ Rr represent
the known and unknown inputs (i.e., process disturbances,
modelling errors, linearizing errors, etc.), respectively, and
ηk ∈ Rs represents the measurement noise vector.

Assumption 2.1: The pair (A, C) is detectable.
Remark 1: Assumption 2.1 is used to guarantee the fea-

sibility of designing a stable observer for the system.
In this paper, we focus on set-based robust state estimation

of a monitored system. Thus, it is assumed that the measure-
ment noise vector ηk is bounded as shown in Assumption 2.2.

Assumption 2.2: The measurement noise vector ηk is
bounded by a set

V ={η ∈ Rs : |η − ηc| ≤ η̄},

where ηc and η̄ are known and constant vectors.
In order to reduce computational complexity, zonotopes

are chosen to implement set operations [1], [2]. Under
Assumption 2.2, the set V can be represented by

V ={ηc} ⊕Hη̄Bs,

where Hη̄ is a diagonal matrix whose diagonal elements are
the components of η̄ and ⊕ denotes the Minkowski sum.

B. Set-membership Estimation

It is assumed that the initial state x0 is bounded by the
initial zonotope X̂0 of the SME:

x0 ∈ X̂0. (3)

Definition 2.1: Given the system (1) and a measured out-
put yk, the measurement-consistent set at time instant k is
defined as Xyk = {xk ∈ Rn : Cxk − yk ∈ −FV }.

Assumption 2.3: The vector ωk is bounded by a set

W ={ω ∈ Rr : |ω − ωc| ≤ ω̄},

where ωc and ω̄ are known and constant vectors.
Similarly, the set W can be written into a zonotopic form.

The set-membership estimation approach uses several steps
to obtain robust state estimations by employing the state
dynamics (1a) and output equation (1b), respectively (see
[1] for more details).

• Prediction step: a zonotope X̄k = AX̂k−1 ⊕ {Buk} ⊕
EW is obtained to bound all possible values of states at
time instant k, where X̂k−1 is a zonotope and x̂k−1 ∈
X̂k−1 holds at time instant k − 1.

• Measurement step: the output yk is obtained and the
current measurement-consistent set Xyk is computed.

• Correction step: the measurement-consistent set Xyk is
used to correct the predicted set X̄k and an intersection
Xek = X̄k ∩Xyk can be obtained.

• Zonotopic outer-approximation step: a zonotopic outer-
approximation X̂k to bound Xek can be constructed,
which is used for the next-step prediction.

Remark 2: The set Xek is the exact state-estimation set
at time instant k, which is consistent with the output yk
and the state-estimation set X̂k−1. In general, it is difficult

to obtain the exact state-estimation set Xek because of the
complex geometric structure of sets. In order to reduce
computational complexity, an outer approximation X̂k with
a simple geometric structure (zonotope) is used to bound
the exact state-estimation set Xek for the propagation of the
dynamics at next steps for k > 0.

In order to implement the set-membership-estimation ap-
proach, Properties 2.1, 2.2 and 2.3 of zonotopes are used.
Furthermore, in [11], an algorithm to compute a zonotopic
outer-approximation of the intersection of a zonotope and a
polytope is presented in Property 2.4.

Property 2.1: Given X1 = g1 ⊕H1Br1 ⊂ Rn and X2 =
g2 ⊕ H2Br2 ⊂ Rn, their Minkowski sum is X1 ⊕ X2 =
{g1 + g2} ⊕ [H1 H2]Br1+r2 .

Property 2.2: Given X = g ⊕HBr ⊂ Rn and a suitable
matrix K, KX = Kg ⊕KHBr.

Property 2.3: ( [1]). Given a zonotope X = g ⊕HBr ⊂
Rn and an integer s (with n < s < r), denote by Ĥ
the matrix resulting from the reordering of the columns of
the matrix H in decreasing Euclidean norm. X ⊆ g ⊕
[ĤT Q]Bs where ĤT is obtained from the first s − n
columns of matrix Ĥ and Q ∈ Rn×n is a diagonal matrix
whose elements are Qii =

∑r
j=s−n+1 | Ĥij |, i = 1, . . . , n.

Property 2.4: ( [11]). Given a matrix Λ ∈ Rn×m, a
zonotope Z = g ⊕ HBr, and an H-polytope P = {x ∈
Rn : |Cx − d| ≤ [φ1, φ2, ..., φm]T }, with C ∈ Rm×n,
d ∈ Rm, φi ∈ R+ (i = 1, 2, ...,m), define a vector ĝ(Λ) =
g + Λ(d − Cg) and a matrix Ĥ(Λ) = [(I − ΛC)H ΛΦ],
with a diagonal matrix Φ = diag(φ1, φ2, ..., φm). Then, a
family of zonotopes (parameterized by the matrix Λ) that
contains the intersection of the zonotope Z and the polytope
P is obtained as Z ∩ P ⊆ Ẑ(Λ) = ĝ ⊕ ĤBr+m.

III. ROBUST STATE ESTIMATION AND FAULT DETECTION

This section proposes a method that combines the UIO
with the SME to obtain robust state estimations and its
application to fault detection.

A. Design of SUIO

The traditional SME is affected by all process disturbances
and measurement noises. This implies that all the bounds of
unknown inputs and measurement noises contribute to the
size of state-estimation set. However, we always hope to
reduce the size of state-estimation set as much as possible.
Thus, if we can remove the effect of part of unknown inputs,
it is possible to obtain less conservative state-estimation sets.

In this paper, the idea is to combine the SUIO with the
SME to implement this objective, which uses the SUIO
to remove the effect of part of unknown inputs and then
utilizes the SME to further obtain robust state-estimation sets.
Recently, in [16], a novel SUIO was proposed by the authors,
where the proposed SUIO is used to overcome the existence
conditions of traditional UIOs and simultaneously implement
the active decoupling of part of unknown inputs.



According to [5], for the system (1), a UIO can be
designed as

zk+1 = Nzk + Tuk +Kyk, (5a)
x̂k = Mzk +Hyk, (5b)
ŷk = Cx̂k, (5c)

where zk ∈ Rn, x̂k ∈ Rn and ŷk ∈ Rq are the state vector,
estimated state and output vectors, N ∈ Rn×n, T ∈ Rn×p,
K ∈ Rn×q , M ∈ Rn×n and H ∈ Rn×q .

Theorem 3.1: The necessary and sufficient conditions for
the observer (5) to exist for the system (1) are

• rank(CE) = rank(E),
• (C, A1) is a detectable pair, where

A1 = A− E[(CE)TCE]−1(CE)TCA.
Proof : The proof of Theorem 3.1 can be found in [5]. �

Under Theorem 3.1, it means that the observer (5) able
to decouple all the unknown inputs contained in the vector
ωk can exist. However, in reality, a considerable number of
systems cannot satisfy the conditions given in Theorem 3.1.
In order to overcome this problem, we will design an SUIO
to decouple part of unknown inputs included in ωk. In order
to reach this aim, we rewrite ωk into

ωk =

[
ω1,k

ω2,k

]
, (6)

where ω1,k ∈ Rna , ω2,k ∈ Rnp , na denotes the number
of unknown inputs that we can design an SUIO to actively
decouple, while np is the remaining number of unknown
inputs and is given by

np = r − na.

Correspondingly, the matrix E can be rewritten as

E =
[
E1 E2

]
, (7)

where E1 ∈ Rn×na and E2 ∈ Rn×np . In this case, the state
dynamics (1a) can be further rewritten as

xk+1 = Axk +Buk + E1ω1,k + E2ω2,k. (8)

Moreover, based on (1), (5) and (8), the state-estimation-
error vector of the UIO is defined as

exk = xk − x̂k (9)

with the dynamics

exk+1 =(A−HCA−MK1C)exk + [(A−HCA
−MK1C)M −MN ]zk + [(A−HCA
−MK1C)H −MK2]yk + (B −MT −HCB)uk

+ (E1 −HCE1)ω1,k + (E2 −HCE2)ω2,k

−HFηk+1 −MK1Fηk, (10)

where

K = K1 +K2. (11)

Since ω1,k denotes the unknown inputs that can be actively
decoupled by an SUIO, the parametric matrices of (5) can
always be designed to satisfy

E1 −HCE1 =0, (12a)
(A−HCA−MK1C)M −MN =0. (12b)

According to (10) and (12), the dynamics of the state-
estimation-error can be equivalently reduced into

exk+1 =(A−HCA−MK1C)exk + [(A−HCA
−MK1C)H −MK2]yk + (B −MT

−HCB)uk + (E2 −HCE2)ω2,k

−HFηk+1 −MK1Fηk, (13)

where it can be seen that ω1,k is decoupled by the SUIO.
Similarly, we can define and compute the corresponding

output-estimation-error vector as

eyk = yk − ŷk = Cexk + Fηk. (14)

By using (5), the system (1) can be mirrored into a
different but equivalent dynamics based on (13) and (14):

exk+1 =Aeexk +Beuek + Eeυk, (15a)
eyk =Cexk + Fηk (15b)

with

Ae =[A−HCA−MK1C],

Be =[(A−HCA−MK1C)H −MK2

B −MT −HCB],

Ee =[E2 −HCE2 −HF −MK1F ],

uek =[yTk uTk ]T ,

υk =[ωT2,k ηTk+1 ηTk ]T ,

where the superscript T denotes the transpose of vector.
In this paper, we propose to transform the robust state-

estimation problem of the system (1) into solving that of the
system (15).

B. Robust State Estimation

According to Section II-B, Assumption 2.3 is needed for
the implementation of the traditional SME. However, in this
paper, instead of Assumption 2.3, we only need that the
unknown input vector ω2,k is bounded.

Assumption 3.1: The unknown input vector ω2,k is
bounded by a set

W2 = {ω2 ∈ Rnp : |ω2 − ωc2| ≤ ω̄2},

where ωc2 and ω̄2 are constant and known vectors.
Remark 3: Since the SUIO can decouple the effect of the

unknown input vector ω1,k, an advantage of the proposed
robust state-estimation method over the traditional SME is
that only part of the unknown inputs are needed to be
bounded (i.e., ω2,k ∈W2).

Furthermore, considering that ω2,k, ηk+1 and ηk are
bounded, υk is also bounded and its set can be computed



by using the sets W2 and V . In this paper, we denote the set
of υk as S, that is

υk ∈ S. (16)

Under the assumption given in (3), the initial value of the
dynamics (15) should satisfy

ex0 ∈ Êx0 , (17)

with

ex0 =x0 − x̂0,

Êx0 =x0 ⊕ (−X̂0),

where X̂0 is designed such that x̂0 ∈ X̂0 holds and Êx0 is
used to denote the initial set of ex0 .

Remark 4: The energy of a physical system is always
limited. This implies that it is always possible to design a
pair (x̂0, X̂0) to guarantee ex0 ∈ Êx0 .

According to (16) and (17), we can apply the framework
of the SME into the dynamics (15). Particularly, a prediction
set of exk can be obtained by propagating (15a) as

Ēxk = AeÊxk−1 ⊕ {Beuek} ⊕ EeS, k > 0. (18)

At the same time instant, eyk can be computed by using (1b)
and (5c). Thus, with eyk and (15b), we can further compute
a set Eyk of exk consistent to eyk, where Eyk is computed from

Cexk − e
y
k ∈ −FV. (19)

According to Section II-B, the robust state-estimation set
of exk can be obtained by intersecting the prediction set Ēxk
and the consistent set Eyk as

Exe k = Ēxk ∩ E
y
k , (20)

where it can be guaranteed that

exk ∈ Exe k. (21)

Similar to the traditional SME, in order to predict the set
Ēxk given in (18) in real time, we have to construct an outer-
approximate zonotope Êxk to bound the set Exe k:

Exe k ⊆ Ê
x
k . (22)

In this case, we will be able to repetitively estimate robust
state-estimation sets of exk for all k > 0.

As a result, the main results of this paper on robust state
estimations are summarized in the following proposition.

Proposition 3.1: Under Assumptions 2.1, 2.2 and 3.1,
Theorem 3.1, and (3) and (17), the robust state-estimation
set of the system (1) at time instant k can be obtained by
using (5), (15), (18), (19) and (20) as

Xek = x̂k ⊕ Exe k. (23)
Proof : According to (21), we can have exk = xk − x̂k ∈
Exe k. In this way, it can be further obtained that xk ∈ x̂k ⊕
Exe k holds. That is, xk ∈ Xek. �

It can be seen that the proposed robust state-estimation
approach is based on the combination of the UIO framework
and the SME. However, we should emphasize that this

approach only uses the UIO framework. The reason is that,
different form the design of SUIOs to require that all the
parametric matrices of zk, yk, uk and ω1,k in (10) must be
zero matrices, that is,

E1 −HCE1 =0, (24a)
B −MT −HCB =0, (24b)

(A−HCA−MK1C)M −MN =0, (24c)
(A−HCA−MK1C)H −MK2 =0, (24d)

which are used to guarantee that the state-estimation-error
vector will converge to zero. As a comparison, the proposed
method only requires to satisfy (24a) and (24c), which im-
plies less conservative design conditions with respect to the
SUIO and more freedom to design the parametric matrices
of (5) to achieve some extra performance. Consequently, it
results in that the vector exk does not converge to 0 as k
tends to ∞ (i.e., (5) is not a real observer (UIO/SUIO) for
the system (1)). Thus, in this proposed robust state-estimation
approach, we only have one set-based state estimator, which
is composed of (5), (15), (18), (19), (20), (22) and (23).

Note that, under the framework of the proposed robust
state estimator, it is possible to relax the design conditions
by removing (12b). Moreover, if the design freedom of the
proposed observer allows, we can also design the parametric
matrix MK1F of ηk to be zero to further reduce the state
estimation and fault detection conservatism. However, this
also requires a degree of extension of the current results.

C. Application to Fault Detection

An important application of state-estimation techniques is
in the field of the model-based fault detection. As a well
known fault-detection method, the model-based method uses
state/output estimations of a system to compare with its real
signals for the generation of residual signals [3]. Then, the
residual signals are used for the fault-detection purposes by
using distinct approaches.

However, the set-based state-estimation techniques are
used for robust fault detection in a way different from the
general residual generation and analysis, which is based on
the consistency testing between the predicted state sets from
the state dynamics and the output-consistent sets of states
computed by using the output equation (see [1], [13]). A
similar fault-detection criterion to that in [13] using the
proposed state estimator is given in Proposition 3.2.

Proposition 3.2: Considering the plant (1) and the state
estimator described by (5), (15), (18), (19), (20), (22) and
(23), if Exe k or Xek is empty, it can be guaranteed that the
plant has already become faulty at time instant k.
Proof : The emptiness of the set Exe k or Xek implies that
there are no state values in the predicted set Ēxk that can
explain the current value eyk computed by using (15b) from
the real measured output vector yk. Moreover, since the sets
of process disturbances and measurement noises have been
taken into account when computing those sets, it can be
guaranteed that the plant has become faulty. �



Thus, by using the fault-detection criterion in Proposi-
tion 3.2, we can further use the proposed state-estimation
approach to robustly detect faults.

IV. ILLUSTRATIVE EXAMPLE

In this paper, the effectiveness of the proposed method is
illustrated by a numerical example modeled as (1) with

A =

[
0.75 0

0 0.7

]
, B =

[
0.5 0
0 0.8

]
, C =

[
0.9 0
0 0.8

]
,

E =

[
0.2 0.1 0.05
0.1 0.25 0.2

]
, F =

[
1 0
0 1

]
.

There are three unknown inputs considered in this ex-
ample. We use the proposed method to decouple the first
unknown input. Thus, we can obtain

E1 =

[
0.2
0.1

]
, E2 =

[
0.1 0.05
0.25 0.2

]
.

The parametric matrices of (5) are designed as

N =

[
0.5549 −0.1474
−0.8233 −0.5982

]
, T =

[
0.5 0.6
0.4 0.3

]
,

K1 =

[
0.1597 0.4253
0.7168 0.4814

]
, K2 =

[
0.65 0.43
0.12 0.68

]
,

K =

[
0.8097 0.8553
0.8368 1.1614

]
, M =

[
0.3 0.6
0.4 1.1

]
,

H =

[
0.9278 0.4124
0.4639 0.2062

]
.

A. Robust State Estimation

The zonotopic sets of part of process disturbances and
measurement noises are given as

W 2 =

[
0
0

]
⊕
[
0.025 0

0 0.02

]
B2,

V =

[
0
0

]
⊕
[
0.001 0

0 0.001

]
B2.

According to (15), (18), (19), (20), (22) and (23), we can
use the proposed method to estimate robust state-estimation
sets for the example. Moreover, in order to show the effec-
tiveness of the approach, a comparison between this approach
and the standard SME is carried out.

However, in order to use the standard SME approach, we
have to assume that all process disturbances are bounded
(i.e., ω1,k should be bounded as well) as follows:

W 1 =
[
0
]
⊕
[
0.2
]
B1.

Under the condition that all the process disturbances are
bounded, by using the SME introduced in Section II-B, we
can also compute the set-based robust state estimations of the
considered system. The results of the two state-estimation
approaches are shown in Figure 1, where the time span of
simulation is 100 time instants.

Remark 5: In Figure 1, xk(1) and xk(2) are the first and
second components of the real states, respectively. X1

e k(1)
and X1

e k(2) are the first and second components of the state-
estimation sets of the proposed method, respectively. X2

e k(1)
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Fig. 1. Set-based state estimations

and X2
e k(2) are the first and second components of the state-

estimation sets of the standard SME, respectively.
According to the simulation results, it can be observed

that the proposed approach can obtain less conservative state-
estimation sets than the standard set-membership-estimation
approach for the application in this example.

Remark 6: Without loss of generality, the plots in Fig-
ure 1 are based on the interval hull of zonotopic outer-
approximation X̂k of the state-estimation set Xek at each
time instant for simplicity.

B. Robust Fault Detection

In order to show the application of the proposed state
estimator to fault detection, a fault scenario is defined. That
is from the time instant k = 1 to k = 50, the system operates
in the healthy situation, while at k = 51, an actuator-
parametric fault modeled by a fault matrix Fa occurs, where
the actuator-fault situation is modeled as

xk+1 = Axk +BFauk + Ewk.

In the considered scenario, the fault matrix is set to be

Fa =

[
1 0
0 0.95

]
.



We present the fault detection results in Figure 2, where
the first and second plots corresponding to the proposed
estimator-based and the standard SME-based methods, re-
spectively. It can be seen that the former can detect the
fault at kd1 = 52 while the latter detects the fault three
time instants later (i.e., kd2 = 55), where kd1 and kd2
denotes the fault detection time instants corresponding to
the proposed estimator-based and the SME-based methods,
respectively. As a result, it is shown in Figure 2 that the
proposed estimator-based method is more sensitive to the
considered fault in this example.
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Fig. 2. Fault-detection results

Remark 7: In Figure 2, the dashed lines mean that the
state-estimation sets are considered as empty sets after FD.

V. CONCLUSIONS

This paper proposed a set-based robust state estimator
integrating the SUIO and the SME. Comparing with the
existing set-based approaches, this robust state estimator can
reduce the effect of part of unknown inputs such as process
disturbances and linearizing errors. In this case, it is possible
for us to obtain less conservative state-estimation sets. More-
over, the design of the proposed estimator can overcome the
design conditions of the standard UIO. Additionally, since

the design conditions (12) are much weaker than those in
(24), it means that we can get more freedom to achieve better
performance for the purposes of state estimation and fault
detection. In the future research, an important direction is to
further extend the proposed approach into the field of fault
isolation, fault estimation and fault-tolerant control.
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[10] S. Hui and S. H. Żak. Observer design for systems with unknown
inputs. International Journal of Applied Mathematics and Computer
Science, 15(4):431–446, 2005.

[11] V.T.H. Le, C.N. Stoica, T. Alamo, E.F. Camacho, and D. Dumur.
Zonotope-based set-membership estimation for multi-output uncertain
systems. In Proceedings of 2013 IEEE international Symposium on
Intelligent Control (ISIC), Part of 2013 IEEE Multi-Conference on
Systems and Control, Hyderabad, India, August 2013.

[12] Y. Liu, Y. Zhao, and F. Wu. Ellipsoidal state-bounding-based set-
membership estimation for linear system with unknown-but-bounded
disturbances. IET Control Theory and Applications, 10:431–442(11),
February 2016.

[13] P. Rosa, C. Silvestre, J.S. Shamma, and M. Athans. Fault detection
and isolation of ltv systems using set-valued observers. In Proceedings
of the 49th IEEE Conference on Decision and Control, Hilton Atlanta
Hotel, Atlanta, GA, USA, December 15-17 2010.

[14] K. Vijayaraghavan and A. Valibeygi. Adaptive nonlinear observer for
state and unknown parameter estimation in noisy systems. Interna-
tional Journal of Control, 89(1):38–54, 2016.

[15] W. Wang, X. Liu, Y. Li, and Y. Liu. Set-membership filtering for
genetic regulatory networks with missing values. Neurocomputing,
175, Part A:466 – 472, 2016.

[16] F. Xu, J.B. Tan, X.Q. Wang, V. Puig, B. Liang, and B. Yuan. A
novel design of unknown input observers using set-theoretic methods
for robust fault detection. In Accepted to the 2016 American Control
Conference, Boston, United States, July 2016.

[17] Q. Yang and Y. Liu. Adaptive state estimation of multi-input and
multi-output non-linear systems with general uncertainties both in the
state and output equations. IET Control Theory and Applications,
10:354–362(8), February 2016.


