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Abstract— This paper proposes a novel unknown input
observer (UIO) design method, which incorporates the set-
theoretic notions into the design of UIOs. In this way, we can
take advantage of both UIOs and set-theoretic methods in fault
detection (FD). The main advantage of UIOs is that they can
be insensitive to unknown inputs affecting a system. However, a
critical limitation is the satisfaction of the UIO design conditions
for a monitored system. The core idea of this paper is that, even
though we cannot design a UIO insensitive to all unknown
inputs, we can at least design a UIO insensitive to as many
unknown inputs as possible. In this case, although the effect
of all unknown inputs on FD cannot be completely removed,
we can at least partially remove the effect of unknown inputs.
Furthermore, for the remaining unknown inputs whose effect
cannot be removed, the set-theoretic methods can be employed
to specify them and obtain FD robustness against their effect. At
the end of this paper, the effectiveness of the proposed method
is illustrated by a numerical example.

I. INTRODUCTION

It is inevitable for a real system to operate in situations
under the effect of unknown inputs originated from modeling
errors, linearization, disturbances, faults and among other
things. Generally, it is difficult to obtain sufficient informa-
tion about these unknown inputs that can result in practical
issues when using models including them for estimating,
diagnosing and controlling dynamic systems. The UIOs, as
a variant of Luenberger observers, are specifically developed
to handle the unknown inputs. In the past decades, various
UIOs have been designed under different conditions [5]–[7].
Moreover, the applications of UIOs have been extended from
state estimation to fault diagnosis. The principle of the UIO-
based fault diagnosis is to use UIOs to decouple the effect of
disturbances on a residual vector from faults. Then, the fault
diagnosis task can be carried out by comparing the residual
signals with their given thresholds [3].

Unfortunately, for the system with unknown inputs, the
residual signals are simultaneously affected by unknown in-
puts and faults. In order to obtain reliable fault diagnosis re-
sults, it is essential that the residual vector can be decoupled
from unknown inputs so that they are only sensitive to faults,
which is the most important advantage of the UIO-based fault
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diagnosis. However, the UIO has an important weakness,
that is, the satisfaction of the UIO design conditions for a
system perturbed by unknown inputs. The UIOs are designed
to asymptotically converge to the system states by choosing
a proper group of observer parametric matrices. However,
if the number of independent measurable outputs is less
than that of unknown inputs, it is impossible to design a
conventional UIO insensitive to all unknown inputs except
for the case that extra conditions regarding unknown inputs
or the system can be satisfied (see [4], [5], [8]). The proposed
solutions in [4], [8] assume that some prior knowledge of
unknown inputs is obtained (e.g., mathematical relations
between unknown inputs and states are known). However,
these conditions based on extra knowledge are still quite
restrictive when applied to for real systems.

The objective of this paper is to propose a novel design
of UIOs to handle the case when not all unknown inputs
can be decoupled because the UIO design conditions are not
satisfied. In this case, by assuming part of unknown inputs
are bounded, this idea is that, instead of designing a UIO
insensitive to all unknown inputs, we can design a UIO only
insensitive to a part of all unknown inputs. This means that
the set of all unknown inputs can be divided into two groups:
one group to which the UIO is insensitive and the other group
to which the UIO is sensitive. Thus, the effect of the first
group on fault diagnosis can be eliminated by designing a
proper UIO insensitive to this group, while the effect of the
second group on fault diagnosis cannot be removed since the
UIO in use is sensitive to it.

In order to obtain robustness of fault diagnosis, we should
properly consider the effect of the second group on the
residual vector. In this paper, we choose the set-theoretic
methods to tackle this problem [2]. The set-theoretic methods
have been successfully used for robust fault diagnosis, which
obtain robustness by propagating the sets of unknown inputs
through a system model or considering invariant sets to
describe their effect on the system [9]–[12]. However, the
set-theoretic methods have drawbacks. The first drawback
is related to the complexity originated from on-line set
computation. The second drawback is its conservatism be-
cause it considers the worst-case uncertainty bounds such as
unknown inputs. That is, if there exist too many unknown
inputs, the size of sets will increase and consequently the
sensitivity to faults will decrease.

This paper proposes to combine set-theoretic approaches
with the UIOs. Eventually, the residuals generated by the de-
signed observer are insensitive to the first group of unknown
inputs as well as robust to the second group of unknown



inputs. With this distinct feature, we can make full use of
the advantages of the UIO-based and set-based methods and
simultaneously mitigate their disadvantages, which is the
core contribution of this paper.

The remainder of this paper is organized as follows.
Section II introduces the system model and the UIO. Section
III proposes a novel FD method by combining the UIO and
the set theory. Section IV illustrates the effectiveness of the
proposed FD method with a numerical example. This paper is
concluded in Section V including future research directions.

II. UNKNOWN INPUT OBSERVERS

This section introduces the notion of UIOs and presents
the existence conditions of UIOs.

A. Plant Models and UIOs

The linear discrete time-invariant plant is modeled as

xk+1 = Axk +Buk + Eωk, (1a)
yk = Cxk + Fηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p, E ∈ Rn×r, C ∈ Rq×n and
F ∈ Rq×s are time-invariant matrices, k denotes the k-th
discrete-time instant, xk ∈ Rn and yk ∈ Rq are the state
and output vectors, respectively, uk ∈ Rp and ωk ∈ Rr
are known and unknown inputs, respectively, and ηk ∈ Rs
represents the measurement noise vector.

Remark 1: In (1), ωk is generally used to model unknown
inputs originated from modeling errors, linearization, distur-
bances and among other unknown effects.

Assumption 2.1: The unknown input vector ηk is bounded
by a known set (i.e., ηk ∈ V ):

V = {η ∈ Rs : |η − ηc| ≤ η̄},

where ηc and η̄ are known and constant vectors.
Definition 2.1: In the presence of unknown inputs, an

observer is defined as a UIO for the system (1) if the state-
estimation-error vector asymptotically converges to zero.

Due to the existence of ωk, when estimating the states of
(1), the ability of a conventional observer to compensate the
effect of ωk is limited. Thus, we design a UIO to estimate
the states of (1) as

zk+1 = Nzk + Tuk +Kyk, (2a)
x̂k = Mzk +Hyk, (2b)
ŷk = Cx̂k, (2c)

where zk ∈ Rn, x̂k ∈ Rn and ŷk ∈ Rq are the state of (2),
the state and output estimations, respectively, N ∈ Rn×n,
T ∈ Rn×p, K ∈ Rn×q , M ∈ Rn×n and H ∈ Rn×q .

Based on (1) and (2), the state-estimation-error vector can
be defined as

ek = xk − x̂k. (3)

Furthermore, with (1) and (2), the dynamics of the state-
estimation error ek can be derived as

ek+1 =(A−HCA−MK1C)ek + [(A−HCA
−MK1C)M −MN ]zk + [(A−HCA
−MK1C)H −MK2]yk + (B −MT −HCB)uk

+ (E −HCE)wk −HFηk+1 −MK1Fηk, (4)

with

K = K1 +K2. (5)

Based on (4), if we can design a group of observer
matrices such that

E −HCE =0, (6a)
B −MT −HCB =0, (6b)

(A−HCA−MK1C)M −MN =0, (6c)
(A−HCA−MK1C)H −MK2 =0, (6d)

then the dynamics of ek can be rewritten as

ek+1 =(A−HCA−MK1C)ek −HFηk+1 −MK1Fηk.
(7)

Remark 2: Due to the effect of ηk, the observer (2) cannot
rigidly satisfy Definition 2.1 (i.e., the state-estimation-error
vector cannot converge to zero), which can be observed in
(7). However, we should emphasize that the observer (2) can
be designed to be insensitive to the unknown input vector ωk
under some existence conditions of UIOs. Thus, without loss
of generality, we still treat (2) as a UIO of (1) in this paper.

B. Existence Conditions of UIOs

By analyzing (4) and (6), in order to ensure the existence
of the observer (2), we should simultaneously guarantee:

• E −HCE = 0 is solvable,
• A−HCA−MK1C is a stable matrix.
Remark 3: The first condition means the possibility of

obtaining N , T , K, M and H , while the second condition
guarantees the convergence of the observer (2).

Theorem 2.1 is given to show the necessary and sufficient
conditions of the existence of the observer (2).

Theorem 2.1: The necessary and sufficient conditions for
the observer (2) to exist for the system (1) are

• rank(CE) = rank(E),
• (C, A1) is a detectable pair, where

A1 = A− E[(CE)TCE]−1(CE)TCA.
Proof : The proof of Theorem 2.1 can be found in [5]. �

Remark 4: In Theorem 2.1, the first and second conditions
are equivalent to the solvability of the equation E−HCE =
0 and the stability of the matrix A − HCA − MK1C,
respectively. Moreover, the solution of the equation E −
HCE = 0 is H = E[(CE)TCE]−1(CE)T + H0{I −
CE[(CE)TCE]−1(CE)T }, where H0 is an arbitrary matrix
with proper dimensions.

Under Theorem 2.1, it can be guaranteed that the observer
(2) exists. The procedure to calculate N , T , K, M and H
is given as follows:



• use (6a) to compute a value of H ,
• design a pair (M , K1) such that A−HCA−MK1C

is a stable matrix,
• calculate T by using (6b),
• calculate N by using (6c),
• calculate K2 by using (6d).
Remark 5: In order to guarantee that A−HCA−MK1C

is a stable matrix, we can consider MK1 as a whole. Then,
by choosing a value of M , we can determine both M and
K1. Based on (6b), (6c) and (6d), the remaining parametric
matrices of (2) can be further computed.

The state-estimation-error vector ek is originated from ηk,
which can be seen in (7). Thus, although we cannot eliminate
the effect of ηk, we can reduce it as much as possible by
selecting H and MK1 such that the sets HFV and MK1FV
of HFηk+1 and MK1Fηk are as small as possible.

III. ROBUST FAULT DETECTION

A set-based design of UIOs is proposed to handle the
existence problem of UIOs and reduce conservatism of
the conventional set-theoretic FD methods by making the
observer insensitive to a subset of the unknown inputs.

A. Design of Set-theoretic UIOs

In Section II, the UIOs have been systematically intro-
duced. However, they have an important weakness, which
consists in their existence for a monitored system. According
to the existence conditions in Theorem 2.1, the number
of independent rows of C should not be less than that of
independent columns of E, which means that the maximal
number of unknown inputs that can be decoupled cannot be
larger than that of independent measurable outputs.

In this paper, we focus on the case that the UIOs satisfying
Theorem 2.1 do not exist, which means that the system has
too many unknown inputs and cannot completely decouple
their effect from the residual vector in an active way. In
this case, it is impossible to achieve robust FD by only the
active decoupling way. However, we can turn to the passive
method to further consider the effect of unknown inputs
from the residual vector to obtain robust FD. Particularly,
we consider using the set-theoretic methods to implement
the passive managing of unknown inputs by bounding and
propagating their effect.

Since we cannot actively decouple all unknown inputs
described by ωk, we divide them into two groups. Thus, we
rewrite the unknown input vector into

ωk =

[
ω1,k

ω2,k

]
, (8)

where ω1,k ∈ Rna and ω2,k ∈ Rnp . Note that na is the
number of unknown inputs that the observer (2) is designed
to be insensitive to, while np denotes the remaining number
of unknown inputs, where

np = r − na.

Remark 6: The na unknown inputs can be actively decou-
pled from the residual, while the np unknown inputs cannot

be actively decoupled by the same UIO. Instead, we can use
the passive method to decouple them from the residual.

Furthermore, we can rewrite the matrix E into

E =
[
E1 E2

]
, (9)

where E1 ∈ Rn×na and E2 ∈ Rn×np .
By substituting (9) into (4), we can obtain

ek+1 =(A−HCA−MK1C)ek + [(A−HCA−
MK1C)M −MN ]zk + [(A−HCA−
MK1C)H −MK2]yk + (B −MT −HCB)uk+

(E1 −HCE1)ω1,k + (E2 −HCE2)ω2,k −HFηk+1

−MK1Fηk. (10)

Similarly, according to Theorem 2.1, we can design a
matrix E1 to satisfy

E1 −HCE1 =0. (11)

Remark 7: Since na denotes unknown inputs able to be
actively decoupled, (11) can be satisfied and the design
conditions of the traditional UIOs can be overcome.

Thus, a UIO insensitive to ω1,k can be designed and the
dynamics of the corresponding state-estimation-error vector
can be further derived as

ek+1 =(A−HCA−MK1C)ek + (E2 −HCE2)ω2,k

−HFηk+1 −MK1Fηk. (12)

Without loss of generality, a group of parametric matrices
N , T , K, K1, K2, M and H satisfying (6b), (6c), (6d)
and (11) are further obtained for (2). Thus, the designed
UIO insensitive to ω1,k can be obtained by substituting these
parametric matrices into (2).

B. FD Strategy
In the proposed FD method, considering that the set-

theoretic methods will be used to cope with the unknown
input vector ω2,k, we should make Assumption 3.1.

Assumption 3.1: The unknown input vector ω2,k is
bounded by a known set (i.e., ω2,k ∈W2), where

W2 = {ω2 ∈ Rnp : |ω2 − ωc2| ≤ ω̄2}

with ωc2 ∈ Rnp and ω̄2 ∈ Rnp being constant vectors.
The initial set of the state-estimation-error vector is de-

noted as Er0 . Thus, with (10), we can obtain that the sets of
the state-estimation-error vector for all k ≥ 0 as

Erk+1 =(A−HCA−MK1C)Erk ⊕ (E2 −HCE2)W2

⊕HF (−V )⊕MK1F (−V ), (13)

where ⊕ denotes the Minkowski sum of two sets.
Remark 8: If e0 ∈ Er0 holds, we can have ek ∈ Erk for

all k ≥ 0, as long as no faults occur in the system.
In this paper, we use the set-theoretic notion to passively

decouple the unknown inputs that cannot be actively decou-
pled from the residual vector. Thus, the residual vector is
defined as

rk =yk − ŷk
=Cek + Fηk. (14)



By using (13), we can construct the set of the residual
vector at time instant k as

Rk = CErk ⊕ FV. (15)

Remark 9: Based on the assumption e0 ∈ Er0 , we can
construct the residual set Rk to contain the current residual
vector for time instants k > 0.

By means of the above analysis, the robust FD criterion
used for the proposed FD method is designed as

rk ∈ Rk, (16)

where both the residual vector rk and residual set Rk are
obtained in real time. This criterion implies that if at any
time instant, a violation of (16) is detected, it means that a
fault has occurred in the system. Otherwise, we assume that
the system is still in healthy operation.

C. Computational Implementation

In this paper, the implementation of set computation is
based on zonotopes, because they have relatively low compu-
tational complexity in comparison with some other geometric
objects [2]. The definition and properties of zonotopes used
in this paper are given below [1], [2].

Definition 3.1: An r-order zonotope Z is defined as Z =
g⊕HBr, where g and H are its center and segment matrix
and Br is a box composed of r unitary intervals.

Property 3.1: Given X1 = g1 ⊕ H1Br1 and X2 = g2 ⊕
H2Br2 , X1 ⊕X2 = {g1 + g2} ⊕ [H1 H2]Br1+r2 .

Property 3.2: Given X = g⊕HBr and a suitable matrix
K, KX = Kg ⊕KHBr.

Property 3.3: Given a zonotope Z = g ⊕ HBm ⊂ Rn
and an integer s (with n < s < m), denote by Ĥ the matrix
resulting from the reordering of the columns of the matrix
H in decreasing Euclidean norm. Then Z ⊆ g⊕ [ĤT Q]Bs
where ĤT is obtained from the first s − n columns of
the matrix Ĥ and Q ∈ Rn×n is a diagonal matrix whose
elements satisfy Qii =

∑m
j=s−n+1 | Ĥij |, i = 1, . . . , n.

Remark 10: For the proposed FD method, we use Proper-
ties 3.1 and 3.2 to implement set computation. Besides, since
the order of zonotopes dramatically increases during the on-
line propagation, we further need Property 3.3 to reduce and
control the order of zonotopes.

When using Properties 3.1 and 3.2 to unfold (13) and (15)
into the center-segment form of zonotopes, (13) and (15) can
be equivalently transformed into

eck+1 =(A−HCA−MK1C)eck + (E2 −HCE2)ωc2

−HFηc −MK1Fη
c, (17a)

He
k+1 =[(A−HCA−MK1C)He

k (E2 −HCE2)Hω2

−HFHη −MK1FHη], (17b)
rck =Ceck + Fηc, (17c)
Hr
k =[CHe

k FHη], (17d)

where eck, rck, He
k and Hr

k are the centers and segment
matrices of Erk and Rk, respectively, and Hω2 and Hη are
the segment matrices of W2 and V , respectively.

Remark 11: According to Assumptions 2.1 and 3.1, W2

and V can be rewritten into zonotopes. Moreover, if Er0 is
a zonotope, all sets generated should be zonotopes.

IV. ILLUSTRATIVE EXAMPLE

In this paper, we use a numerical example to illustrate
the proposed FD method. The discrete-time dynamics of the
example is presented as

xk+1 = Axk +BF auk + Ewk,

yk = Cxk + Fηk,

with

A =

[
0.3 0
0 0.4

]
, B =

[
1 0
0 0.5

]
, C =

[
0.1 0
0 0.1

]
,

E =

[
0.5 0 0.3 0
0.2 0.4 0 0.5

]
, F =

[
1 0
0 1

]
,

where F a, a diagonal matrix, models actuator faults.
Remark 12: When the system is healthy, F a is the identity

matrix. If a fault occurs in an actuator, the corresponding
diagonal entry of F a will be a value inside [0, 1).

In order to show the effectiveness of the proposed method,
we consider a fault magnitude in the second actuator:

F a =

[
1 0
0 0.95

]
.

The considered system has four unknown inputs in total.
In this example, we will design a UIO to be insensitive to
the first unknown input. Thus, we have

E1 =

[
0.5
0.2

]
, E2 =

[
0 0.3 0

0.4 0 0.5

]
.

According to the procedure described before, the corre-
sponding parametric matrices of the UIO for the monitored
system are designed as

N∗ =

[
0.4097 0.0179
−0.7594 −0.1122

]
, T ∗ =

[
−0.8681 1.0851
1.3194 −1.6492

]
,

K∗
1 =

[
0.3167 0.3135
0.6999 0.2940

]
, K∗

2 =

[
0.3993 0.0668
−1.8536 −0.7081

]
,

K∗ =

[
0.7160 0.3803
−1.1537 −0.4141

]
, M∗ =

[
0.6825 0.5746
0.7279 0.2220

]
,

H∗ =

[
8.3436 4.1409
3.3899 1.5253

]
.

The initial conditions in this simulation are given as

x0 =

[
0
0

]
, X̂0 =

[
0
0

]
⊕
[
0.01 0
0 0.01

]
B2,

z0 =

[
0
0

]
, Er

0 =

[
−0.0739
−0.0296

]
⊕
[
1 0
0 1

]
B2.

We use two sinusoidal inputs to excite the system:

u1,k = 10sin(0.2k), u2,k = 10sin(0.2k).



Additionally, we assume that the bounding sets of un-
known inputs and measurement noises are as follows:

W =

000
0

⊕

1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

B4,

W1 =
[
0
]
⊕
[
1
]
B1,

W2 =

00
0

⊕

0.1 0 0
0 0.1 0
0 0 0.1

B3,

V =

[
0
0

]
⊕
[
0.01 0
0 0.01

]
B2.

In this example, a fault scenario is defined to show the
effectiveness of the proposed method as follows: from k = 0
to k = 20, the system is healthy, while from k = 21 to
k = 50, the actuator fault is present.
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Fig. 1. UIO-based FD

For the fault scenario, the results corresponding to the
set-theoretic UIO-based FD method are shown in Figure 1.
It can be observed that the set-theoretic UIO-based method
can detect the actuator fault at time instant k = 22, which
has shown its effectiveness. Without loss of generality, in
Figure 1, the presentation of results is based on interval hulls
of zonotopes instead of using zonotopes for simplicity of
plotting. Note that, rk(1), Rk(1), rk(2) and Rk(2) in Fig-
ure 1 denote the intervals of the first and second components
of the signals rk and Rk, respectively.

V. CONCLUSIONS

In this paper, a novel design method of UIOs for FD
is proposed, which combines both the UIO and the set
theory. Both the UIO-based and the conventional set-based
FD methods can be robust to unknown inputs and are
able to decouple the effect of unknown inputs from the
residual vector. The difference is that, the former uses the
active decoupling while the latter is based on the passive
decoupling. We have to mention that both methods have their
advantages and limitations. The former requires the existence
of UIOs for the decoupled system, which is not always the
case, while the latter considers that all unknown inputs are
bounded. In practice, the existence conditions of the UIOs
are generally harsher than the boundedness conditions of
unknown inputs and measurement noises. The contribution
of this paper is that it proposes a novel method that combines
both the active and the passive decoupling methods to obtain
FD robustness. Eventually, the existence conditions of UIOs
can be removed and the advantages of the active and passive
decoupling methods can be kept. In the future, the proposed
method will be further extended to fault isolation (FI) and
fault-tolerant control (FTC).
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