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Abstract— The use of false or erroneous data can lead to
wrong decisions when operating a system. In case of a water
distribution network, the use of incorrect data could lead
to errors in the billing system, waste of energy, incorrect
management of control elements, etc. This paper is focused
on detecting flow meters reading abnormalities by exploiting
the temporal redundancy of the demand time series by means
of artificial neural networks (ANN). Communication problems
with the sensor generate missing data and bad maintenance
service in the flow meters produce false data. In this work,
a methodology to detect the false data (validate) and replace
the missing or false data (reconstruct) is proposed. As a
core methodology, ANNs are used to model the time series
generated from the water demand flow meters, and use the
confidence intervals to validate the information. To illustrate
the proposed methodology, the application to flow meters in
the water distribution network of Barcelona is used.

I. INTRODUCTION

The purpose of a water distribution system is to deliver
water to consumers with appropriate quality, quantity and
pressure. The water supply system collects, stores, treats, and
distributes the water for homes, commercial establishments,
industry, and irrigation, as well as for such public needs as
firefighting, street flushing, etc. The main goal of the water
distribution system is to satisfy the consumers’ demand (with
appropriate quality). This implies the continuous delivering
of quality water at a reasonable pressure to users. To maintain
the quality of service, the water distribution system requires
a real-time monitoring system. This system will facilitate
finding faults in the water distribution system.

Among the activities of the water distribution system, it is
to periodically measure the amount of water supplied to each
user. In a complex water distribution network, a telecontrol
system must acquire, store, and validate data from many
flow meters and other sensors every few minutes to achieve
accurate monitoring of the whole network in real-time.
Frequent operation problems occurs in the communication
system between the set of the sensors and the data logger, or
in the telecontrol itself, generate missing data during certain
periods of time. Missing data must, therefore, be replaced
by a set of estimated data [1], [2].

Missing data is not the only problem, a second common
problem is the lack of reliability of the flow meters (offset,
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drift, breakdowns, etc.), producing false flow data readings.
These false data must also be detected and replaced by esti-
mated data, since flow data are used for several network wa-
ter management tasks, namely: planning, investment plans,
operations, maintenance, and billing/consumer services and
operational control [1], [2].

This paper is related to works in the area of Artificial
Neural Network (ANN) for the task of modelling time series
[3], [4], [5], [6], but differ in the way of creating the
architecture of the ANN, and also the way to train it. In
previous works ([7], [8], [9]), we have used Evolutionary
Algorithms (EA) to define the architecture of the ANN and
train it. The results show that the forecast accuracy achieved
using EA presents a better performance than traditional
gradient-based training algorithms.

In this paper, we propose a methodology to detect (vali-
date) and reconstruct data of water demand time series by
modelling the time series with an ANN. With this model,
it is possible to detect anomalies and replace the missing
data. One of the inputs of the ANN is the mode (or regime)
of the next day to model. In previous works related to
regime recognition, the identification of regimes behaviour
has used qualitative information. Benmouiza and Cheknane
[10] proposed the implementation of a global NAR (Non-
Linear Autoregressive) neural network predictor to estimate
the regimes associated to another local NAR neural network
predictor for the hourly global solar radiation. Kumar and
Patel [11] propose a predictive algorithm using data clus-
tering and local training models that combined produce the
forecast. Martinez Alvarez et al. [12] use clustering to group
the days with similar patterns, regarding the variation of
the electricity cost in working days and holidays. In [13], a
daily seasonality ARIMA model with hourly pattern with the
goal of working in daily and hourly scales is proposed. The
seasonal ARIMA predicts total days consumption and a daily
pattern is selected according to a calendar for distributing
the consumption hourly along the day. The proposed case
study, the Barcelona water network model has been already
studied by [2] also with the focus on the validation and
reconstruction of flow meter data.

The structure of the paper is the following: In Section
II, the approach proposed for the modelling the flow meter
data series is introduced. Section ?? describes the flow
meter data validation and reconstruction approach. Section
IV presents the case study used to illustrate the proposed
approach. Section V summarizes the main results obtained
in the considered case study. Finally, in Section VI draws
the main conclusions.



II. MODELLING THE TIME SERIES

A. Background
Modelling a water demand time series is not something

new, since water is one of the most basic non renewable
natural resources to sustain life and ecosystems. The devel-
opment of new forecasting models and strategies are strongly
related to multidisciplinary novel research, mainly in physics,
computing, and statistics.

In the literature regarding modelling time series (e.g. [14],
[15]), we found that there is a strong effort on finding the
best way to decompose time series in several simpler time
series to better fit an accurate model. This is not an easy task
since in many real cases there is not an available model that
describes the dynamic fluctuation of the data. In the early
successful stage in statistics the divide and conquer strategy
has been used. For example, the decomposition on different
basic components that might explain the general dynamics of
the time series, such as trend, seasonal, random, and cyclical
components that are integrated in the ARIMA methodology
[16], [17].

Nowadays, with the growing of computational resources
and the development of machine learning and pattern recog-
nition algorithms (e.g. [18], [19], [20]), it is possible to
model more complex time series. There are practical cases
where the single linear modeling approach is not enough for
systems that present different behaviors along time [10], [11],
[12], [13]. These behavior changes might be produced by
changes on dynamical regimes. Although the multi-modeling
approach was born with the analysis of partially known
real systems, the same ideas can be adopted for time series
modelling where there is no knowledge about the system
behind the dynamics. That is the case of water demand time
series.

Regarding the water demand, different methodologies for
modelling have been explored. In particular, revising the
literature, several methodologies (e.g. based on Box Jenkins,
ANNs, Holt-Winters, ARIMA, etc.) that deal with this prob-
lem [21], [22], [13], [23] already were satisfactorily applied.

B. Proposed approach
Recent research activities in ANNs have shown that they

have powerful pattern classification and pattern recognition
capabilities. Inspired by biological systems, particularly by
research into the human brain, ANNs are able to learn and
generalise from experience. Currently, ANNs are used for a
wide variety of tasks in many different fields of business,
industry, and science [24].

One major application area of ANNs is forecasting (mod-
elling time series). ANNs provide an attractive alternative
tool for both forecasting researchers and practitioners. Sev-
eral distinguishing features of ANNs make them valuable
and attractive for a forecasting task [24].

Determination of the optimal number of hidden neurons is
a crucial issue. If the hidden layer is too small, the network
can not possess sufficient information processing power, and
thus yields inaccurate forecasting results. On the other hand,
if it is too large, the training process will be very long.

Given a time series, we need to provide a neural model
capable of producing an acceptable model that fits with the
behavior of the time series. The ANN architecture used for
this task is a Multi-Layer Perceptron (MLP). A MLP as a
universal approximator, can learn any function given, as long
as it has enough neurons in the hidden layer. That fact allows
the network to capture the different forms of the function to
be modelled. The network used in this work is a three layer
MLP network. The past observations of the time serie are
used as input of the ANN. The hidden layer has m neurons,
and the output layer corresponds to the forecast (ŷt+1)), and
the sigmoid function as the activation function. The ANN
that forecast ŷt+i is defined as:

ŷt+1 = f1(
n∑
i

wixi)

xi = f2(
h∑
j

wijyt−j)

(1)

where f1 and f2 are the activation functions, and w are the
coefficients or the weight connections.

An example of this kind of architecture is depicted in
Figure 1. The proposed network has k inputs, which are
selected from the k previous measurements, plus the next
mode. It is understood as next mode, the estimation of the
next day qualitative behavior (e.g. labor day or holiday). It
has m neurons in the hidden layer, one output (the corre-
sponding hour prediction (ŷt+1)), and the sigmoid function
as the activation function.

Next  
Mode 

yt 

Yt-1

Yt-2
. . .
Yt-k 

k inputs +
mode 

m hidden 
neurons 

Ŷt+1

One output

Fig. 1. MLP architecture with k+1 past observations plus the next mode,
m hidden neurons in the hidden layer and one output (ŷt+1).

C. Regimes

Time series can present different dynamic behaviors that
cannot be fitted with a single model. These different behav-
iors might be considered as changes of regimes that might
be unknown. Examples of this kind of behaviors are found
in natural processes, such as temperature, solar radiation,
wind speed, etc., where the behavior changes according to
some rules. The behavior in these cases is different during



the winter than during the summer, but regular in its own
season. Also, behavioral changes can be found in time series
corresponding to human activities such as water demand,
electricity consumption, etc. In those cases the behavior of
the series is reflected according to human activities (i.e.
holiday or working days). Each behavior can be represented
by a regime that is characterized by a qualitative behavior.

In [25], to predict the time series water consumption, it
is decomposed in two kinds of time series: a quantitative
and qualitative one. A quantitative time series that represents
the total consumption of water corresponding to every day
is considered. The qualitative time series represents the
sequence of distribution patterns (corresponding to working
and holy days) called modes to be used to distribute the
predicted amount of water. The training requirements for
both time series are different and consequently several kind
of algorithms can be used. The mode defined in this work is
used as an input to the ANN.

D. Training Process

For the training process, taking into account the results
obtained in previous works ([7], [8], [9]) where we tested
traditional methods (gradient-based [26]) versus evolutionary
computation, we use Genetic Algorithms (GA) to define the
architecture of the net and the training process for finding
the best structure and weights of the ANN.

GA is an optimisation technique inspired on Darwin’s
principle of evolution. That is, it mimics a simplistic version
of the process of biological evolution, which consists of
creating a population of individuals, where each individ-
ual represents a prospective solution of the problem being
solved. GA modifies this population using genetic operators:
selection, mutation, recombination, etc. This stage, called a
generation, repeats until a termination criterion is met. At the
end of the process, the best individual (e.g. the one with best
fit) found during the evolution is returned as the solution of
the problem.

Determining the best ANN architecture for forecasting is
an optimization problem; we use GA to find the optimal
ANN architecture and its weights. The function to minimise
is:

min(MSE) =
N∑
k

(yk − ŷk)
2 (2)

where yk is the real data, ŷk is the estimate data, N is the
number of points in the training set, and MSE (Mean Square
Error) is the function to minimise.

GA defines the architecture of the ANN and the weights of
the neurons connections. Each individual (the chromosome)
is defined as a vector of real numbers. The vector is coded in
three parts. The first part of the vector defines the architecture
of the net (n and h of Equation 1 ). This part is a a vector
of two elements: the first element is coded and defines the
number of previous measurements to use as an input (n),
and the second element, also coded, defines the number of
neurons in the hidden layer (h). The second and third part

of the vector corresponds to the weights connections from
the input neurons to the neurons in the hidden layer (second
part); its size is (n+1)∗h (n is the number of inputs, h is the
number of neurons in the hidden layer). And the third part
corresponds to the weights from the neurons in the hidden
layer to the output layer (third part)its size is h. Figure 2
shows the structure of the chromosome.
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  …	
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  0.2989	
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First set of weigh 
connections  

Second set of weigh 
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Fig. 2. The chromosome of the ANN represented as a vector of reals.
The first two positions of the vector defines the structure of the net, and the
following data corresponds to the weights connections.

As mention before, the first part defines the architecture
of the ANN. In this part, the two elements are coded in real
format, but they represent an integer number as follows

I = Integer(LimMax ∗ realData) (3)

where LimMax is the largest possible number defining
the boundary of the architecture. We have one LimMax
to define the number of inputs, and another one to define
the number of neurons in the hidden layer. I is an integer
number between zero and LimMax; realData is the value
contained in the vector of reals, and the function Integer
returns the integer part of the product of LimMax and
realData.

III. DATA VALIDATION AND RECONSTRUCTION

To validate and reconstruct the data from the flow meter
sensors of the distribution network, first we need to model
the behavior of the corresponding time series. To model the
water demand time series, as explained before we use an
ANN. With the model of the time series, it is possible to
start the process of validation and reconstruction of data.
The process starts from the acquisition of data, and ends
until they are stored in the operational database.

The information from flow meter is sent to the telecontrol
center. If system does not receive the data, the process of
reconstruction is started. If the data is received, the data goes
to a validation process. If the data is out of the boundary
of a valid range, the data is discarded and the process of
reconstruction is started. After this processes the data are
stored in the operational database. Figure 3 shows the flow
of the validation process and reconstruction of information.

The validation process verify if the data is between a
valid boundary. The valid boundary is defined by the model
obtained with the ANN. The model produces an estimation,
and with statistical methods a valid threshold can be deter-
mined. In this case, to quantify the model uncertainty, we use
the confidence interval assuming that error follows normal
distribution as follows:

x̄− 1.96
σ√
N

< µ < x̄+ 1.96
σ√
N

(4)
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Fig. 3. Validation and reconstruction process of the flow meter data sensor.

where µ is interval with a 95% confidence, x̄ is the mean of
the error, σ is the standard deviation, and N is length of the
population. The valid range is defined as:

y(k) ε [ũsup, ũinf ] (5)

where ũsup = x̄− 1.96 σ√
N

and ũinf = x̄+ 1.96 σ√
N

.
In the data reconstruction process, the ANN model is

already defined (trained). According to the architecture of
the ANN, n last observations are selected, and the estimation
can be carried out. This estimation is sent to the operational
database.

IV. CASE STUDY

The Barcelona network is managed by the company Aguas
de Barcelona (AGBAR) [27]. This company does not only
supply water to Barcelona city, but also to the metropolitan
area. The network supplies 23 Municipalities in a 424 km2

area with 4,645 km of pipes in order to meet about 3 million
people water demand.

The sources of water are the rivers Ter and Llobregat that
are regulated at the head by some dams with an overall
capacity of 600 hm3. There are four drinking water treatment
plants which treat the underground flows. Also, there are
several underground sources (wells) that can provide water
through pumping stations.

The different water sources currently provide a flow of
around 7 m3/s. Currently, a desalter plant has just been put
in production with a capacity of 60 hm3/year. This plant
is located at the end of the Llobregat river and produces
drinking water by treating the sea water through a desalin-
ization process. This plant will become of prime importance
especially in drought periods, helping to maintain the water
supply.

The complete transport network contains: 63 storage tanks,
3 surface sources and 7 underground sources, 79 pumps, 50
valves, 18 nodes, and 88 demand sectors. The network is
controlled through a SCADA system with sampling periods

of 1 hour. For the predictive control scheme a prediction
horizon of 24 hr is chosen. This record is updated at each
time interval.

Due to the geographical topology of Barcelona and its
surroundings, the water network supply in the metropolitan
area is structured in pressure flows. Indeed, the topology of
Barcelona, with a big difference in height between the sea
level and the highest point to be supplied that is about 500 m
above the sea level makes it necessary to homogenise the
pressure by intermediate tanks and pumping stations.

The water supply system responds to changes in network
topology (e.g. ruptures), typical daily profiles, as well as
major changes in water demand, etc. The demand varies
hourly, following a pattern that repeats every day. There
are slight changes during weekends; additionally, there are
changes in demand between winter and summer.

V. RESULTS

The considered water demand flow meter sensor is named
p10025 of Barcelona water distribution network. The time
serie of this sensor of one month in hourly scale is depicted
in the Figure 4.

100 200 300 400 500 600 700
Time

0.2

0.4

0.6

0.8

Magnitude

Fig. 4. The time serie of the sensor p10025 of one moth in hourly scale.

The first step is to model the dynamic behaviour of water
demand by using an ANN. We use GA to learn the best ANN
architecture. The parameters used to perform the experiments
performed are shown in Table I. After the process of defining
the best architecture of the net and the training process, an
ANN capable of model the behavior of the time series is
obtained. Figure 5 shows the results of the modelling process,
by plotting the real data versus the prediction data resulted
form the obtained ANN model using the GA optimization
process.

The telecontrol system manages the information received
from the flow meter sensor. If the system do not receive any
data because problems with communications or the sensor; it
starts the process of reconstruction. An example of this case
is presented in the Figure 6 where a bar diagram is presented.
Each bar represents the magnitude of each time interval.
From the diagram we observe some gaps that correspond
to the missing information.
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Fig. 5. Real versus predicted demand using the ANN obtained using the
GA optimisation process.

TABLE I
PARAMETERS OF THE GA

Concept Value
Length of data 720

Length of the validation set 216
inputs of the ANN 35

neurons in the hidden layer 28
Individual mutation probability 35%

Gen mutation probability 0.05%
Crossover probability 70%

To deal with this problem, the system uses the recon-
struction process to replace the missing data. Reconstruction
process uses the ANN model to obtain the prediction of the
missing information. The model already trained uses a past
information and produce the prediction. Figure 7 shows the
result after applying the reconstruction process to the missing
data shown in Figure 6.

A second problem is the false data produced by problems
in the flow meters. Once the tele-control system has received
the data, the system validates them. If its out of the boundary
(5), a false data is detected. Then, the system starts the
reconstruction process (explained before). And, after the re-
construction, the data is inserted in the operational database.
The boundary (confidence intervals) of this problem are
presented in Figure 8. In this figure, there are four lines,
the black continuous one represents the real data; the dotted
one represents the prediction produced by the ANN model
and the two thinner dotted ones represent the valid boundary
of the model.

An example of false data produced by a flow meter is
depicted in the Figure 9. From this figure, two points leave
the boundary of the CIs, these two anomalous measurements
are replaced by reconstruction process.

VI. CONCLUSIONS

In this paper, we have presented a methodology to detect
abnormalities in the flow meter reading, as missing data
or false data. We model the time series dynamics with an
ANN, where its architecture and learning process is based on
solving an optimisation process using GA. The missing data

0.0

0.2

0.4

0.6

0.8

Fig. 6. Gaps in the log history of the sector p10025.

0.0

0.2

0.4

0.6

0.8

Fig. 7. Missing data replaced by the reconstruction process. The grey
bars represent the real data magnitude and the the red ones represent the
reconstructed data.

are replaced by data obtained from the ANN model, and the
false data are detected if it leaves the boundary defined by the
CIs associated to the ANN model. Detection and correction
of false data could avoid the water distribution company
problems in the billing process, or the operational process,
just to mention some examples. The proposed approach
has satisfactorily assessed using some flow meters of the
Barcelona water distribution network.
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