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Industrial (CSIC-UPC),
Barcelona, Spain

Email: fkarimi@iri.upc.edu

Vicenç Puig
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Abstract—This paper presents a comparative study of three
different approaches to design Model Predictive Control (MPC)
strategies for a pasteurization plant using Linear Parameter
Varying (LPV) models. The first two methods consider the LPV
model in the design of the MPC controller in two different
manners. The last approach uses a Robust MPC controller for
taking parameter variations of the LPV model into account.
It is assumed that the disturbances are unknown but bounded
and the zonotopic set representation is used for modeling the
uncertainty. In addition, a comprehensive comparison of the
closed-loop performance accounting the proposed approaches is
carried out through a high-fidelity simulator of a utility-scale
pasteurization plant.

I. INTRODUCTION

In modern times of industrialization, investigation about
complex dynamical systems is one of the important issues in
the industrial framework. Controlling these complex systems
is one of the most important problems in control engineering,
but also one of the most challenging. One of the main,
successful and widespread advanced control methodologies in
industrial processes is Model Predictive Control (MPC) [1].
The reason for its success is its flexibility, and its ability to
take constraints on the states and/or input directly into account
[2]. Basically, MPC uses a model of the system to predict its
future behavior in order to compute appropriate input signals to
control the system states/outputs. To do so, an input sequence
is obtained by optimizing a finite-horizon cost function at each
time instant, based on an explicit model of the process and
state measurements/estimations. Only the first element of the
optimal sequence is applied to the plant and the procedure
is repeated at the next time instant with new measurements
while the input sequence is updated [3]. This approach is called
receding horizon control.

MPC based on linear models is typically used in process
control where the on-line optimization problem can be for-
mulated as a convex optimization problem by either linear
programming or quadratic programming. This assumption is
suitably considered for typical processes. However, most of
the real systems show nonlinear behaviours that can be ap-
proximated by polytopic linear uncertain models. In order to
reduce the conservativeness, the idea of controlling nonlinear
systems considering linear parameter varying (LPV) models
has been widely investigated in the literature [4], [5]. LPV
models are a class of linear models whose state-space matrices
depend on a set of time-varying parameters, which take their

values into pre-specified sets [6]. The advantage of this class
of models is that it embeds the system non-linearities into the
varying parameters, which make the non-linear system become
a linear-like one with varying parameters [7]. In quasi-LPV
models, the varying parameters can be functions of states,
inputs or outputs, to make a further distinction with respect to
pure LPV models, where the varying parameters only depend
on exogenous signals. In this way, LPV models allow applying
powerful linear design tools to complex nonlinear models. The
predictive control of LPV models can be addressed considering
the parameter variation as uncertainty and using the concept
of ellipsoidal invariant sets [8]. However, this approach can
lead to conservative results. To reduce the conservativeness,
the class of linear parameter-dependent Lyapunov functions
has been introduced [9]. Then, a linear scheduled controller
is computed at every time instant. The control performance
improvements are remarkable at the price of an increased num-
ber of linear matrix inequality (LMI) conditions. In addition,
in [10] the special class of non-linear parameter-dependent
Lyapunov functions is used and a non-linear scheduled control
law is obtained which, leads to further improve the control
performance.

A pasteurization system includes typical behaviors of many
industrial processes, such as complex dynamical models with
nonlinearities, which imply important challenges when a suit-
able controller should be designed [11]. Regarding its control,
the regulation of both water and milk temperatures by using
MPC is reported in [12], where transient behaviors have been
suitably handled with respect to other control techniques such
as cascade generic model control (GMC) strategy. A recent
study by [11] considered different control topologies based on
MPC that aim to the minimization of the energy consumption.

In this paper, three different strategies for designing MPC
controllers using LPV models are proposed for a pasteurization
plant. The first strategy is an MPC controller based on a pure-
LPV model. In the second strategy, an MPC controller based
on a quasi-LPV model is proposed by considering that the
scheduling variable depends on the input of the system. The
last strategy uses a Robust MPC controller with bounded dis-
turbances and considers parameters variation in the LPV model
as uncertainty. Finally, a comprehensive comparison between
the performance of the different approaches is carried out by
using a high-fidelity simulator of a utility-scale pasteurization
plant.

The remainder of this paper is organized as follows.



Fig. 1: Plant scheme.

Section II presents a pasteurization plant and describes the
LPV model and the control objectives of the pasteurization
plant. Section III describes the three MPC controller strategies.
Section IV presents and compares the results obtained with the
different strategies. Finally, in Section V, the conclusions of
this work are drawn and some research lines for future work
are proposed.

II. PROBLEM STATEMENT

A. Pasteurization Model

The considered pasteurization process is the small-scale
plant PCT-23 MKII, manufactured by Armfield (UK) [13].
This laboratory plant is a small version (1.2m, 0.6m, 0.6m)
of an industrial pasteurization process. The High-Temperature
Short-Time (HTST) approach is generally accepted as the
industry standard for the pasteurization process [14]. In this
process, the goal is to heat and preserve the product, which
is typically a liquid, at a predetermined temperature for a
minimum time. According to Fig. 1, the liquid is pumped at a
predetermined flow rate from one of two storage tanks to the
heat exchanger indirectly. The water heat is transferred to the
product inside the first phase of the heat exchanger, which is
called regenerator. The raw product is heated to an intermediate
temperature by using missed energy from the pasteurized
product. Then, in the second phase, this product is heated from
that middle temperature to the full pasteurization temperature
while using a hot-water flow (Fh) coming from a closed circuit
with a heater. The temperature at the output of the holding
tube (Tpast) is used to monitor the product temperature after
the pasteurization process. Finally, the product is cooled in the
third phase of the heat exchanger, where the remaining heat
is removed to the inlet product. This last phase does not add
anything new to the model, then it was not considered in this
paper.

The block diagram of the model used in this article has
been established in [15] (see Fig. 2). For the modelling
purpose, the whole pasteurization system can be divided into
three subsystems that are a hot water tank, heat exchanger
and holding tube. To model the whole pasteurization plant,
models of these subsystems are obtained and, at the end,
they are connected together. The mathematical models of the
subsystems are obtained from the experimental data reported
in [15]. Accordingly, identified models obtained as transfer
functions are suitably stated by their equivalent controllable
realizations in state space, with varying parameters according
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Fig. 2: Block diagram of the pasteurization plant

to the hot water flow, Fh, as exogenous input and the hot/cold
water flow ratio, R, as the input of the system. Observing Fig.
2, it can be seen the controlled inputs are the power of the
electrical heater, P , and hot/cold flow ratio (R = Fh/Fc). The
input temperature of the water heater, Tiw, and temperature
of cold water, Tic are measured non-controlled inputs (distur-
bances). The temperature of the hot water tank Tow and the
pasteurization temperature of the process Tpast are the first
and second outputs of this system, respectively.

Collecting all the information above, the following state-
space LPV model can be written:

ẋ =A(θt)xt +B(θt)ut, (1a)
y =C(θt)xt +D(θt)ut, (1b)

where the continuous-time variable is denoted by t ∈ R≥0and
x ∈ Rnx is the system state vector, u ∈ Rnu is the vector
of manipulated variables, y ∈ Rny is the vector of measured
variables and the system matrices including the varying pa-
rameters in function of the scheduling variables (Fh and R)
are

A =



−1
τ1(Fh(t))

0 0 0 0 0

0 −1
τ2(Fh(t))

0 0 0 0

K21(R(t))
τ21(R,(t))

K21(R(t))
τ21(R(t))

−1
τ21(R(t))

0 0 0

0 0 0 −1
τ12(R(t))

0 0

0 0 0 0 −1
τ22(R(t))

0

0 0
Kht
τht

Kht
τht

Kht
τht

−1
τht


,

B =



0 0

K2(Fh(t))
τ2(Fh(t))

0

0 0

0
K12(R(t))
τ12(R(t))

0 0

0 0


E =



K1(Fh(t))
τ1(Fh(t))

0

0 0

0 0

0 0

0
K22(R(t))
τ22(R(t))

0 0


,

C =
[
1 1 0 0 0 0

0 0 0 0 0 1

]
,

where K is the static gain and τ is the time constant of the
transfer functions of the subsystems. The indexes of K and
τ are related to the transfer functions of the each subsystems
from the whole pasteurization system (see Fig. 2). For control
purposes, this model is discretized with sampling time Ts = 4s



and written as follows:

xk+1 =A(θk)xk +B(θk)uk, (2a)
yk =C(θk)xk +D(θk)uk, (2b)

where the discrete-time is denoted by k ∈ Z≥0. The system
matrices A(θk) ∈ Rnx×nx , B(θk) ∈ Rnx×nu , C(θk) ∈
Rny×nx and D(θk) ∈ Rny×nu are assumed to depend on the
parameter vector θk := [θ1,k, θ2,k, ..., θN,k]T ∈ RN , which
belongs to a convex polytope Θ defined by

Θ :=

{
θk ∈ RN |

N∑
j=1

θj,k = 1, θj,k ≥ 0

}
, (3)

where N is the number of vertices of the polytope. Hence, as
θk varies inside the convex polytope Θ, the matrices of the
system (2) vary inside a corresponding polytope Ψ, which is
defined by the convex hull (Co) of N local matrix vertices
[Ai, Bi, Ci, Di], i ∈ [1, .., N ], i.e.,

Ψ := Co{ [A1 B1 C1 D1] , [A2 B2 C2 D2] , ...,

[AN BN CN DN ]},
(4)

and the matrices of the system (2) can be rewritten as

A(θk) =

N∑
j=1

θj,kAj , B(θk) =

N∑
j=1

θj,kBj ,

C(θk) =

N∑
j=1

θj,kCj , D(θk) =

N∑
j=1

θj,kDj .

(5)

B. Control objectives

The most important objective of the pasteurization process
controller is to control and maintain the temperature of the
processed product. First, the raw product must be retained in
the holding tube during the required pasteurization time, and
second the pasteurization temperature must be reached and
maintained as close as possible to a given value. In fact, the
necessity of a significant control for the process arises from
the saving in energy, product and time if an accurate tracking
of that reference temperature is performed [15] while trying
to minimize the electric heater power of the hot water tank.

The LPV model of the pasteurization plant (1) demon-
strates the inherent nonlinearity and time-varying features of
the system, also allows controller designers to use linear-like
control theory for nonlinear system control. This paper studies
the feasibility to design MPC controllers that use this LPV
model. In the following section, three strategies to design the
MPC controller for a pasteurization plant based on the LPV
model are described.

III. PROPOSED LPV-BASED MPC STRATEGIES

The MPC controller uses a dynamic model of the process
to predict the output trajectories and performs a constrained
online optimization to determine the optimal future input
sequence. In this section, three different MPC strategies based
on the LPV model of the pasteurization plant with respect to
the situation of scheduling parameter are proposed.

A. MPC based on the pure-LPV model

The LPV model can be usually described by a polytopic
family of the linear models, whose parameters vary according
to a time-varying parameter vector, which is restricted to lie
into a unit simplex. The time-varying parameters are scheduled
online using the scheduling variable and then providing real-
time information on the variations of the plant dynamics. In
order to formalize the statement, the assumptions below are
taken into account.

Assumption 1: The varying parameters of the system only
depend on exogenous signal.

Assumption 2: The sequence of scheduling variables is
available at every time instant k.

By considering Assumptions 1 and 2, the LPV model (2) can
be represented by the following linear time-varying system:

xk+1 =Akxk +Bkuk, (6a)
yk =Ckxk +Dkuk, (6b)

where Ak, Bk, Ck and Dk belong to a convex polytope Ψ
defined in (4) while each model corresponds to a different
operating point of the system at each time instant k. By
assuming that both the time-varying parameter θk and the state
xk are available, the following optimization problem is solved:

min
ũk

Jk =

Np−1∑
i=0

‖xi|k‖Pw1
+ ‖ui|k‖Pw2

, (7a)

subject to

xi+1|k = Akxi|k +Bkui|k, ∀i ∈ {0, ..., Np − 1} (7b)
ui|k ∈ U, ∀i ∈ {0, ..., Np − 1} , (7c)
xi|k ∈ X, ∀i ∈ {1, ..., Np} , (7d)
xNp|k ∈ Xf , (7e)
x0|k = xk. (7f)

where w1 ∈ Rnx×nx and w2 ∈ Rnu×nu are positive definite
weighting matrices that establish the trade-off between state and the
control input effort, respectively. The superindex P denotes the norm
used. ũk = [u0|k, u1|k+1, ..., uNp−1|k] is the optimization vector at
time k and xi|k is the predicted state at time i, with i = 0, ..., Np,
obtained by starting from the state x0|k = xk and applying to system
(6) the input sequence, ũk. X and U define the set of acceptable states
and inputs. Therefore, the optimization problem (7) is convex since
the cost function is quadratic and the constraints are linear. Thus, it
can be solved with efficient quadratic programming (QP) tools.

B. MPC based on the quasi-LPV model

As highlighted in the previous subsection, in an LPV model
parameters vary according to some scheduling function and variable
(external to the loop) inside a pre-specified set. However, in a quasi-
LPV model, the varying parameters can be functions of internal
variables (i.e., the states, inputs or outputs). In other words, the model
parameters are exactly known at the current time, but their future
evolutions are uncertain and contained into the prescribed bounded
sets.

In the case of the pasteurization plant, by considering that the
scheduling parameter θ depends on the controlled inputs, the model
(2) becomes a quasi-LPV model and the optimization problem (7)
becomes a non-linear one. Here, taking into account that the dynamics
of the pasteurization plant reach very fast the steady state temperature,



Assumption 3 will be considered since the prediction horizon Np used
is not that long.

Assumption 3: It can be assumed that the value of LPV param-
eters at the current time step is equal to the next step ahead and
equal to the value estimated at the beginning of the MPC prediction
horizon. Thus, θ0|k ' θ1|k ' θ2|k ' ... ' θNp−1|k can be considered
along Np.

Consequently, the LPV model of the pasteurization is just updated
from one MPC iteration to the next. But, a linear-time invariant (LTI)
model is used along Np into the MPC controller. Thus, taking into
account the model (2) and Assumption 3, the MPC optimization
problem (7) can be rewritten as follows:

min
ũk

Jk =

Np−1∑
i=0

‖xi|k‖Pw1
+ ‖ui|k‖Pw2

, (8a)

subject to

xi+1|k = A(θi|k)xi|k +B(θi|k)ui|k, ∀i ∈ {0, ..., Np − 1} (8b)
ui|k ∈ U, ∀i ∈ {0, ..., Np − 1} , (8c)
xi|k ∈ X, ∀i ∈ {1, ..., Np} , (8d)
xNp|k ∈ Xf , (8e)
x0|k = xk (8f)
θi|k = θi|0, ∀i ∈ {0, ..., Np − 1} . (8g)

C. RMPC based on LPV model with bounded disturbances

The underlying idea of the last strategy is to employ a Ro-
bust MPC (RMPC) with bounded disturbance instead of using the
standard MPC controller. In this case, the local matrix vertices
[Ai, Bi]i∈[1,..,N ] in (5) are used instead and considered as a bounded
disturbance. Thus, model (2) by including uncertainties can be
reformulated as follows

xk+1 = (A0 ±∆A)xk + (B0 ±∆B)uk, (9)

where A0 and B0 are the nominal state-space of the system and
∆A and ∆B represent the uncertainty that is considering the set
that bounds Aθk and Bθk in (5). If the uncertainties are located in
the parameters, a vector of uncertain time-varying parameters θk of
dimension p with their values bounded by a compact set θ ∈ Θ of a
box type, i.e. Θ = {θ ∈ Rp|θ ≤ θ ≤ θ}, is introduced while vectors
θ and θ determine the minimum and maximum possible uncertain
parameters, respectively.

Modelling uncertainty is represented by bounding model pa-
rameters in intervals. The uncertain parameters are considered time
varying. This type of model is known as an interval model. The model
(9) can be transformed into

xk+1 = A0xk +B0uk + dk, (10)

where dk ∈ ∆Axk+∆Buk is the bounded uncertainty of the system
(9). The computation of the bounds of dk is done based on the set-
membership approach proposed by [16] and based on both zonotopes
and the Kühn method [17]. Then, the model (9) corresponds to an
LTI model with uncertainty. Therefore, by using a min-max robust
MPC based on the LTI model can be applied. A min-max MPC
approach seeks the optimal control strategy considering the worst-
case realization of the disturbance. Thus, the RMPC controller can
be designed as

Jk = min
ũk

max
dk

Np−1∑
i=0

‖xi|k‖Pw1
+ ‖ui|k‖Pw2

(11a)

subject to

xi+1|k = Axi|k +Bui|k + di ∀i ∈ {0, ..., Np − 1} , (11b)
di ∈ ∆Axi|k +∆Bui|k, (11c)
ui|k ∈ U, ∀i ∈ {0, ..., Np − 1} , (11d)
xi|k ∈ X, ∀i ∈ {1, ..., Np} , (11e)
xNp|k ∈ Xf , (11f)
x0|k = xk. (11g)

IV. SIMULATION RESULTS

In this section, simulation results for the proposed strategies are
presented and analysed in detail.

A. Scenarios

In order to test the behaviour of the proposed MPC strategies for
the pasteurization plant, several simulations were carried out and the
results obtained are presented in the following scenarios.

1) Scenario 1: pure-LPV model: As mentioned in Section
III, when the parameter varying only depends on exogenous signals,
the pasteurization plant can be represented by a pure-LPV model
(see Section III-A). Therefore, for implementing the MPC based on
the pure-LPV model, the scheduling variables should be related to
exogenous signals as Fh. Due to the fact that the hot/cold water flow
ratio, R is an endogenous variable, by assuming that the flow Fc is
constant, the ratio R depend also on Fh. In this scenario, the water
heater input Tiw was maintained constant at ' 30 ◦C and the input
temperature to the heat exchanger Tic (the raw temperature) will be
maintained at ' 20 ◦C. The control objective of the MPC controller
for the pasteurizations plant is that the temperatures Tow and Tpast
track their setpoint.

The MPC controller has been implemented and tested in simu-
lation using a high-fidelity model for the pasteurization plant con-
sidering that the weighting matrices are w1 = 1, w2 = 0.01 while
Np = 5. The state and input are constraints to be 0 ≤ xi|k ≤ 100
and [0, 0.2]> ≤ ui|k ≤ [2000, 3]>.

In Fig. 3, the controlled input and the behavior of the controlled
temperatures Tow and Tpast from the pasteurization plant under the
MPC controller using a pure-LPV model is shown, while the con-
trolled variables track the references. The response of pasteurization
temperature Tpast is very quick, while the response of second output
temperature Tow presents some overshoot.

2) Scenario 2: quasi-LPV model: In case that the varying
parameters of the LPV model are expressed as a functions of an
endogenous variable (in this case the input), it is not a pure-LPV
model but a quasi-LPV one (see Section III-B). As already discussed,
the process of pasteurization changes quite fast and the considered
prediction Np is not that long. Consequently, Assumption 3 applies
and the LPV model can be expressed as an LTI model in the MPC
horizon. But from one iteration of the next, the model is adapted
taking into account the change in the inputs that acts as scheduling
variables for the varying parameters of the LPV model. The MPC
controller was implemented with the same weighting matrix and
prediction horizon considered in the first strategy.

Figure 4 presents the obtained simulation results of the MPC
controller based on the quasi-LPV model of the pasteurization. As it
can be seen in this figure, outputs of the system are tracking references
while references are changed at time 200s. Nevertheless, there is some
steady state error in the the response of the pasteurization temperature
Tpast.
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Fig. 3: Control of the output temperatures (Tow, Tpast) and
control inputs, MPC based on pure-LPV model of the pasteur-
ization plant.

3) Scenario 3: uncertain LTI model: The last MPC controller
is based on considering the varying parameters of the LPV model
as uncertainties and then using robust MPC with bounded distur-
bances (see Section III-C). The disturbances represents the set of
models corresponding to the different varying that are bounded using
zonotopic sets. The robust MPC controller was implemented with
the same weighting matrix and prediction horizon considered for
the previous strategies. While, the bounded disturbance is estimated
considering that nominal operating point is Fh ∈ [155, 694] for
estimating disturbance bounds.

Figure 5 presents the bounds of first state considering model
uncertainty and using using zonotopic sets. From Fig.6, it can be
seen that the measured state (dotted black line) is inside the bounds
obtained considering the model with uncertainty. Figure 7 shows the
simulation results of robust MPC controller and the controlled inputs
of system. It can be observed that the RMPC controller also achieves
the set-points despite the uncertainty.

B. Discussion and comparison

Comparing the results of the different MPC strategies presented
in Figs. 3, 4 and 7, it can be seen in that the objective of MPC is
fulfilled since the controlled outputs follow the set-points. According
to the Table II, the MPC controller based on the pure-LPV model
has more knowledge and assumptions about the scheduling variables
rather than others strategies. Therefore, it can be have better results
regarding some criteria in theoretical analysis (see Table I). Table
II shows the comparison of several control criteria considering the
different strategies of applying an MPC based on LPV models to the
pasteurization system.

V. CONCLUSION

In this paper, three strategies to design MPC controllers for a
pasteurization plant based on a LPV model has been presented.
Taking into account the information regarding the knowledge of the
scheduling variables of the varying parameters, the first and second
strategies of MPC controller based on pure-LPV and quasi-LPV
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Fig. 4: Control of the output temperatures (Tow, Tpast) and
control inputs, MPC based on quasi-LPV model of the pas-
teurization plant.
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Fig. 6: State under controller.

model, respectively are introduced. The strategy based on the pure-
LPV model requires that all the varying parameters are scheduled
with respect to exogenous variables. In this way, a LTV is obtained
and the resulting MPC optimization problem can be solved using
efficient quadratic programming solvers. On the other hand, when
some of the endogenous variables are used as scheduling variables,
the model can be expressed as a quasi-LPV one. The resulting
optimization problem becomes non-linear and quite involved to solve.
The paper proposes an heuristic strategy based on assuming that
the varying parameters do not vary significantly in the prediction
horizon. Finally, in the last approach, by bounding the parameter
variations with the operating point and considering this variation as



TABLE I: Comparison of each strategies configuration based on using assumption. X: assumed, ×: not assumed.

Configuration Assumption 1 Assumption 2 Assumption 3

pure-LPV X X ×
quasi-LPV × × X

robust MPC × × ×

TABLE II: Comparison of some criteria of each strategies configuration. 1: best performance, 3: worst performance.

Ranking Faster system response Without overshoot Less steady-state errors Less conservativeness Non Assumption
Tow Tpast Tow Tpast Tow Tpast Tow Tpast Tow Tpast

1 pure-LPV pure-LPV quasi-LPV pure-LPV pure-LPV pure-LPV pure-LPV pure-LPV Robust MPC Robust MPC
2 quasi-LPV Robust MPC Robust MPC quasi-LPV quasi-LPV quasi-LPV quasi-LPV quasi-LPV quasi-LPV quasi-LPV
3 Robust MPC quasi-LPV pure-LPV Robust MPC Robust MPC Robust MPC Robust MPC Robust MPC pure-LPV pure-LPV

Fig. 7: Control of the output temperatures (Tow, Tpast) and
control inputs using robust MPC based on the LPV model of
the pasteurization plant.

model uncertainty, a robust MPC controller is designed. The three
strategies are implemented and tested in simulation using a high-
fidelity model of the pasteurization plant. The simulation results
are presented showing that the controlled outputs (temperatures)
in all the cases achieve the set-points. Finally, the comprehensive
comparison between the performance of the different strategies is
presented. According to Tables I and II, it can be conclude that more
knowledge about the system and sequence of scheduling variable in
LPV model achieved better performance in results. As future research,
the proposed approaches will be tested in the real pilot pasteurization
plant.
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