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Abstract

Model predictive control (MPC) is a suitable strategy for the control of large-scale systems that have multiple design require-
ments, e.g., multiple physical and operational constraints. Besides, an MPC controller is able to deal with multiple control
objectives considering them within the cost function, which implies to determine a proper prioritization for each of the objec-
tives. Furthermore, when the system has time-varying parameters and/or disturbances, the appropriate prioritization might
vary along the time as well. This situation leads to the need of a dynamical tuning methodology. This paper addresses the
dynamical tuning issue by using evolutionary game theory. The advantages of the proposed method are highlighted and tested
over a large-scale water supply network with periodic time-varying disturbances. Finally, results are analyzed with respect to
a multi-objective MPC controller that uses static tuning.

Key words: Dynamical tuning, model predictive control, game theory, large-scale systems, water supply networks

1 Introduction

Model predictive control (MPC) is one of the most used control techniques in industrial applications because of its
versatility to deal with multiple design requirements. The MPC controller is an optimization-based technique that
computes an optimal control sequence that minimizes a multi-objective cost function subject to physical and/or
operational constraints. However, multiple control objectives imply to assign a prioritization weight for each objec-
tive. The task of finding the appropriate set of the aforementioned weights is known as the MPC tuning problem.
In many cases, the tuning procedure is determined intuitively depending on the engineering application, or the
adequate weights are found by a trial-and-error procedure. Furthermore, applications of large-scale nature, the con-
sideration of a large number of constraints, and/or the need of including several control objectives make even more
complex to determine the appropriate values for the MPC tuning weights. Therefore, the necessity of developing self-
tuning methodologies has arisen. Additionally, when having time-varying parameters, disturbances and/or nominal
conditions within the system, the appropriate tuning may also vary through time.

The tuning problem has been discussed by many authors and by using different approaches. A general review about
different on-line and off-line tuning approaches for MPC controllers is presented in [6]. An alternative to determine
the appropriate tuning of MPC controllers is by matching the MPC performance with the performance of a pre-
established controller. For instance, in [5] the tuning of an MPC controller is computed based on a matching to
a desired reference controller, then weights are adjusted in order to obtain a behavior close to the performance of
the mentioned reference controller. Afterwards, an extension of this approach has been presented in [30]. In [27],
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the matching to a linear controller is also used to determine the values of the MPC parameters for multiple-input-
multiple-output systems. Authors in [20] present a tuning methodology for the weights of an MPC controller in
the frequency domain using also control matching. In [35], an automatic tuning strategy is proposed consisting of a
controller and a state observer. In [1], a tuning strategy is studied with an optimization algorithm, which uses an
approximation between both a closed-loop predicted output and the parameters that can be adjusted in the MPC
controller, and in [26] an optimal tuning of MPC policies with simultaneous perturbation stochastic approximation is
presented. Other perspectives to solve the problem without the use of a reference model have emerged. For instance,
in [29] it is proposed to compute several points of the Pareto front associated to the cost function in a multi-objective
MPC controller. Then, a pre-established management point allows to determine the desired value within the Pareto
front from which the appropriate tuning weights are determined. In [40], the system output is controlled to maintain
it within a region instead of achieving a reference point. Therefore, weights are selected to penalize the output error
with respect to a zone for a crude distillation unit. Besides, heuristic directions have also been used to determine
the appropriate tuning in an MPC controller as in [38]. Moreover, in [32] and [8] the authors use neural networks
and fuzzy-based decision making to establish a tuning in an MPC controller, illustrating examples for a mixing tank
and for water networks, respectively. Further methods have been explored in the tuning task. In [36], a two-step
off-set free tuning procedure is proposed. At first stage, the setup of a nominal MPC loop is made, and then the
second step is in charge of adapting the external reference. In [31], a systematic tuning procedure is presented by
using multi-objective optimization methods; in [10], a robust tuning problem for a two-degree-of-freedom MPC is
presented for single-input-single-output system; and authors in [15] have presented a self-tuning of the terminal cost
in an economic MPC controller.

On the other hand, game theory has gotten special importance in the last years for the design of control and
decision-making algorithms. A general view about the role of game theory in distributed control is presented in
[13]. It is shown that game theory is quite suitable to achieve global objectives by setting local rules. Furthermore,
evolutionary-game theory allows to model the evolution of agents when they interact strategically in a population
[37], [25]. In the evolution process of the population, each rational agent makes rational decisions in order to pursue
an improvement over its benefits until reaching a scenario where it is not possible to obtain an enhancement by
unilaterally making a decision (this situation is given by a Nash equilibrium). Besides, evolutionary game theory
allows to design systems that guarantee convergence to a Nash equilibrium. Additionally, there is a close relationship
between the Nash equilibrium with a maximum point in a concave constrained optimization problem due to the fact
that under certain conditions the Nash equilibrium satisfies the Karush-Kuhn-Tucker (KKT) first-order conditions
[25], making evolutionary-game theory a powerful tool to address optimization-based control design. For instance, in
[2], [4], [12], [17], [21], [22], [23], [24], and [28], a game-theoretical approach has been presented for optimization and/or
control purposes. Given the suitability of game theory in control applications and its relationship with optimization,
this paper proposes a dynamical tuning methodology based on evolutionary game theory.

The contribution of this paper is a novel methodology for the on-line dynamical tuning of a multi-objective MPC
controller based on evolutionary game theory. The method consists of a normalization of the cost function associated
to the optimization problem that the MPC controller solves to determine the optimal control inputs at each time
instant, and a population game that fixes the appropriate set of prioritization weights according to a desired region
over the Pareto front known as management region. Furthermore, the method establishes a weighted sum, i.e., the sum
of all weights should be equal to one [7]. The population game is solved by using a discrete version of the projection
dynamics, which converge to a Nash equilibrium. It is shown that the projection dynamics satisfy the constraint
given by the weighted sum, and the stability analysis of the Nash equilibrium under the discrete projection dynamics
is formally presented. Some of the aforementioned previous works related to the tuning problem require either a
reference controller or an observer, e.g., [5],[27], and [35]. Differently, the proposed method, based on population
dynamics, do not require a reference controller. Moreover, other control strategies need to compute several points
in the Pareto front in order to select an appropriate prioritization, which implies a high computational burden, e.g.,
[29]. As an advantage, the proposed method does not require to generate multiple points within the Pareto front
associated to the multi-objective cost function in an MPC controller. Furthermore, most of the tuning techniques
are static and performed off-line as part of a design procedure. Nevertheless, the proposed tuning methodology
can continuously adjust the prioritization of the control objectives to maintain the system operating within the
desired management region. In order to illustrate the enhancement over the performance of an MPC controller using
the dynamical population-games-based tuning, the proposed methodology is applied to a large-scale water supply
network. The results are analyzed and compared with respect to a multi-objective MPC controller with static tuning.

The remainder of this paper is organized as follows. Section 2 introduces the background associated to multi-objective
predictive control and population games. This section also introduces a discrete version of the projection dynamics
and formally presents their properties. Section 3 presents the proposed dynamical tuning based on population
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games, explaining in detail its different steps (normalization and dynamical weighting procedure). Then, Section 4
introduces the water supply network application, its control objectives, and motivates the necessity for implementing
a dynamical tuning strategy. Furthermore, this section compares the results of a predictive controller with standard
static tuning with respect to results when implementing the proposed dynamical tuning. Simulation results are
analyzed and discussed highlighting the enhancement of the performance when adopting the dynamical tuning
based on population games. Finally, concluding remarks are drawn in Section 5.

Notation

All column vectors are denoted by bold style, e.g., x. Matrices are denoted by bold upper case, e.g., A. In contrast,
scalars are denoted by non-bold style, e.g., n. The sets are denoted by calligraphic upper case, e.g., S. The norm
∣∣x∣∣ of the vector x ∈ Rnx is defined as ∣∣x∣∣ =

√
x⊺x. The identity matrix of size n × n is denoted by In, 1n is the

column vector with n unitary entries, i.e., 1n = [1 . . . 1]⊺ ∈ Rn, the vector of null entries and suitable dimensions
is denoted by 0, and diag(p) is the diagonal matrix of the vector p. Finally, real numbers are denoted by R, all the
non-negative numbers are denoted by R≥0, and all the strictly positive real numbers are denoted by R>0. Similarly,
the integer numbers, non-negative integer numbers, and the strictly positive integer numbers are denoted by Z, Z≥0,
and Z>0, respectively. Throughout this document, both continuous- and discrete-time systems are treated. Therefore,
k ∈ Z≥0 denotes that the system is described in discrete time, whereas the use of time denoted by t in the continuous-
time expressions is mostly omitted in order to simplify the notation. Regarding the discrete time notation for the
MPC controller, x(k+ j∣k) denotes the prediction made at time k of the vector x for time k+ j, where k, j ∈ Z≥0, i.e.,
in the argument (k + j∣k), the first element k + j indicates discrete time for prediction, whereas the second element
k indicates the actual discrete time.

2 Background

Prior to presenting the proposed population-games-based dynamical tuning, it is necessary to introduce some pre-
liminary concepts that are used throughout the paper. First, some preliminaries related to the multi-objective MPC
design and its corresponding optimization problem statement are introduced. Moreover, the mathematical formal-
ism associated to the population dynamics, the discrete version of the projection dynamics, and their properties are
shown and analyzed.

2.1 Multi-objective model predictive control

Consider a system whose dynamics are represented by the following discrete-time state-space model:

x(k + 1) = Ax(k) +Bu(k) +Bdd(k), (1)

where k ∈ Z≥0 denotes the discrete time. The vector x ∈ Rnx denotes the system states, u ∈ Rnu denotes the vector
of control inputs, d ∈ Rnd corresponds to the vector of disturbances affecting the system, and A, B, and Bd are the
system matrices of suitable dimensions. System states and control inputs are constrained because of physical and/or
desired operational limits. These constraints are established by defining the following feasible sets:

X ≜ {x ∈ Rnx ∶ Gx ≤ g} , (2a)

U ≜ {u ∈ Rnu ∶ Hu ≤ h} , (2b)

where G,g,H, and h are matrices and vectors of suitable dimensions to represent the constraints for the system
states and control inputs, respectively. Let û(k) be a sequence of feasible control inputs within a pre-establish
prediction horizon denoted by Hp ∈ Z>0. Similarly, let x̂(k) be the sequence of feasible system states when applying

the control input sequence û(k) to the system (1). Finally, let d̂(k) be the forecasting of the disturbances as in
[9],[33], and [34]. Hence,

û(k) ≜ {u(k∣k),u(k + 1∣k), ...,u(k +Hp − 1∣k)}, (3a)

x̂(k) ≜ {x(k + 1∣k),x(k + 2∣k), ...,x(k +Hp∣k)}, (3b)

d̂(k) ≜ {d(k∣k),d(k + 1∣k), ...,d(k +Hp − 1∣k)}. (3c)
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The system (1) is controlled by a multi-objective MPC controller with n ≥ 2 control objectives. The optimization
problem behind the MPC controller is as follows:

minimize
û

J (x(k),d(k),u) =
n

∑
j=1

γjJj(x(k),d(k),u), (4a)

subject to:

x(k + i + 1∣k) = Ax(k + i∣k) +Bu(k + i∣k) +Bld(k + i∣k), i ∈ [0,Hp − 1] ∩Z≥0, (4b)

u(k + i∣k) ∈ U , i ∈ [0,Hp − 1] ∩Z≥0, (4c)

x(k + i∣k) ∈ X , i ∈ [1,Hp] ∩Z≥0, (4d)

where x(k∣k) ∈ Rnx is the current measured state, and γj ∈ R≥0, with j = 1, . . . , n, are the n prioritization weights in
the cost function J(x(k),u) satisfying that ∑

n
j=1 γj = 1. Assuming that the optimization problem (4) is feasible, its

solution is an optimal control input sequence denoted by û∗(k), i.e.,

û∗(k) ≜ {u∗(k∣k),u∗(k + 1∣k), ...,u∗(k +Hp − 1∣k)} .

Therefore, it follows that the controller may only apply the first control input from the optimal sequence, which
is given by u∗(k) ≜ u∗(k∣k). Then, after having applied the optimal control input to the system (1), a new state
x(k+1) is measured and the procedure is repeated in order to determine the optimal sequence û∗(k+1) from which
the control input u∗(k + 1) is obtained.

2.2 Population games

Consider a large and finite number of rational agents pursuing an improvement of their benefit within a population. It
is assumed that each agent has the chance to select from a set of n ≥ 2 available strategies from the set S = {1, . . . , n}.
Making the analogy with the optimization problem behind the MPC controller (4), each control objective is associated
to a strategy. The scalar pi ∈ R≥0 represents the proportion of agents selecting the strategy i ∈ S, and the vector
p ∈ Rn≥0 represents the strategic distribution of agents, i.e., p = [p1 . . . pn]

⊺. Since each pi, for all i ∈ S, represents
a proportion of agents, then it should be satisfied that ∑j∈S pj = 1. Therefore, all the possible strategic distributions
in the population are given by a simplex set

∆ =

⎧⎪⎪
⎨
⎪⎪⎩

p ∈ Rn≥0 ∶ ∑
j∈S

pj = 1

⎫⎪⎪
⎬
⎪⎪⎭

. (5)

The incentives that agents have in order to switch from one strategy to another one are determined by a fitness
function whose mapping is fi ∶ ∆ ↦ R, for all i ∈ S, i.e., fi(p) receives a strategic distribution of the population,
and returns the benefits that the proportion of agents pi obtains for selecting strategy i ∈ S. Therefore, the vector
of fitness functions f ∶ ∆ ↦ Rn is a function that receives strategic distribution and returns the benefits for all the
proportions in the population, i.e., f(p) = [f1(p) . . . fn(p)]⊺. In this regard, notice that agents stop switching
among strategies once they do not have more incentives to do so. This situation is achieved at an equilibrium point
known as the Nash equilibrium introduced in Definition 1 [25].

Definition 1 A population state p∗ ∈ ∆ is a Nash equilibrium if each used strategy entails the maximum benefit for
the proportion of agents that chooses it. Equivalently, the Nash equilibrium p∗ ∈ ∆ is given by the condition that
p∗i > 0⇒ fi(p

∗) ≥ fj(p∗), for all i, j ∈ S.

The framework for the population games in this paper is given by full-potential and stable games. These two classes of
population games allow to guarantee the stability of the Nash equilibrium under population dynamics. Full-potential
and stable games are introduced in Definitions 2 and 3, respectively [25].

Definition 2 The game f(p) is a full-potential game if there exists a continuous differentiable function V (p), known

as potential function, satisfying that ∂V (p)
∂pi

= fi(p), for all i ∈ S, p ∈ ∆. Then, a full-potential game is generated

from a known potential differentiable function V (p). ♢
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Definition 3 The population game f ∶ ∆↦ Rn is a stable game if

(p − q)
⊺
(f(p) − f(q)) ≤ 0, for all p,q ∈ ∆. (6)

This condition is equivalent to the condition that Df(p) is negative semidefinite, where [Df(p)]ij =
∂fi(p)
∂pj

. ♢

2.2.1 Projection dynamics

The projection dynamics are one of the six fundamental population dynamics [2][23][25], which have been introduced
in [16]. These dynamics are given by the following differential equation:

d

dt
pi(t) = fi(p) −

1

n

n

∑
j=1

fj(p), for all i ∈ S. (7)

Then, according to (7), the proportion of agents pi grows as the fitness function fi(p) is greater than the average of
fitness functions 1

n ∑
n
j=1 fj(p), and decreases otherwise. Alternatively, the projection dynamic in (7) can be re-written

as follows:

d

dt
pi(t) =

1

n

n

∑
j=1

fi(p(t)) −
1

n

n

∑
j=1

fj(p(t)), for all i ∈ S,

d

dt
pi(t) =

1

n

n

∑
j=1

(fi(p(t)) − fj(p(t))), for all i ∈ S,

d

dt
p(t) =

1

n
Lf(p(t)),

where L corresponds to the Laplacian matrix of a complete graph [14]. The equilibrium point of the projection
dynamics (7) is achieved when fi(p

∗) = 1
n ∑

n
j=1 fj(p

∗), for all i ∈ S. This fact implies that at the equilibrium of (7),
fi(p

∗) = fj(p∗), for all i, j ∈ S, and therefore p∗ ∈ ∆ is a Nash equilibrium according to Definition 1.

For the population-games-based dynamical tuning for multi-objective MPC controllers, it is proposed to use the
discrete version of the projection dynamics, which is obtained by using the Euler approximation for a sampling time
τ ∈ R>0, i.e.,

d

dt
pi(t) ≈

(pi(k + 1) − pi(k))

τ
.

Then,

pi(k + 1) = τ
⎛

⎝
fi(p) −

1

n

n

∑
j=1

fj(p)
⎞

⎠
+ pi(k),

for all i ∈ S. Notice that the projection dynamics can be re-written in a compacted manner as follows:

p(k + 1) = τ(In −
1

n
1n1

⊺
n)f(p) + p(k), (8)

p(k + 1) =
τ

n
Lf(p) + p(k). (9)

The equilibrium of (8) is the same as the equilibrium of (7). Then, the equilibrium of (8) implies that fi(p
∗) = fj(p

∗),
for all i, j ∈ S. Prior making the stability analysis of the equilibrium point p∗ ∈ ∆, it is shown in Proposition 1 that
the set of population states ∆ is invariant under the discrete projection dynamics (8).

Proposition 1 The simplex ∆ is an invariant set under the discrete projection dynamics (8), i.e., being p(0) the
initial condition of the population state, if p(0) ∈ ∆, then p(k) ∈ ∆, for all k ∈ Z≥0.
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Proof. It is desired to prove that 1⊺np(k + 1) = 1⊺np(k). Then

1⊺np(k + 1) = τ1⊺n (In −
1

n
1n1

⊺
n) f(p) + 1⊺np(k),

= τ1⊺n (f(p) −
1

n
1n1

⊺
nf(p)) + 1⊺np(k),

= τ (1⊺nf(p) −
1

n
1⊺n1n1

⊺
nf(p)) + 1⊺np(k).

Since 1
n
1⊺n1n = 1, it is obtained that

1⊺np(k + 1) = τ (1⊺nf(p) − 1⊺nf(p)) + 1⊺np(k).

Finally, 1⊺np(k + 1) = 1⊺np(k), which completes the proof. ∎

The equilibrium point p∗ ∈ ∆ is asymptotically stable under the discrete projection dynamics (8) by selecting
appropriately the sampling time τ as stated in Proposition 2.

Proposition 2 Let f be a potential and stable game with potential function V (p), then the equilibrium point p∗ ∈ ∆
is asymptotically stable under the discrete projection dynamics (8) if the sampling time τ is selected such that the
matrix Ξ(τ) = Ψ + τ

2
Ψ⊺Df(p)Ψ is positive definite, where Ψ = (In −

1
n
1n1

⊺
n)=

1
n
L.

Proof. Since f(p) = ∇V (p), and f is a stable game, then V (p) is a concave function. Consider the following
Lyapunov function candidate:

Ev(k) =
V (p∗) − V (p(k))

τ
,

where Ev > 0, for all p ≠ p∗, and Ev = 0 for p = p∗. It is necessary to show that ∆Ev = Ev(k + 1) −Ev(k) ≤ 0, i.e.,

∆Ev =
V (p∗) − V (p(k + 1)) − V (p∗) + V (p(k))

τ
,

=
−V (p(k + 1)) + V (p(k))

τ
.

As in [39], the Taylor expression of V (p) at p yields

V (p(k + 1)) = V (p(k)) +∇V (p(k))⊺∆p(k) +
1

2
∆p⊺∇2V (z(k))∆p(k),

where ∆p(k) = p(k + 1) − p(k), and z(k) is a value between p(k), and p(k + 1). It follows that

∆Ev = −
1

τ
∇V (p(k))⊺∆p(k) −

1

2τ
∆p⊺∇2V (z(k))∆p(k). (10)

Then, replacing from (8) the term ∆p in (10) yields

∆Ev = −∇V (p(k))⊺Ψ∇V (p) −
τ

2
∇V (p)

⊺Ψ⊺
∇

2V (z(k))Ψ∇V (p),

= −∇V (p(k))⊺ (Ψ +
τ

2
Ψ⊺Df(k)Ψ)∇V (p).

In conclusion, the equilibrium point p∗ ∈ ∆ is asymptotically stable if Ξ(τ) = Ψ+ τ
2
Ψ⊺Df(k)Ψ is positive definite. In

addition, notice that there exists a τ ∈ R>0. To verify this fact, ∆Ev is expressed in terms of the Laplacian L, i.e.,

∆Ev = −
1

n
∇V (p(k))⊺L∇V (p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆E1

v

−
τ

2n2
∇V (p(k))⊺L⊺Df(k)L∇V (p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆E2

v

,
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where the term ∆E1
v ≤ 0 since it is a quadratic form and L is positive definite [14], and ∆E2

v ≥ 0 since it is a quadratic
form and Df(k) is negative semidefinite according to Definition 3. Therefore, there exists a sufficiently small τ ∈ R>0

such that ∣∆E1
v ∣ ≥ ∣∆E2

v ∣. ∎

Proposition 2 requires that the game f was full potential. Nevertheless, the discrete projection dynamics (8) can also
be implemented for other types of games. Therefore, Proposition 3 presents the stability proof for a game that does
not require that the game is full potential, but still stable. Afterwards, it is shown that both results are equivalent
for full-potential games.

Proposition 3 Let f be a stable game, then there exists a sampling time τ ∈ R>0 such that the equilibrium point
p∗ ∈ ∆ is asymptotically stable under the discrete projection dynamics (8). The sampling time τ is selected such that

∣2 (p(k) − p∗)⊺ f(p)∣ > ∣τ f(p)⊺Ψ⊺Ψf(p)∣ is satisfied.

Proof. Consider the Lyapunov function E(k) = 1
τ ∑

n
i=1 (pi(k) − p

∗
i )

2
, where E(k) > 0 for all p ≠ p∗, and E(k) = 0

for p = p∗. It is necessary to show that ∆Ev = Ev(k + 1) −Ev(k) ≤ 0, i.e.,

∆Ev =
1

τ

n

∑
i=1

{p2
i (k + 1) − 2pi(k + 1)p∗i + p

∗2
i − p2

i (k) + 2pi(k)p
∗
i − p

∗2
i },

=
1

τ

n

∑
i=1

{−2pi(k + 1)p∗i + 2pi(k)p
∗
i + p

2
i (k + 1) − p2

i (k)},

=
1

τ

n

∑
i=1

{−2pi(k + 1)p∗i + 2pi(k)p
∗
i } +

1

τ

n

∑
i=1

{p2
i (k + 1) − p2

i (k)},

=
1

τ

n

∑
i=1

−2p∗i (pi(k + 1) − pi(k)) +
1

τ

n

∑
i=1

(pi(k + 1) − pi(k))
2
+

1

τ

n

∑
i=1

2pi(k) (pi(k + 1) − pi(k)),

=
1

τ

n

∑
i=1

2 (pi(k) − p
∗
i ) (pi(k + 1) − pi(k)) +

1

τ

n

∑
i=1

(pi(k + 1) − pi(k))
2
.

Replacing the projection dynamics, it follows that

∆Ev = 2(p(k) − p∗)⊺Ψf(p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆E1
v

+ τ f(p)
⊺Ψ⊺Ψf(p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆E2

v

.

The first term ∆E1
v is re-written as follows:

∆E1
v = 2(p(k) − p∗)⊺ (In −

1

n
1n1

⊺
n) f(p)

= 2(p(k) − p∗)⊺f(p) −
2

n
(p(k) − p∗)⊺1n1⊺nf(p)

= 2(p(k) − p∗)⊺f(p) −
2

n
(p(k)⊺1n − p∗⊺1n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

1⊺nf(p)

= 2(p(k) − p∗)⊺f(p),

then it is concluded that ∆E1
v ≤ 0 since f is stable. On the other hand, ∆E2

v =
τ
n2 f(p)⊺L⊺Lf(p), and it is concluded

that ∆E2
v ≥ 0. Finally, there exists a sampling time τ ∈ R>0 such that ∣∆E1

v ∣ ≥ ∣∆E2
v ∣. ∎

2.2.2 Finding the sampling time: A potential-game example

Consider the coordination game given by the following potential function:

V (p) = −
p2

1

2
− p2

2 −
3p2

3

2
,
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Fig. 1. Evolution of proportion of agents for the coordination game under the discrete projection dynamics for four different
values of τ . a) stable with τ = 0.1 < 0.776, b) stable with τ = 0.5 < 0.776, c) stable with τ = 0.6 < 0.776, and d) marginally
stable with τ = 0.776.

then, Df(p) = diag([−1 − 2 − 3]). According to Proposition 2, the condition for asymptotic stability of the
equilibrium point p∗ ∈ ∆ is given by

Ξ(τ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3
− τ

2
τ
6
− 1

3
τ
3
− 1

3

τ
6
− 1

3
2
3
− 2τ

3
τ
2
− 1

3

τ
3
− 1

3
τ
2
− 1

3
2
3
− 5τ

6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The conditions over τ to make Ξ(τ) positive definite are:

2

3
−

1

2
τ > 0, and

11

36
τ2
−

2

3
τ +

1

3
> 0.

It follows that Ξ(τ) is positive definite for any τ < 0.776 s, which is the condition to have asymptotic stability
of the equilibrium point p∗ ∈ ∆ under the discrete projection dynamics (8). Figure 1 shows the evolution of the
proportion of agents p ∈ ∆ for the coordination game under the discrete projection dynamics using different sampling
times. It can be seen that the system is marginally stable when τ = 0.776 s, validating the condition over τ to have
asymptotic stability. Considering Proposition 3, it is also possible to find the conditions over the sampling time
τ by solving the following problem minτ∈R>0,p∈∆ τ , subject to 0 ≤ 2(p(k) − p∗)⊺f(p) + τ

n2 f(p)⊺L⊺Lf(p), i.e., the
minimum τ such that stability condition is not satisfied with a p ∈ ∆. When solving this optimization problem with
f(p) = diag([-1 -2 -3])p, it is found that τc = 0.7762 is the critical sampling time with p = [0.5941 0.4058 0]⊺.
This example validates the equivalence between the conditions for τ in Propositions 2 and 3.

3 Proposed dynamical tuning methodology

The proposed dynamical tuning methodology based on population games consists of two different stages. First,
it is necessary to normalize the multi-objective cost function, and then the discrete projection dynamics assign
permanently the appropriate weights pi for each one of the control objectives Ji(x(k),u), for all i ∈ S. These two
main steps of the dynamical tuning methodology are explained next.

3.1 Normalization

The cost function (4a) has several control objectives, which might depend on different parameters, e.g., one objective
depending on the system states in contrast with another objective in function of the control inputs. Furthermore,
several objectives (even if they involve the same variables) might have different order of magnitude. Therefore, it is
necessary to perform a normalization procedure in order to make a fair comparison among all the control objectives.

Let x∗i ,u
∗
i be the optimal solution of the optimization problem (4) considering only the function Ji(x(k),u), i.e.,

the solution of (4) with weights γi = 1, and γj = 0, for all j ∈ S/{i}. Then, the Utopia point denoted by Jutopia =

[Jutopia
1 . . . Jutopia

n ]⊺ is computed as in [11], i.e.,

Jutopia
= [J1(x

∗
1,u

∗
1) J2(x

∗
2,u

∗
2) ⋯ Jn(x

∗
n,u

∗
n)]

⊺
. (11)
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Fig. 2. General scheme of the proposed dynamical tuning.

On the other hand, the ith Nadir value is computed as in [11], i.e.,

Jnadir
i = max (Ji(x

∗
1,u

∗
1), Ji(x

∗
2,u

∗
2),⋯, Ji(x

∗
n,u

∗
n)) , (12)

where the Nadir point Jnadir is given by

Jnadir
= [Jnadir

1 Jnadir
2 ⋯ Jnadir

n ]
⊺
. (13)

Finally, the normalized multi-objective cost function denoted by J̃(x(k),u) has the form

J̃(x(k),u) =
n

∑
i=1

J̃i(x(k),u),

where each normalized objective is given by

J̃i(x(k),u) =
Ji(x(k),u) − Jutopia

i

Jnadir
i − Jutopia

i

.

Having normalized the cost function J(x(k),u), then the established weights assign a prioritization without being
affected by the order of magnitude of each objective. This procedure is illustrated in Figure 2, receiving information
from the cost function, prediction model, and constraints.

3.2 Dynamical weighting procedure

Once the cost function has been normalized, it is considered that the prioritization weights at each control objective
Ji(x(k),u) are given by a time-varying parameter pi(k), for all i ∈ S. Hence, the normalized optimization problem
behind the MPC controller is formulated as follows:

minimize
û

n

∑
i=1

pi(k)J̃i(x(0),u), (14a)

subject to:

x(k + j + 1∣k) = Ax(k + j∣k) +Bu(k + j∣k) +Bld(k + j∣k), j ∈ [0,Hp − 1] ∩Z≥0, (14b)

u(k + j∣k) ∈ U , j ∈ [0,Hp − 1] ∩Z≥0, (14c)

x(k + j∣k) ∈ X , j ∈ [1,Hp] ∩Z≥0, (14d)

where p(k) = [p1(k) ⋯ pn(k)]
⊺
, satisfying the constraint ∑

n
i=1 pi(k) = 1. The unitary value in the constraint of

weights is associated to the population mass that defines the simplex set ∆ in the population game. Notice that
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weights should vary dynamically since the disturbances in the system (1) also vary along the time. To overcome this
issue, the discrete projection dynamics (8) are implemented. The fitness functions fi(pi(k)), for all i ∈ S, are chosen

to be dependent of the current value of each control objective J̃i(x̂
∗(k), û∗(k)) representing each strategy, i.e.,

fi(pi(k)) = wiJ̃i(x̂
∗
(k), û∗(k)), (15)

where wi, for all i ∈ S, assigns a prioritization that defines a management region in the Pareto front as has been
presented in [3]. Besides, these terms wi, for all i ∈ S, do not appear in the optimization problem of the MPC, and
should not be confused with the weights of the cost function (14a) in the MPC controller, which are denoted by pi,
for all i ∈ S.

Assumption 1 The fitness function fi(pi) is a decreasing function with respect to pi. It is expected that the value

of the objective J̃i(x̂
∗(k), û∗(k)) decreases as bigger weight pi(k) is assigned to it when solving the corresponding

optimization problem. ♢

Remark 1 Propositions 2 and 3 have shown that there exists a sampling time τ ∈ R>0 such that the equilibrium
point p∗ ∈ ∆ is asymptotically stable under the discrete projection dynamics. Moreover, in order to find the critical
τc, it is necessary either to compute the Jacobian Df(p) or to know the equilibrium point p∗ ∈ ∆. For the dynamical
tuning application, none of these data is available since there is not a function describing the Pareto front depending
on the assigned prioritization in the cost function (14(a)), and the equilibrium point varies along the time because of
the time-varying disturbance affecting the system. However, there exists a sufficiently small τ to guarantee stability
according to Proposition 3 since the game f is stable. For the tuning application, we have selected τ = 0.15 < τc. ♢

The dynamical adjustment of the weights is presented in Figure 2. The fitness functions are determined by using
information from the normalized cost function and the weights that determine the management region. Thus, the
discrete projection dynamics compute the appropriate prioritization of the normalized cost function in the MPC
controller. A detailed procedure to implement the population-games-based dynamical tuning for multi-objective
MPC is presented in Algorithm 1.

Algorithm 1 Dynamical tuning based on population games for multi-objective MPC.

1: Hs ← simulation length
2: Hp ← prediction horizon
3: n ← number of objectives
4: x(k) ← x(0) ∈ Rnx states initial condition
5: p(k) ← p ∈ Rn≥0 proportion initial condition
6: for k = 1 ∶Hs do
7: for i = 1 ∶ n do
8: u∗i ← arg min

û
Ji(x,u) with constraints

9: Jutopia
i ← Ji(x

∗
i ,u

∗
i )

10: end for
11: for j = 1 ∶ n do
12: Jnadir

j ← max (Jj(x
∗
1,u

∗
1), ⋯, Jj(x

∗
n,u

∗
n))

13: end for

14: û∗(k) ← arg min
û

n

∑
i=1
pi(k)J̃i(x,u) with constraints

15: x̂∗(k) ← using û∗(k) and (14b)
16: u∗(k) ← u∗(k∣k) ∈ Rnu optimal control input
17: for i = 1 ∶ n do
18: fi(pi) ≜ fi(pi(k)) ← wiJ̃i(x̂

∗(k), û∗(k))
19: end for
20: p(k + 1) = τ (In −

1
n
1n1

⊺
n) f(p) + p(k).

21: x(k + 1) = Ax(k) +Bu∗(k) +Bld(k)
22: end for
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Fig. 3. Case study. Topology of the 17 tanks BWSN. Circles correspond to states 7,10,12, and 14. Hexagons correspond to
control inputs 18,23,41, and 58. Rectangles correspond to demands 12,18,20, and 24.

4 Water supply network application

In order to illustrate the performance of a multi-objective MPC controller with a dynamical tuning based on pop-
ulation games, the proposed on-line tuning methodology is implemented in a large-scale water supply network.
Furthermore, the performance of the MPC controller with dynamical tuning is compared to the performance ob-
tained by using a conventional static tuning. Figure 3 shows a representative portion of the Barcelona water supply
network (BWSN) that is composed of 17 tanks, 26 pumps, 35 valves, nine water sources, 25 water demands, and 11
mass-balance nodes. The dynamical model of the system is given by the following expressions:

x(k + 1) = Ax(k) +Bu(k) +Bdd(k), (16a)

0 = Euu(k) +Edd(k), (16b)

where x ∈ Rnx is the vector of nx = 17 system states corresponding to the tank volumes, u ∈ Rnu is the vector of
nu = 61 control inputs, and d ∈ Rnd is the vector of nd = 25 time-varying water demands. The water demands are
considered to be disturbances to the system, which have a periodicity of 24 hours with a mean value, and a nominal
amplitude [33]. The constraints given by the 11 mass-balance nodes are described by (16b). Matrices A, B, Bd,
Eu, and Ed are obtained according to the control-oriented modeling described in [18]. See [19] for further details
regarding this case study.
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4.1 Management criteria

The MPC controller is designed considering a cost function with multiple objectives. These objectives for the BWSN
are established by a management criteria considering the following three aspects:

● Economic operation, i.e., J1(u(k)) ≜ ∣(α1 +α2(k))
⊺
u(k)∣, where α1 represents the time-invariant costs associated

to the water resource, and α2 represents the time-variant costs associated to the operation of valves and pumps.

● Smoothness operation, i.e, J2(u(k)) ≜ ∥∆u(k)∥
2
, where ∆u(k) = u(k) − u(k − 1).

● Safety operation, i.e., considering the constraint x(k) ≥ xs − ξ(k), for all k, with xs ∈ Rnx being the vector of

safety volumes for all the tanks. The third objective is given by J3(ξ(k)) ≜ ∥ξ(k)∥
2
.

It is important to clarify that the prioritization of objectives, which is determined by the company in charge of
the management of the network, is already known. In fact, the prioritization of these aforementioned objectives is
commonly used in the design of controllers using a static tuning [9], [19]. In this particular case study, and according
to the company in charge of the system, the most important objective is the minimization of the economical costs,
i.e., J1(u(k)). Followed by the objective related to the safety volumes, i.e., J3(ξ(k)). Finally, the less important
control objective is related to the smooth operation, i.e., J2(u(k)). This prioritization order should be satisfied in
case of both static and dynamical tuning.

4.2 Optimization problem of the predictive controller

The cost function of the optimization problem behind the MPC controller is determined considering the system
management criteria. Therefore, the cost function is composed of three control objectives, i.e., J1, J2, and J3. The
cost function of the optimization problem (4) has n = 3 control objectives. Hence, following the procedure presented
in Section 3.1, a normalized optimization problem of the form as in (14) is obtained, i.e.,

minimize
û,ξ̂

J(u,ξ) =
Hp−1

∑
i=0

p1(k)J̃1(u(k + i)) +
Hp−1

∑
i=0

p2(k)J̃2(u(k + i)) +
Hp−1

∑
i=0

p3(k)J̃3(ξ(k + i)),

subject to:

x(k+j+1∣k) =Ax(k + j∣k)+Bu(k + j∣k)+Bld(k + j∣k), j ∈ [0,Hp − 1] ∩Z≥0,

0 = Euu(k + j∣k) +Edd(k + j∣k), j ∈ [0,Hp − 1] ∩Z≥0,

u(k + j∣k) ∈ U , j ∈ [0,Hp − 1] ∩Z≥0,

x(k + j∣k) ∈ X , j ∈ [0,Hp] ∩Z≥0,

x(k + j∣k) ≥ xs − ξ(k + i∣k), j ∈ [0,Hp] ∩Z≥0,

ξ(k + j∣k) ≥ 0, j ∈ [0,Hp] ∩Z≥0,

where the feasible sets for the control inputs U and the system states X are given by U = {u ∈ Rnu ∣umin ≤ u ≤ umax},
and X = {x ∈ Rnx ∣xmin ≤ x ≤ xmax}, respectively, being umin, and umax the minimum and maximum limits for the
control inputs, and xmin, and xmax the minimum and maximum limits for the system states. Finally, similarly as

in (3), ξ̂ is a sequence along Hp.

Figure 4 shows the trend of the normalized functions J̃i(x̂
∗(k), û∗(k)), for all i = 1,2,3. It can be seen that these

functions are decreasing with respect to the weight pi. This is because it is expected to get a smaller value from the
minimization problem as more prioritization is assigned (see Assumption 1).

4.3 Scenarios

In order to illustrate the enhancement of the control performance when adopting the population-games-based dy-
namical tuning methodology, the performance obtained with the dynamical tuning is compared to the performance
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Fig. 4. Behavior of the trend of the normalized functions J̃i(x̂∗(k), û∗(k)), for all i = 1,2,3.

a) b)

Fig. 5. Demand profile for: a) Scenario 1 and b) Scenario 2. The demands within the network can be seen in Figure 3 signed
with squares, and correspond to disturbances in the model (1).

when static weights are established to the objectives in the cost function. Besides, two different scenarios are pro-
posed. In general, the water demand profiles have a periodic behavior (daily), remaining a constant mean value,
and maintaining a regular amplitude. Nevertheless, it is considered the event in which the periodic demand changes
unexpectedly along the time, i.e., when the demand varies its mean value and its regular amplitude. The purpose is
to assess the automatic adjustment of the weights when conditions over the system suffer a modification along the
time, improving the performance with respect to an MPC with static tuning.

The performance when the demand suffers a decrement, and when demand has a sudden increment are analyzed.
These two possible scenarios are presented in Figure 5, i.e.,

● Scenario 1: decrement of the mean value of the demand profiles (see Figure 5a)).
● Scenario 2: increment of the mean value of the demand profiles (see Figure 5b)).

The decrement and increment of the mean value of the disturbances is made arbitrarily at the end of the fourth day.

In order to make a fair comparison, the weights γ1, ..., γn for the cost function in problem (4) for the static tuning
case and the weights for the management region w1, ...,wn in (15) for the dynamical tuning case are selected to be
the same, i.e., wi = γi, for all i ∈ S.

4.4 Results and discussion

The performance of the controllers is evaluated by using an economical key performance index denoted by C during
the total number of simulation days (in this case eight days), i.e.,

C =
192

∑
k=0

(α1 +α2(k))
⊺
u(k), (18)

where k ∈ Z≥0 in given in hours. Furthermore, a sub-index is used to differentiate between the results with static
tuning, and with the proposed dynamical tuning, i.e., CS and CD, respectively. For each scenario, six different cases
corresponding to six management regions are tested:
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a) b)

Fig. 6. Reduction of costs in 8 days for the six different tuning cases. a) Scenario 1, and b) Scenario 2.

● Tuning case 1: [γ1 γ2 γ3]
⊺ = [0.8 0.05 0.15]⊺,

● Tuning case 2: [γ1 γ2 γ3]
⊺ = [0.7 0.1 0.2]⊺,

● Tuning case 3: [γ1 γ2 γ3]
⊺ = [0.6 0.15 0.25]⊺,

● Tuning case 4: [γ1 γ2 γ3]
⊺ = [0.5 0.2 0.3]⊺,

● Tuning case 5: [γ1 γ2 γ3]
⊺ = [0.4 0.25 0.35]⊺,

● Tuning case 6: [γ1 γ2 γ3]
⊺ = [0.35 0.3 0.35]⊺,

a) b) c)

Fig. 7. Evolution of volumes, control inputs, and tuning weights for the population-games-based dynamical tuning in Scenario
1, for three different management points: a) First column w = [0.4 0.25 0.35]⊺, b) second column w = [0.6 0.15 0.25]⊺,
and c) third column w = [0.8 0.05 0.15]⊺. The corresponding states and control inputs within the network can be seen in
Figure 3.

where [w1 w2 w3]
⊺ = [γ1 γ2 γ3]

⊺. Notice that all the proposed tuning cases satisfy the prioritization order
presented in Section 4.1, i.e., w1 > w3 > w2. Table 1 presents the comparison between the economic results obtained
with a multi-objective MPC using a static and dynamical population-games-based tuning, and for the two different
scenarios. Also, Table 1 shows the reduction of costs when adopting the proposed dynamical tuning, i.e., CS −CD.
It can be seen that, for all the tested management regions, and for both scenarios, a reduction of costs is obtained
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a) b) c)

Fig. 8. Evolution of volumes, control inputs, and tuning weights for the population-games-based dynamical tuning in Scenario
2, for three different management points: a) First column w = [0.4 0.25 0.35]⊺, b) second column w = [0.6 0.15 0.25]⊺,
and c) third column w = [0.8 0.05 0.15]⊺. The corresponding states and control inputs within the network can be seen in
Figure 3.

Table 1
Economic results for Scenario 1 and Scenario 2 in the case study. Notice that for the comparison of data the management
region corresponds to the prioritization of the MPC controller with static tuning, i.e., [w1 w2 w3]⊺ = [γ1 γ2 γ3]⊺.

Tuning Dynamical tuning Static tuning Reduction of costs Percentage reduction

case costs CD (e.u.) costs CS (e.u.) CS −CD (e.u.) 100(CS −CD)/CS [%]

S
c
e
n
a
ri
o
1

1 281475.4393 295465.0021 13989.5627 4.73

2 282296.0113 295114.7771 12818.7657 4.34

3 283592.6568 300172.7427 16580.0858 5.52

4 289484.6672 312124.2979 22639.6307 7.25

5 291048.2900 328267.0268 37218.7368 11.33

6 291874.0282 341964.3402 50090.3120 14.64

S
c
e
n
a
ri
o
2

1 251003.7369 266079.8919 15076.1550 5.66

2 252147.3533 265056.5038 12909.1505 4.87

3 255457.0784 270722.0341 15264.9556 5.63

4 259626.8908 282454.0561 22827.1652 8.08

5 261713.5740 300459.4927 38745.9187 12.89

6 263114.2332 313364.1354 50249.9022 16.03

when implementing a dynamical tuning with respect to the costs with a standard static tuning. Figure 6 presents
a summary of the reduction of costs for both scenarios and all the tested combination of weights for the control
objectives. Cost reductions from 13989.56 to 50090.31 e.u., and from 15076.15 to 50249.90 e.u., are obtained for
the first and second scenario in eight days, respectively.
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Figures 7 and 8 show the evolution of system states, control inputs, and dynamic prioritization weights for the
first and second scenario with management regions given by w = [0.4 0.25 0.35]⊺, w = [0.6 0.15 0.25]⊺, and
w = [0.8 0.05 0.15]⊺. The performance exhibits an oscillatory behavior for the adjustment of weights because of
the disturbances in the system. In fact, it can be seen that the periodicity of the oscillation in the weights adjustment
corresponds to the diary periodicity of the demands (see Figure 5). In addition, it can be seen in Figures 7 and 8 that
the dynamical tuning suffers an abrupt change at the end of the fourth day adjusting weights appropriately. This
fact occurs since, at that point, the decrement or increment of the mean value for the demand profiles is applied.

5 Concluding remarks

A novel dynamical tuning methodology for multi-objective MPC controllers has been presented. The dynamical
tuning methodology requires to normalize the cost function of the optimization problem behind the MPC controller.
Therefore, a population game is solved with a discrete version of the projection dynamics, which update the ap-
propriate tuning by using information about the current value of the normalized control objectives. The proposed
dynamical tuning does not require to generate multiple points of the Pareto front, which implies that it is not
computationally costly with respect to other reported on-line approaches. The proposed tuning has been established
to be a weighting sum, for which it is required that the sum of all the weights is equal one. It has been shown that
the discrete version of the projection dynamics satisfies this constraint throughout the evolution of their variables.
Furthermore, the stability analysis of the Nash equilibrium under the discrete projection dynamics has been made,
and it is guaranteed as long as the control objectives decrease as more priority is assigned to them (Assumption 1).

Finally, the dynamical tuning methodology is implemented to a large-scale water supply network. Results have
shown a reduction of costs when adopting the proposed population-games-based dynamical tuning. The reduction of
costs is achieved for all the six tested tuning cases, and for two different scenarios for demand abrupt changes (one
scenario considering a decrement of demand, and another considering an increment of demand). It is worth to point
out that these achieved cost reductions have been presented for a period of eight days, and that these reductions
are maintained along the time. Therefore, the proposed dynamical tuning strategy, according to the results obtained
during a week, might represent a bigger reduction of costs in a larger period of time, e.g., a month or a year.
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