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Abstract: This paper addresses the design of reduced-order interval-observers for dynamic
systems with time-invariant uncertainty. Because of the limitations of using the set-based
approach to preserve the time dependency of parameter uncertainty and the wrapping effect
to deal with interval-observers, the trajectory-based interval-observer approach is used with an
appropriate observer gain. But, there could be some difficulties to satisfy the conditions for
selecting a suitable gain to guarantee the positivity of the resulting observer. Then, a reduced-
order observer is designed to reduce the computational complexity and to increase the degree
of freedom when selecting the observer gain. Finally, a simulation example is employed for
illustrating and analyzing the effectiveness of the proposed approach.
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1. INTRODUCTION

Interval-observer approaches make use of the interval
hull of the approximated set instead of the exact set.
Moreover, in the set-based approach, the propagation
of the state set is affected by several problems such
as the wrapping effect, temporal variance on uncertain
parameters (or uncertain parameter time dependency)
and range evaluation of an interval function, especially
in the case of using the interval hull of the set at each
iteration. Therefore, conservative and unstable results may
obtain (for even a stable system) with using the set-based
approach in the simulation of the system with parametric
time-invariant uncertainties [Puig et al. (2005)]. On the
other hand, the approximated state set can be computed
based on a set of point-wise trajectories. This type of
approach is called trajectory-based approach [Puig et al.
(2005)]. The advantage of trajectory-based approach in
comparison with the set-based approach is to overcome
the wrapping effect due to generating the real trajectories
based on selecting the particular value of the uncertain
parameters. Meanwhile, the uncertain parameter time
dependency can be preserved if the set of point-wise
trajectories are generated [Puig et al. (2005)].
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Based on the literature, interval dynamic systems are
those uncertain systems whose uncertain parameters are
bounded by intervals [Kolev and Petrakieva (2005) and
Le et al. (2012)]. Particularly, the wrapping effect appears
in that kind of interval systems that are not monotonic
[Puig et al. (2005)]. It means that if there are some
negative elements in the state matrix related to the state-
space model of the observer (i.e., it is not monotonic),
the wrapping effect affects the interval-observer. As it is
mentioned before, one of the possible solutions to overcome
the wrapping effect is to make use of trajectory-based
observers, which will be further reviewed later in this
paper. But still, there are some difficulties related to
the computational complexity and designing the suitable
observer gain in the trajectory-based observer.

In order to reduce the computational complexity of the
trajectory-based approach, the order of the observer can
be reduced and unknown states of the system can be
separately estimated by using a reduced-order observer,
since the problem of wrapping effect appears only when
those elements of the state matrix that are related to
the unmeasurable states are negative values. Besides, by
using the reduced-order observer not only the problem
of wrapping effect can be solved with less computational
complexity, but also, designing the observer gain can be
done with more degree of freedom in comparison with the
full-order observer.



So far, however, several studies have reported state esti-
mation based on trajectory-based interval observer, but
there is still insufficient study for reducing the compu-
tational complexity and the design of the suitable ob-
server gain in order to satisfy the positivity conditions.
Therefore, the main contribution of this paper is to de-
sign the reduced-order interval observer to estimate the
unmeasurable states. Furthermore, the observer gain can
be designed with more degree of freedom to obtain the
monotonic observer in spite of non-monotonicity of the
system state matrix. Simultaneously, the time invariance
of the uncertain parameter can be preserved.

Regarding the structure of the paper, Section 2 deals
with preliminaries and the problem formulation of interval
state observation. Moreover, the set-based and trajectory-
based observers are introduced, respectively. The design
of the interval observer is proposed in Section 3. Set-
based, trajectory-based and reduced-order observers are
implemented and compared by using an academic example
for both monotonic and non-monotonic systems and the
effect of the observer gain will be discussed in Section 4.
Finally, the main conclusions are drawn in Section 5.

2. PROBLEM FORMULATION OF INTERVAL
STATE OBSERVATION

2.1 Problem Statement

The uncertain discrete linear time-invariant model is rep-
resented by the following state-space form:

x(k + 1) = A(θ)x(k) +B(θ)u(k), (1a)

y(k) = C(θ)x(k), (1b)

where k ∈ Z≥0 indicates the discrete time, x ∈ Rnx
is the state vector, u ∈ Rnu and y ∈ Rny denote the
input and the output vectors, respectively. The system
matrices of appropriate dimensions are A(θ) ∈ Rnx×nx ,
B(θ) ∈ Rnx×nu and C(θ) ∈ Rny.×nx . Moreover, θ is the
vector of time-invariant uncertain parameters with the
bounded values by an compact set Θ as

Θ =
{
θ ∈ Rnθ | θi ≤ θi ≤ θi, i = 1, ... , n

}
. (2)

Furthermore, the system matrices A(θ), B(θ) and C(θ)
are not exactly known and the uncertainty is included into
them based on (2) as

A(θ) ≤ A(θ) ≤ A(θ), (3a)

B(θ) ≤ B(θ) ≤ B(θ), (3b)

C(θ) ≤ C(θ) ≤ C(θ), (3c)

where • and • denote the lower and upper bound of
each matrix, respectively. Note that the inequalities in (3)
should be understood as element-wise inequalities.

Therefore, the uncertainties in matrices A(θ), B(θ) and
C(θ) can be decomposed as A(θ) = Ae + ∆A(θ),
B(θ) = Be+∆B(θ) and C(θ) = Ce+∆C(θ), where Ae,
Be and Ce are the nominal part of the system matrices
A(θ), B(θ) and C(θ), respectively. Furthermore, ∆A(θ),
∆B(θ) and ∆C(θ) denote the effect of uncertainties in
A(θ), B(θ) and C(θ), respectively.

Remark 1. The time invariance of uncertain parameters is
usually not taken into account in the literature, being this
the main goal of this paper.

Assumption 1. B(θ) and C(θ) are assumed monotonic
with respect to θ. It means, there exist two functions
F(y(k), u(k), θ) and F(y(k), u(k), θ) where the monotonic-
ity property is used to build them.

If (1) is observable, the Luenberger observer is written as

x̂(k + 1) = A(θ)x̂(k) +B(θ)u(k) + L(y(k)− ŷ(k)), (4a)

ŷ(k) = C(θ)x̂(k), (4b)

where ŷ ∈ Rny and x̂ ∈ Rnx are the estimated system
output and state, respectively. Furthermore, the state
observer (4) can be written as x̂(k + 1) = (A(θ) −

LC(θ))x̂(k)+[B(θ) L]

[
u(k)
y(k)

]
. By denoting Aobs = A(θ)−

LC(θ), Bobs = [B(θ) L] and uobs =

[
u(k)
y(k)

]
, the state

observer can be rewritten as

x̂(k + 1) = Aobs(θ)x̂(k) +Bobs(θ)uobs(k). (5)

Additionally, the observer gain L for θ ∈ Θ should be
defined such that Aobs was a Schur matrix. Based on the
observer expression in (5), the effect of the uncertainty is
introduced in the observer throughAobs andBobs matrices.
There are two main approaches to take into account the
uncertainty in the output/state estimation as it will be
recalled in the following sections.

2.2 Set-based vs Trajectory-based Approaches

In set-based approaches, the set of states at time instant
k + 1 is approximated by using propagation algorithms
from the set of states at time k [Puig et al. (2005),
Combastel (2015)]. However, in set-based approaches, the
parameter time invariance is not taken into account during
the propagation of the uncertainties. Uncertain parameters
are unknown but bounded in their uncertainty intervals
and can vary arbitrarily at each time instant within the
bounded interval in the set-based approach. Moreover,
some additional problems appear in the case of using set-
based approaches such as wrapping effect and range evalu-
ation of an interval function [Puig et al. (2003)] as already
discussed. One way to solve the time-dependency problem
of the set-based approach is to derive the relation between
states and parameters, which can bring the system from
the initial state to the current state. Considering this
idea, the wrapping effect problem is solved while the time
dependency of the uncertain parameter can be preserved.
In the trajectory-based approach, the value of parameter
uncertainty is unknown but bounded in the interval and
the invariance of parameter uncertainty can be guaranteed
at each time instant. The interval of the states can be
estimated at each iteration by using the particular state
trajectories corresponding to particular values of uncer-
tainty θ. Based on Puig et al. (2003), the relation between
states and uncertain parameters is derived as

x̂(k) = (Aobs(θ))
kx(0)+

k−1∑
j=0

(Aobs(θ))
k−1−j Bobs(θ) uobs(j).

(6)
In (6), the uncertainty always is propagated from the
initial state to avoid the wrapping effect. Furthermore, by
assuming that Aobs(θ) at time instant k+1 is equal to the
Aobs(θ) at time instant k and Bobs(θ) at time instant k+1



is equal to Bobs(θ) at time instant k, the time invariance
is guaranteed in all iterations.

The state estimation x̂(k) in (6) can be bounded by the

interval hull 2X̂ (k) = [x̂(k), x̂(k)], that can be obtained
by solving the following optimization problems:

x̂(k) = max
θ∈Θ

[
(Âobs + ∆Aobs(θ))

kx̂(0)

+

k−1∑
j=0

(Âobs + ∆Aobs(θ))
k−1−j (B̂obs + ∆Bobs(θ)) uobs(j)

]
,

(7a)

x̂(k) = min
θ∈Θ

[
(Âobs + ∆Aobs(θ))

kx̂(0)

+

k−1∑
j=0

(Âobs + ∆Aobs(θ))
k−1−j (B̂obs + ∆Bobs(θ)) uobs(j)

]
,

(7b)

where Âobs, B̂obs and ∆Aobs(θ), ∆Bobs(θ) are nominal and
uncertainties of the observer matrices, respectively.

3. DESIGNING THE INTERVAL OBSERVER

One possible way to avoid solving the optimization prob-
lems in (7) is to design the observer gain L in such a
way to force Aobs into an element-wise positive matrix
despite of the negative elements in A(θ). Thus, designing
the observer gain in this manner imposes some additional
constraints. In case the observer is not possible to be
designed, a reduced-order observer can be used to estimate
only those states that are affected by the negative elements
of A(θ). Moreover, the observer gain L can be designed
with more degree of freedom for the reduced-order observer
in comparison with full-order observer. In other words,
the number of conditions and constrains of selecting the
observer gain can be reduced by using the reduced-order
observer.

3.1 Designing Observer Gain

In the case that one element of A(θ) is negative, Aobs will
satisfy the monotonicity property if

aij − (LC)ij ≥ 0, (8)

where the subindices ij denote that there exist one state
such x̂i whose variation with respect to another state x̂j
is negative (e.g., aij < 0). Furthermore, (LC)ij shows the
i-th row and j-th column of matrix LC ∈ Rnx×nx that is
obtained by multiplication of matrix L ∈ Rnx×ny into the
matrix C(θ) ∈ Rny×nx .

Therefore, the condition in (8) will be satisfied if

aij ≥ (LC)ij . (9)

Consequently, by forcing the observer gain to eliminate the
negative elements of Aobs, a monotonic interval observer
can be obtained. Furthermore, the right side of (9) can
be written as (LC)ij = LiCj , where Li shows the i-th row
elements of the matrix L and Cj indicates the j-th column
elements of the matrix C(θ). Obviously, the elements Cj
can not be chosen freely, because it is determined by the
observer model. Therefore, in order to force the condition
in (9), only the elements Li can be designed freely.

Moreover, the interval-observer convergence should be
considered when designing the observer gain. Therefore,
the observer gain matrix L can be divided into two
matrices L− and L+, where

• L− shows the elements that are chosen to force the
condition (9),

• L+ shows the elements that are chosen to guarantee
the observer convergence.

Thus, the observer gain can be split into

L = L+ + L−. (10)

Similarly, the matrix A(θ) can be written as

A(θ) = A+(θ) +A−(θ), (11)

where, A+(θ) and A−(θ) are determined by the positive
and negative elements of matrix A(θ), respectively.

Moreover, by considering (10) and (11), Aobs can be
written as

Aobs(θ) =
(
A+(θ)−L+C(θ)

)
+
(
A−(θ)−L−C(θ)

)
. (12)

Furthermore, by denoting the index mn for those elements
of matrices A(θ) and LC(θ) that do not have any effect on
the monotonicity property of the Aobs, each part of (12)
will be determined as

if amn > 0 =⇒


(
A+(θ)

)
mn

= amn,(
A−(θ)

)
mn

= 0,(
L+C(θ)

)
mn

= LmαCαn,

(13)

where Lmα are the m-th row elements of matrix L and
Cαn are the n-th column of matrix C(θ) and

if aij < 0 =⇒


(
A+(θ)

)
ij

= 0,(
A−(θ)

)
ij

= aij ,(
L+C(θ)

)
ij

= 0.

(14)

Furthermore, for the positive elements,
(
A−(θ)

)
mn

=(
L−C(θ)

)
mn

. Therefore, the elements of matrix L−C are

either positive or null by assuming the condition in (9).

Taking into account that the condition (9) should be
satisfied to achieve the positivity of Aobs, it can be written
as Aobs = AF − L+C(θ), where AF = A(θ) − L−C.
Therefore, L− should satisfy the positivity conditions
and L+ should be designed in order to guarantee the
convergence of the observer. Thus, two state observers can
be designed to estimate the maximum and minimum state
trajectories. Therefore, Aobs, for each observer, is

Aobs = AF − L
+
C, (15a)

Aobs = AF − L
+ C, (15b)

where • and • denote that the matrices are related to the
upper and lower trajectory observers, respectively.

In this paper, the upper L
+

and lower L+ observer gains
are designed using Linear Matrix Inequalities (LMIs).

Therefore, L
+

and L+ should be designed in such way

that the eigenvalues of the AF − L
+
C and AF − L

+ C
are placed in a stable LMI region. Theorem 1 can be used
to designed such an observer gains.

Theorem 1. Consider the observer (5) satisfying the con-
dition in (9) and the following LMI inequalities:



[
−rK qK +KTAF −W

T
C

qK +A
T

FK − C
T
W −rK

]
< 0, (16a)[

−rK qK +KTAF −W
TC

qK +ATFK − C
TW −rK

]
< 0, (16b)

where q and r denote the center and the radius of a LMI
region, respectively, K is the unknown symmetric matrix,

W = L
+
K is related to the upper observer and W = L+K

is related to the lower observer. Obtaining L
+

and L+ as

L
+

= (WK−1)T , (17a)

L+ = (WK−1)T , (17b)

the Aobs is Schur and element-wise positive matrix and
hence the convergence of the upper and lower observers is
guaranteed.

Proof. The proof follows from the application of results
presented in Chilali et al. (1999) to the interval observer
case.

3.2 Reduced-order Observer

All the states can be estimated together by using a full-
order observer. In this regard, the observer gain can be
designed to eliminate the effect of negative elements of A
on Aobs. However, there exist some cases that designing the
observer gain to satisfy the condition (9) is not possible or
the LMI inequalities in (16) are difficult to be solved.

Consequently, the trajectory-based observer will produce
wrong state estimation when the unmeasurable states are
affected by the negative elements of A. As an alternative,
a reduced-order observer is used to reduce the number of
conditions and constrains in the LMIs in (16). Hence, it
is not necessary to design the observer to estimate all the
states that are directly measured by sensors. If this is the
case, Theorem 2 can be used to design a reduced-order
observer for estimating the unmeasured states.

Theorem 2. By separating the original states x into mea-
surable xa and unmeasurable xb states such that x(k) =

[xa(k) . . . xb(k)]
T

, (1) can be written as[
xa(k + 1)
· · ·

xb(k + 1)

]
=

[
Aaa(θ) Aab(θ)
Aba(θ) Abb(θ)

][xa(k)
· · ·
xb(k)

]
+

[
Ba(θ)
· · ·
Bb(θ)

]
u(k),

(18a)

y(k) =
[
I

... 0

] [xa(k)
· · ·
xb(k)

]
, (18b)

where xa ∈ Rnxa and xb ∈ Rnxb . Moreover, the dimensions
of the matrices are Aaa ∈ Rnxa×nxa , Aab ∈ Rnxa×nxb ,
Aba ∈ Rnxb×nxa , Abb ∈ Rnxb×nxb , Ba ∈ Rnxa×nu , Bb ∈
Rnxb×nu . Considering the vector of uncertain parameters
θ whose values are bounded by Θ (i.e., θ ∈ Θ) or by an
interval [θ, θ] (i.e., θ ∈ [θ, θ]), the following reduced-order
interval observer can be used for estimating xb:

x̂b(k + 1) = ζ̂(k + 1) + Lxa(k + 1), (19)

where

ζ̂(k + 1) =

(
Abb(θ) − LAba(θ)

)
ζ̂(k) +

(
Abb(θ) − LAab(θ) +Aba(θ)

− LAaa(θ)

)
y(k) +

(
Bb(θ) − LBa(θ)

)
u(k).
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(a) All the elements of A are positive values.
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(b) A contains a negative element.

Fig. 1. Set-based interval observer.

Therefore, xb can be estimated by (19).

Proof. The proof follows from the extension of standard
reduced observer results available as e.g. in Ostertag
(2011) to the reduced interval observer case.

Hence, the obtained interval observer in (19) is called
reduced-order interval observer, which will be able to
estimate the unmeasurable states. In other words, if A
contains the negative elements, this method can be used to
separate the measurable and unmeasurable states. Thus,
the only concern will be the unmeasurable states. There-
fore, designing the observer gain in order to compensate
the effect of negative elements on the unmeasurable states
can be done for this reduced-order observer with more
degree of freedom as in Section 3.1.

Remark 2. If there are still some cases where selecting the
observer gain in order to eliminate the effect of negative
elements is not possible, a change of coordinates as pro-
posed by Räıssi et al. (2012) may be helpful to achieve the
positivity conditions and the successful interval-observer
design.

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the approach proposed in previous
sections, an academic example is considered based on the
dynamical model (1) with

A(θ) =

[
0 + θ11 0.1 + θ12 0.3 + θ13

0 + θ21 0.8 + θ22 0.2 + θ23

0.01 + θ31 0 + θ32 0.8 + θ33

]
, B(θ) =

[
0 + θ11

0 + θ21

1 + θ31

]
,

C(θ) =
[
0 + θ11 0 + θ21 1 + θ31

]
,

where the time-invariant uncertain parameters are bounded
by the following intervals:
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(a) All the elements of A are positive values.
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(b) A contains a negative element.

Fig. 2. Trajectory-based interval observer.

• θ11, θ21, θ22, θ31, θ32 ∈ [−0.0015, 0.0015],
• θ12, θ13, θ23, θ33 ∈ [−0.0150, 0.0150].

Two different scenarios are considered in this section:

(1) In the case of monotonic system that means all the
elements of A are positive,

(2) In the case of a non-monotonic system that at least
one of the elements in A is negative.

Therefore, the set-based, trajectory-based and reduced-
order observers are designed to estimate the states for each
scenario. In addition, the observer gain L is designed by
the well-known LMI pole placement method for each case.
Furthermore, the proposed observer-gain design method
in Section 3.1 is used in the second scenario. In Fig. 1,
the simulation results that are obtained by using a set-
based approach based on zonotopes in both positive and
negative scenarios are presented. In this type of interval-
observer approach, the uncertainty is modeled by using
the zonotopic set. Moreover, Fig. 1a shows the obtained
estimation of the state x1 in the case that all the elements
of A are positive. On the other hand, Fig. 1b shows the
result in the case that at least one of the elements of A that
is related to the unmeasurable states (in this case x1 and
x2) is negative. The wrapping effect can be observed in the
non-monotonic case since the state estimations of upper
and lower bounds are diverging in the second scenario.

Hence, one possible solution to avoid the wrapping effect
and preserving the time invariance of the observer is
to used the trajectory-based observer. In this case, the
observer is constructed based on the punctual trajectories
for estimating upper and lower bounds instead of using
a zonotopic set. In Fig. 2, the obtained results from
the simulation of the trajectory-based observer for both
presented scenarios with the same observer gain as the
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Fig. 3. Set-based vs. Trajectory-based interval observer.
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Fig. 4. Designing the trajectory-based observer gain.

set-based method is shown. On the one hand, the results
of a monotonic system can be seen in Fig. 2a. On the
other hand, Fig. 2b shows the results when A contains
negative elements. The inner solution problem can be seen
in Fig. 2b implying the estimated value by the observer is
tighter than the correct one. The problem can be solved by
designing the observer gain to eliminate the effect of the
negative element ofA onAobs. In Fig. 3, the set-based state
estimation of interval-observer approach provide wider
intervals than those produced by the trajectory-based
approach. In other words, the set-based approach even
without wrapping effect is more conservative than the
trajectory-based approach because of considering the time-
varying parametric uncertainty.

On the other hand, the performance of set-based interval-
observer approach and trajectory-based interval-observer
approach can be compared by looking at Fig. 2b and Fig.
1b that allows seeing that the wrapping effect is avoided
by using trajectory-based observer. But, this approach
provides the inner solution instead of the exact solution.
The clue to overcome the undesired problem in trajectory-
based observer is to design the observer gain L to enforce
Aobs into an element-wise positive matrix even in the
situation that the system is non-monotonic. In Fig. 4, the
state estimation is obtained by designing the observer gain
according to Section 3 that forces the resulting observer
to be monotonic. But, sometimes the positivity condition
could be hard to be satisfied or guarantee the convergence
of the observer at the same time is not possible. With
considering this point in mind, the idea of this paper
is to overcome this limitation by designing a reduced-
order observer instead of a full-order observer that only
estimates the unmeasurable states.
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(b) A contains a negative element.

Fig. 5. Reduced-order interval observer.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

X
1

Time Step

 

 

Actual state X
1

Reduced order observer

Fig. 6. Designing the reduced-observer observer gain.

Fig. 5 shows the results obtained with the designed
reduced-order observer in both scenarios. Moreover, it can
be seen in Fig. 5a, in the case that all the elements of
the state matrix are positive, the observer is working well.
But, the inner solution problem appears in Fig. 5b that in-
dicates the state estimation of the non-monotonic system.
That means, the upper and lower approximated bounds is
tighter than the exact one. Therefore, the observer gain
can be designed to overcome this problem as in Fig. 6,
where the obtained result from the simulation that the
reduced-order observer gain is designed to solve the inner
solution problem is shown. Therefore, the reduced-order
observer can be used instead of the full-order observer with
more degree of freedom regarding the observer gain design
in comparison with the full-order observer. Therefore, the
wrapping effect is avoided, the inner solution problem is
solved and the observer gain can be designed with more
degree of freedom, simultaneously.

5. CONCLUSIONS

This paper presents the state estimation of the discrete-
time linear state-space model with the time-invariant pa-
rameter uncertainty using different interval-observer ap-
proaches. First, it is shown that the time invariance of
parameter uncertainty can not be preserved when the
observer is designed by using the set-based method and
the wrapping effect affects those systems that are not
monotonic. Second, the trajectory-based observer is used
to overcome the problems. But, the computational com-
plexity is increased when solving the global optimization
problem by using the classical trajectory-based observers
in the case of the non-monotonic system. Therefore, a
method for designing the observer gain is proposed such
that a monotonic interval observer is obtained without
solving the optimization problems. Moreover, in the case
that the number of conditions and constrains for designing
the gain does not let to compute the suitable observer
gain, a reduced-order observer is proposed to increase the
degrees of freedom for selecting the gain. Additionally, it
is shown the set-based approach is more conservative than
the trajectory-based approach in the case that the system
does not affect by the wrapping effect.

As a future research, the idea of forcing the reduced-
order observer matrix to satisfy the positivity condition
is proposed by using a matrix transformation in order to
have much more degrees of freedom to select the observer
gain.
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