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Abstract

We present an approach to reconstruct the 3D shape of
multiple deforming objects from incomplete 2D trajectories
acquired by a single camera. Additionally, we simultane-
ously provide spatial segmentation (i.e., we identify each of
the objects in every frame) and temporal clustering (i.e., we
split the sequence into primitive actions). This advances ex-
isting work, which only tackled the problem for one single
object and non-occluded tracks. In order to handle several
objects at a time from partial observations, we model point
trajectories as a union of spatial and temporal subspaces,
and optimize the parameters of both modalities, the non-
observed point tracks and the 3D shape via augmented La-
grange multipliers. The algorithm is fully unsupervised and
results in a formulation which does not need initialization.
We thoroughly validate the method on challenging scenar-
ios with several human subjects performing different activ-
ities which involve complex motions and close interaction.
We show our approach achieves state-of-the-art 3D recon-
struction results, while it also provides spatial and temporal
segmentation.

1. Introduction
The problem of Non-Rigid Structure from Motion

(NRSfM) involves simultaneously recovering deformable
3D shape and camera motion from monocular 2D point
tracks. Since many different shape configurations may yield
similar projections, NRSfM turns to be a highly ambiguous
problem, which requires introducing prior information in
order to be solved. Standard priors include the use of low-
rank subspaces constraining the solution space of either the
entire shape [2, 24, 37], the 3D point trajectories [6, 32] or
the force patterns that induce the deformations [3].

All these previous approaches, though, use one single
low-rank modality at a time. This prevents them from being
applicable in situations that require models with high lev-
els of expressiveness, such as for complex point trajectories
or when dealing with multiple objects performing different
types of deformations and motions. In this paper we tackle
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Figure 1. Simultaneous 3D non-rigid reconstruction, spatial
segmentation and temporal clustering from incomplete 2D
point tracks. Top-left: Example of input 2D point tracks (from
the CMU MoCap dataset). For clarity we show a complete
non-overlapped case, but our approach can handle discontinuous
tracks and high degree of object overlapping. Right: Spatial and
Temporal similarity matrices we retrieve. Each entry expresses
the pairwise affinity between points or frames. Clusters are di-
rectly discovered by applying spectral clustering on these matri-
ces. Bottom-left: 3D shape reconstruction together with the tem-
poral and spatial clustering results. Spatial segmentation yields
two objects, represented by red and green points. Temporal clus-
ters clearly identify two motion primitives corresponding to the
‘jump in’ (orange) and ‘jump out’ (magenta) sub-actions.

both these situations.
There exist previous works partially addressing these

scenarios. For the rigid case, the shape of multiple mov-
ing objects can be retrieved by first segmenting the objects
from the input 2D tracks and then applying a rigid SfM al-
gorithm to each of them [30, 33, 39]. However, this strategy
depends on the accuracy of the initial segmentation which,
for the case of non-rigid and overlapping objects is likely to
fail. Regarding the non-rigid case, there has been a recent
attempt at reconstructing complex dynamics by modeling
motion as a union of temporal subspaces [40]. This ap-
proach, however, has been applied to one single object, and
relies on continuous and fully observed 2D point tracks.

In order to reconstruct multiple non-rigid objects with
complex motions from partial 2D observations, we intro-
duce a novel optimization framework that combines spatial
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and temporal clustering in a unified manner. The two types
of clustering are performed via affinity matrices, which are
jointly learned, in conjunction with the 3D shape, using an
Augmented Lagrange Multiplier (ALM) scheme. The ap-
proach is fully unsupervised and requires no initialization.
We extensively evaluate the method on sequences with up
to four subjects performing complex actions and interacting
with each other. As shown in Fig. 1 the outcome of our al-
gorithm is the spatial segmentation of each frame, which is
likely to correspond to each of the subjects, a temporal clus-
tering corresponding to motion primitives (‘jump in’ and
‘jump out’ for the example shown in the figure), plus the 3D
reconstruction of each individual. We are not aware of any
other approach solving the three problems simultaneously.
Furthermore, as we will show in the results, the accuracy of
the 3D reconstructions we obtain, improves that of state-of-
the-art NRSfM methods by a considerable margin.

2. Related Work

We next review the most related work dealing with
single- and multi-object reconstruction.

NRSfM for Single Object Reconstruction. The most
standard approach to address the inherent ambiguity of
the NRSfM problem is by assuming the underlying 3D
shape is low rank. In order to estimate such low rank
model, factorization-based approaches have been typically
used [4, 10, 19, 31, 37]. Alternatively, other approaches
impose the low-rank constraint by means of robust PCA-
like formulations in which the rank of a matrix repre-
senting the shape is minimized. These type of methods
either assume the data lies on a single low dimensional
space [16, 18, 20] or in a union of temporal subspaces [40].
On top of these shape models, additional spatial [24] or tem-
poral [1, 8, 26] smoothness constraints have also been con-
sidered. Low-rank models have been extended to the tem-
poral domain, by fitting point trajectories to a series of pre-
defined basis [6, 32, 38], to shape-and-temporal composite
domains [21, 22, 35], and to the space of forces that induce
the deformations [3].

All previous approaches, though, have been focused on
retrieving the shape of single objects. Most of them, in-
deed, are not directly applicable to the multi-object sce-
nario we contemplate in this paper, because they rely on
a single linear subspace assumption that is not rich enough
to model the variability occurring on scenarios with multi-
ple objects performing different actions. Trajectory-based
methods [6, 32, 38], can potentially tackle this type of sce-
narios because the low-rank is applied per point on the tem-
poral domain. However, as we will show in the results sec-
tion, a high sensitivity on to the dimension of the low-rank
penalizes the accuracy of the reconstructions they provide.
Furthermore, none of the previous methods is intended to

[3, 37] [21, 22] [16, 20] [18, 24, 25] [40] Ours
Rank required − − X X X X
Occlusion handling X X − X − X
Multiple objects − X − − X X
Temporal clustering − − − − X X
Shape clustering − − − − − X

Table 1. Qualitative comparison of our approach with other
NRSfM methods. Our approach is the only one that simultane-
ously provides 3D reconstruction, shape segmentation and tempo-
ral clustering. Important characteristics are that it can also natu-
rally handle complex scenarios with multiple interacting objects
and incomplete 2D input tracks; and it does not need to adjust
the rank of the basis. When this is required, it usually turns to be a
very sensitive parameter for accuracy of the method. Note that [18]
performs shape clustering directly from 2D, as an independent and
separate task previous to the shape reconstruction.

provide full temporal and spatial segmentation of the se-
quence. Table 1 provides a qualitative comparison, in terms
of available characteristics, of our approach and the most
relevant NRSfM methods.

Multi-Object Reconstruction. Most existing works in
multi-object reconstruction from point tracks are applied
to rigid objects, and follow a two-step pipeline. First the
2D motion tracks are segmented into several objects using
a subspace clustering approach [17, 27]; and then rigid SfM
techniques [36] are separately applied to each of the ob-
jects [15, 33, 39]. The technique in [30] is able to perform
simultaneous segmentation and reconstruction [30], but it
still is only applicable to rigid cases. One interesting ex-
ception is the recent work [34] which assumes the object
to be represented as overlapping rigid parts, and simultane-
ously segments and reconstructs these parts using piecewise
rigid models. However, while this approach provides dense
(spatial) segmentation and reconstruction, suffers from the
relative low expressiveness of the piecewise models, which
limits the applicability to scenes with mild deformations.

Our Contributions. We depart from previous work in that
our solution simultaneously provides 3D non-rigid recon-
struction, spatial segmentation and temporal clustering. To
the best of our knowledge, no previous approach has jointly
addressed the three problems. Additionally, we can tackle
sequences with complex motions and point track patterns
with a high degree of overlapping, in a completely unsu-
pervised manner. This outcome is the result of our tech-
nical contribution: a novel formulation of the problem that
accounts for both temporal and spatial consistency of the
point tracks while minimizing the rank of the solution. In
the following we shall denote our approach as ‘Dual Union
of Spatio-Temporal subspaces’ (DUST).

3. Revisiting NRSfM
We next revisit two NRSfM formulations that will be

used later to model non-rigid shape as a union of spatial
and temporal subspaces.



Let us consider a dynamic set of N 3D points observed
along F frames. We denote by xfi = [xfi , y

f
i , z

f
i ]> the

3D coordinates of the i-th point at frame f , and by pfi =

[ufi , v
f
i ]> the 2D orthographic projection of the same point

in the image plane. To simplify subsequent formulation, the
camera translation tf =

∑
i p

f
i /N is subtracted from the

2D projections, i.e., we consider p̃fi = pfi − tf .
We can then build the following linear system mapping

3D-to-2D point coordinates: p̃1
1 . . . p̃1

N
...

. . .
...

p̃F1 . . . p̃FN


︸ ︷︷ ︸

P

=

R1

. . .
RF


︸ ︷︷ ︸

G

x1
1 . . . x1

N
...

. . .
...

xF1 . . . xFN


︸ ︷︷ ︸

X̂

where P is a 2F × N matrix storing the 2D point tracks
arranged in columns, G is a 2F×3F block diagonal matrix,
made of the F truncated 2 × 3 camera rotations Rf , and
X̂ is a 3F × N matrix with the 3D positions of the points
along the sequence, also arranged in columns. The NRSfM
problem then entails retrieving the time-varying shape X̂
and camera motion G from 2D point tracks P.

Early solutions based on the factorization method [10],
constrained the matrix X̂ to be low-rank. For a given rank
K it was shown that rank(X̂) was ≤ 3K. Shape could then
be estimated applying a rank 3K factorization over P fol-
lowed by constraints ensuring rotation orthonormality [5].
However, despite their popularity, these methods are very
sensitive to the value of the rank, which needs to be care-
fully chosen to obtain accurate results.

More recently, several approaches have enforced the low
rank of the time-varying shape by applying nuclear norm
minimization directly over the matrix encoding the 3D point
positions [16, 18, 20]. Following [16, 23], we re-arrange the
elements of X̂ into a new 3N × F matrix X encoding the
x, y and z coordinates in different rows:

X =

x
1
1 . . . x1N y11 . . . y1N z11 . . . z1N
...

. . .
...

...
. . .

...
...

. . .
...

xF1 . . . xFN yF1 . . . yFN zF1 . . . zFN


>

.

The interest of this matrix is that under a low-rank repre-
sentation with K shape bases, it retains the rank K (in con-
trast to X̂, which was 3K). Therefore, X naturally captures
the fact that it is represented by a K-order linear model and
avoids spurious degrees of freedom while allowing to learn
redundancies between frames.

We shall use both X and X̂. In order to map one matrix
to the other we define a function q such that X̂ = q(X) =
(I3 ⊗ X>)A, where A is a 9N × N binary matrix, ⊗ is
the Kronecker product operator and I3 the identity matrix.
Similarly, we define the inverse mapping X = q−1(X̂) =

(X̂> ⊗ I3)F, where F is a 9F × F binary matrix.
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Figure 2. Dual Union of Spatio-Temporal Subspaces. Let us
consider a scenario with four objects (initially unknown) that are
non-rigidly moving and interacting. This 4D information can be
encoded using two different representations given by matrices X
and X̂ (see text). Post-multiplying these matrices by affinities T
and S, respectively, allows to simultaneously perform temporal
and spatial clustering. Additionally, all these matrices are enforced
to be low rank. This means that each temporal and spatial cluster
(indicated by color vectors in the figure), is in turn represented
by a union of subspaces (indicated by black vectors in the figure).
Our Dual Union of Spatio-Temporal Subspaces model, combines
the two typologies of subspaces.

4. Dual Union of Spatio-Temporal Subspaces
As we have just seen, the time-varying scene can be ei-

ther represented by the matrices X or X̂. Even though the
two matrices are made by exactly the same elements, each
of it will be used for a different purpose. From one side, fol-
lowing [29, 40], we first define a temporal clustering over
the shapes through a temporal affinity F × F matrix T:

X = XT + Et, (1)

where Et is a residual noise. The affinity matrix T mea-
sures the similarity between frames. As we shall see later,
once this matrix is learned from data, spectral clustering al-
gorithms [14] can be applied on it to discover and match
different motion primitives within the sequence.

We additionally consider performing spatial segmenta-
tion by means of a so-called spatial affinity N × N matrix
S, which in this case, is applied on the matrix X̂:

X̂ = X̂S + Es, (2)

where Es is a residual noise. The affinity matrix now en-
codes point similarity, and again, once it its learned, we can
use spectral clustering on it to spatially segment the data
and split it into different objects.

Equations (1) and (2) can be interpreted as a representa-
tion of the time-varying 3D points using a union of temporal
and spatial subspaces, respectively. In the following section
we will jointly apply the two types of representations, i.e.,
we will merge two unions of subspaces, and hence the name
of ‘Dual’ Union of Spatio-Temporal (DUST) subspaces we
give to our approach. This idea is illustrated in Fig. 2.



5. 3D Reconstruction and Spatio-Temporal
Clustering from 2D Trajectories

In this Section we combine the standard NRSfM pro-
jection equation described in Sect. 3, with Eqs. (1) and (2)
enforcing temporal and spatial clustering, in order to simul-
taneously segment the 2D trajectories into different objects,
provide their 3D reconstruction, and cluster their motion
into a series of primitives. Note that [40] already presented
an approach perform reconstruction and temporal grouping
of one single object. Here we introduce the multi-object
capability, and the possibility to handle occluded 2D tracks.
As it will be shown shortly, this involves having to deal with
a considerably more complex loss function and a more elab-
orate optimization strategy than that considered in [40].

5.1. Problem Formulation

Let P̄ be a possibly incomplete 2D measurement matrix,
and O its corresponding F × N observation matrix with
{1, 0} entries indicating whether the two coordinates of a
point in a specific frame are observed or not.

We can specifically formulate our problem as follows:
given the partial 2D tracks P̄ and the observation matrix O,
we seek to estimate the temporal 3D location of all points
X̂, the affinity matrices associated to the temporal T and
spatial S clustering, the matrix P of complete 2D tracks and
the matrix G of camera rotations. Let us denote by Θ ≡
{P,G,T,S,X,Et,Es} the set of all model parameters.

For estimating these parameters we propose a cost func-
tion that incorporates the spatio-temporal model described
previously and enforces the matrices to lie in low-rank sub-
spaces. As standard practice [16, 20], the nuclear norm is
used as a convex approximation to the rank minimization.
Our problem can therefore be written as follows:

arg min
Θ

‖ (O⊗ 12)�
(
P− P̄

)
‖2F + β‖P‖∗ + φ‖T‖∗

+ φ‖S‖∗ + γ‖X‖∗ + λt‖Et‖1 + λs‖Es‖1 (3)

subject to P = GX̂
I2F = GG>

X = XT + Et

X̂ = X̂S + Es

where � represents the Hadamard product and 1 is a vec-
tor of ones. ‖ · ‖∗ is the nuclear norm, ‖ · ‖1 is the convex
approximation to sparse error and ‖·‖F indicates the Frobe-
nius norm. {β, φ, γ, λt, λs} are penalty term parameters

We devise an approximated three-step strategy to min-
imize this cost function. First, we complete the partially
observed measurement matrix P. Then, we estimate the
camera rotations matrix G. And finally, we simultaneously
solve for the shape X and clustering parameters T and S.
We next describe each of these steps.

5.2. Completing Missing Entries

To complete the unobserved tracks identified as zeros
within the observation matrix O, we separately optimize P
taking the first two terms of Eq. (3):

min
P
‖ (O⊗ 12)�

(
P− P̄

)
‖2F + β‖P‖∗ . (4)

As it was shown in [7, 11, 12], this type of low-rank mini-
mizations with the nuclear norm acting as a regularizer can
be optimized with a bilinear factorization P = UV> and
applying ALM [9]. By doing this, we obtain the following
augmented Lagrangian function:

arg min
P,U,V

‖ (O⊗ 12)�
(
P− P̄

)
‖2F +

β

2

(
‖U‖2F + ‖V‖2F

)
+ 〈L,P−UV>〉+

α

2
‖P−UV>‖2F , (5)

where L is the 2F × N Lagrange multiplier and α > 0 a
penalty parameter. We solve this optimization following the
algorithm described in [12] (Alg. #1 in this paper).

5.3. Estimating Camera Rotation

Given the full matrix of point tracks P, the camera rota-
tion matrices R, i.e., the matrix G, can be estimated inde-
pendently from the rest of model parameters by using the
projection and the orthonormality constraints. There are
several alternatives and approximations for doing so, e.g.,
strategies that enforce smooth trajectories [21, 22], methods
based on trace-norm minimization that assume the rank of
the subspace a priori [16, 35] or techniques based on Pro-
crustes analysis [24]. Of course, for easier scenarios, G
could also be recovered using a few background rigid points
and then applying rigid factorization [32].

In any event, since the focus of the paper is on the accu-
racy of the 3D reconstruction and the ability to perform tem-
poral and spatial segmentation, we will assume the matrix
G has been computed by any of these previous methods.
Furthermore, when comparing with state-of-the-art, we will
use the same rotation matrices for all methods.

5.4. Joint Clustering and 3D Reconstruction

In order to jointly recover 3D shape and the spatio-
temporal clustering, we again resort to the ALM method.
Assuming P and G are already known, the minimization
we need to perform is:

arg min
T,S,X,Et,Es

φ‖T‖∗+φ‖S‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1

subject to P = GX̂
X = XT + Et

X̂ = X̂S + Es



Since the parameters {φ, γ, λt, λs} can be scaled w.r.t. one
of them, in the following, without loss of generality, we fix
φ = 1. The Lagrangian function in this is:

arg min
Θs,t,x

‖J‖∗+‖K‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1

+〈L1,X−XT−Et〉+
α

2
‖X−XT−Et‖2F

+〈L2,P−GD〉+
α

2
‖P−GD‖2F

+〈L3,D−DS−Es〉+
α

2
‖D−DS−Es‖2F

+〈L4, q(X)−D〉+ α

2
‖q(X)−D‖2F

+〈L5,T−J〉+ α

2
‖T−J‖2F

+〈L6,S−K〉+ α

2
‖S−K‖2F (6)

where Θs,t,x ≡ {J,T,K,S,X,D,Es,Et} are the spatio-
temporal clustering and shape parameters, including three
support matrices we have introduced corresponding to D ≡
q(X), J ≡ T and K ≡ S. Additionally, L1 ∈ R3N×F ,
L2 ∈ R2F×N , {L3,L4} ∈ R3F×N , L5 ∈ RF×F and L6 ∈
RN×N are the Lagrange multipliers; and α > 0 is a penalty
coefficient to improve convergence.

This minimization is highly under-constrained, but it can
be carried out efficiently by solving each subproblem sep-
arately and in closed form, while keeping fixed the rests
of variables. Algorithm 1 succinctly explains the details.
The expressions for estimating T, S and D (steps 5, 7 and
10) are obtained by computing the derivatives of Eq. (6)
in T, S and D and equating to zero. For J, K and X
matrices (steps 4, 6 and 8), we apply a Singular Value
Thresholding minimization [13] with a ‘shrinkage opera-
tor’ S ∗α (x) = max(0, x − ∗α ) where ∗ = {1, γ}. The op-
timization of matrices Et and Es (steps 12 and 13) can be
done in closed form by the element-wise shrinkage operator
S ∗α (x) = max(0, x − ∗α ) where ∗ = {λs, λt} [28]. After
each iteration, the Lagrange multipliers are updated accord-
ing to standard rules as shown in lines 14-19.

5.5. Spatial and Temporal Clustering

Once the affinity matrices T and S are estimated, we run
the spectral clustering algorithm proposed in [14] to dis-
cover the actual clusters. Figure 1 shows an example of
two matrices we obtain, where each entry (i, j) indicates
the degree of similarity between the i-th and j-th frame (for
the case of T), or between the i-th and j-th data point (for
the case of S). The bar right below the affinity matrices
represents the clusters discovered after applying [14]. The
granularity of the segmentation can be controlled through a
threshold on the eigenvalues internally computed by [14].

input : Possibly incomplete 2D trajectories P̄ and
parameters {λt, λs, γ} and {α, ρ, ε}

output: 3D reconstruction D, camera rotation G,
spatial S and temporal T clustering

/* Complete 2D Traject., Eq. (5) */
1 if P 6= P̄ then

P = min ‖ (O⊗ 12)�
(
P− P̄

)
‖2F + β‖P‖∗

2 else P ≡ P̄

/* Camera Rotation G, Sect. 5.3 */

/* ALM optimization of Eq. (6) */
3 while not converged do

/* Update Model Parameters */

4 J = min 1
α
‖J‖∗ + 1

2
‖J− (T + L5

α
)‖2F

5 T = (X>X+IF )−1(X>(X−Et)+J+ X>L1−L5
α

)

6 K = min 1
α
‖K‖∗ + 1

2
‖K− (S + L6

α
)‖2F

7 S = (D>D+IN )−1(D>(D−Es)+K+D>L3−L6
α

)

8 X = min γ
α
‖X‖∗+ 1

2
‖X−

(
(Et− L1

α
)(IF−T)>+

q−1(D− L4
α

)
)
((IF −T)(IF −T)> + IF )−1‖2F

9 C = G>(P+L2
α

)+(Es−L3
α

)(IN−S>)+ L4
α

+q(X)

10 vec(D) =
(
IN⊗(G>G+IB)+B>⊗IB

)−1vec(C)
11 D = mat(vec(D))

12 Et = min λt
α
‖Et‖1 + 1

2
‖Et− (X−XT+ L1

α
)‖2F

13 Es = min λs
α
‖Es‖1 + 1

2
‖Es− (D−DS+ L3

α
)‖2F

/* Update Lagrange Multipliers */
14 L1 = L1 + α(X−XT−Et)
15 L2 = L2 + α(P−GD)
16 L3 = L3 + α(D−DS−Es)
17 L4 = L4 + α(q(X)−D)
18 L5 = L5 + α(T− J)
19 L6 = L6 + α(S−K)

/* Update penalty weights */
20 α = min(ρα, 1012)

/* Check Convergence */
21 ‖X−XT−Et‖∞ < ε
22 ‖P−GD‖∞ < ε
23 ‖D−DS−Es‖∞ < ε
24 ‖q(X)−D‖∞ < ε
25 ‖T− J‖∞ < ε
26 ‖S−K‖∞ < ε

27 end

28 Notation: vec(·) and mat(·) are vectorization and
matrization operators. B = (IN − S)(IN − S>),
B = 3T

Algorithm 1: Algorithm for optimizing Eq. (3).

6. Experimental Evaluation

We evaluate the proposed approach on the CMU MoCap
Dataset. We consider several scenarios with two or more
subjects interacting and performing complex motions (see
videos in the supplemental material). Since 2D projections
are not directly available on this dataset, we generate them



XXXXXXXXXXData
Method

CSF [21] KSTA [22] BMM [16] EM-PND [24] TUS [40] GBNR [18] CNR [25] Ours (DUST)

0% missing data sparse/structured
Metric: eX eX eX eX eX eX eX eX eS [%] eT [%] eX eX

Jump 0.053 0.071 0.078 0.065 0.054 0.070 0.074 0.045 0.0(2) 5.8(3) 0.047 0.062
Pull 0.123 0.128 0.146 0.113 0.116 0.138 0.183 0.118 0.0(2) 8.3(4) 0.120 0.121
Soldiers 0.104 0.106 0.080 0.342 0.073 0.076 0.091 0.049 1.2(2) 5.0(2) 0.050 0.067
Stares Down 0.036 0.022 0.050 0.013 0.032 0.048 0.038 0.016 0.0(2) 0.0(2) 0.018 0.024
Stumbles 0.094 0.102 0.124 0.099 0.112 0.119 0.119 0.096 0.0(2) 1.3(2) 0.098 0.111
Squats 0.047 0.041 0.040 0.055 0.016 0.036 0.023 0.015 4.8(2) 0.8(2) 0.018 0.021
Synchronized 0.141 0.145 0.152 0.145 0.091 0.147 0.112 0.083 0.0(2) 1.2(2) 0.085 0.086
Violence 0.072 0.073 0.090 0.150 0.081 0.085 0.135 0.060 0.0(2) 1.1(3) 0.062 0.076
Zombie 0.070 0.067 0.062 0.076 0.056 0.061 0.087 0.043 0.0(2) 9.3(3) 0.044 0.066
Average error: 0.082 0.084 0.091 0.117 0.070 0.087 0.096 0.058 0.6 3.6 0.060 0.070
Relative error: 1.41 1.44 1.56 2.01 1.21 1.50 1.65 1.00 - - 1.04 1.21

Table 2. Evaluation on CMU sequences with two subjects. The table reports the 3D reconstruction error eX for the following NRSfM
baselines considering 2D tracks without missing data: CSF [21], KSTA [22], SPM [16], EM-PND [24], TUS [40], GBNR [18] and
CNR [25]; and ours. For our approach, we also show the clustering errors eS and eT , where we include the number of spatial and temporal
clusters in brackets. The two right-most columns show the reconstruction accuracy under random and structured patterns of missing data.

by synthesizing point tracks acquired by an orthographic
camera that follows a circular trajectory around the scene,
at an angular speed of 0.66π/sec. In average, the sequences
we consider below are 1,000 frames long, and the number
of points per frame is either 82 (when considering two sub-
jects) or 164 (four subjects).

For all experiments, we provide two types of validations:
the 3D reconstruction accuracy that we compare to other
NRSfM methods, and the results of the spatial and temporal
subspace clustering, which is compared to a ground truth.

Regarding the reconstruction error, we report the nor-
malized mean 3D error eX , used before in [6, 16, 21]:

eX =
1

σFN

F∑
f=1

N∑
n=1

efn, σ =
1

3F

F∑
f=1

(σfx + σfy + σfz ),

where efn is the 3D error for the n-th point at frame f . σfx ,
σfy and σfz are the error standard deviations at frame f .

We compare the reconstruction accuracy of our ap-
proach, denoted DUST, against seven NRSfM baselines:
the trajectory-space methods CSF [21] and KSTA [22];
the block matrix approach BMM [16], the probabilistic-
normal-distribution method EM-PND [24], the temporal
union of subspaces TUS [40], the grouping-based NRSfM
of GBNR [18] and the consensus NRSfM of CNR [25].
For CSF [21] and KSTA [22], we manually set the rank
of the subspace to the value yielding the best results. For
TUS [40], we use our own implementation as its source
code is not publicly available. Our method does not require
tuning the subspace rank parameter. Note that all methods
decouple the problems of camera rotation estimation and
shape reconstruction. In order to focus our analysis on the
3D shape reconstruction capacity, we will provide the same
ground truth matrix G of camera rotations to all methods.
The results when the camera motion is estimated are re-
ported in the supplementary material.

For the assessment of the subspace clustering accuracy,

we compare our results with a ground truth clustering ob-
tained as follows: First, the ‘ground truth’ similarity ma-
trices SGT and TGT are computed by applying the low-
rank representation proposed in [29] over the matrices X̂
and X with the true 3D point positions. We then perform
spectral clustering [14] over SGT and TGT to retrieve SGT
and T GT , which areN - and F− dimensional vectors where
each entry is an integer representing the ground truth cluster
index. If we denote by S and T the corresponding cluster
indexes obtained from the similarity matrices estimated by
our approach, we define the following clustering errors:

eS =
100

N

N∑
i=1

I(Si 6= SGTi ), eT =
100

F

F∑
f=1

I(Tf 6= T GTf ),

where I(a) is the indicator function, i.e., I(a) = 1 if a is
true, and 0 otherwise. In practice, for the results we report
below, we run [14] for different levels of granularity and
keep the result that minimizes eS and eT .

6.1. Sequences with Two Subjects

We select nine sequences of the CMU dataset with two
subjects performing different activities and motion patterns.
Namely, we consider 23 16 (Synchronized): subjects alter-
nating synchronized jumping jacks; 19 05 (Pull): a sub-
ject pulls the other by the elbow; 22 20 (Violence): a sub-
ject picks up high stool and threatens to strike the other;
20 08 (Zombie): subjects follow a zombie march; 20 06
(Soldiers): subjects follow a soldiers march; 23 19 (Stares
Down): a subject stares down the other and leans with hands
on high stool; 22 12 (Stumbles): a subject stumbles into
the other; 23 15 (Jump): subjects alternating jumping jacks;
and 23 14 (Squats): subjects alternating squats.

Table 2 summarizes the reconstruction errors for all
methods and the subspace clustering accuracy of ours.
Note that DUST consistently outperforms state-of-the-art in
terms of 3D reconstruction, reducing the 3D error of other



XXXXXXXXXXData
Method

CSF [21] KSTA [22] BMM [16] EM-PND [24] TUS [40] GBNR [18] CNR [25] Ours (DUST)

0% missing data sparse/structured
Metric: eX eX eX eX eX eX eX eX eS [%] eT [%] eX eX

Blind4 0.047 0.040 0.079 0.079 0.059 0.074 0.137 0.045 0.0(4) 0.3(2) 0.045 0.052
Chicken4 0.030 0.034 0.027 0.022 0.017 0.021 0.022 0.015 0.0(4) 0.2(3) 0.018 0.022
Greet4 0.048 0.041 0.078 0.069 0.072 0.077 0.085 0.051 0.0(4) 2.0(3) 0.052 0.053
Shelters4 0.055 0.053 0.087 0.053 0.037 0.085 0.069 0.034 0.0(3) 3.2(2) 0.034 0.045
Soda4 0.011 0.011 0.009 0.010 0.009 0.011 0.016 0.007 0.0(4) 1.0(2) 0.008 0.011
Synchronized4 0.093 0.077 0.056 0.042 0.046 0.049 0.078 0.041 0.0(4) 1.2(2) 0.043 0.045
Zombie4 0.055 0.067 0.047 0.051 0.043 0.046 0.061 0.033 0.0(4) 8.9(3) 0.034 0.034
Average error: 0.048 0.046 0.055 0.046 0.040 0.052 0.067 0.032 0.0 2.4 0.033 0.037
Relative error: 1.50 1.43 1.69 1.44 1.26 1.62 2.09 1.00 - - 1.03 1.17

Table 3. Quantitative comparison on human interaction with multiple subjects. See caption of Table 2.

methods by large margins between the 21% and 101%. Ad-
ditionally, DUST also performs shape and temporal cluster-
ing. The quality of these segmentations is also very good.
In particular, the number of spatial clusters we retrieve in all
experiments is two, and all points are correctly assigned to
the specific subject. The number of temporal clusters we es-
timate is between 2 and 4, and the exact temporal split (i.e.,
the moment when one sub-action switches to another one)
is very close (if not equal) to that of the ground truth. In-
deed, most temporal clusters match real motion primitives
(e.g., ‘jump in’ and ‘jump out’ in Fig. 1).

Figure 3 shows a qualitative comparison of the similarity
matrices we estimate and those of the ground truth, which
are directly computed from clean 3D data. Despite the ma-
trices provided by our approach are noisier, we can clearly
identify the same patterns as in the ground truth. The spec-
tral algorithm we use [14] can easily handle this and yields
the correct number of clusters in almost all experiments. In
Fig. 4, we show several frames of the 3D reconstruction re-
sults for the ‘Violence’ sequence.
Robustness to Occlusions. We explicitly test the robust-
ness to occlusions of our approach by artificially removing
entries of the observation matrix P̄. We consider two cases:
1) sparse occlusion patterns generated by randomly remov-
ing 40% of the input data, and 2) structured noise, by re-
moving rectangular regions (one per object) from the data
matrix. For this case, the amount of non-observed data is
approximately 15%. The results of these experiments are
shown in the right-most columns of Table 2. The comple-
tion algorithm described in Sect. 5.2 does a pretty good job
hypothesizing the missing observations, especially for the
random scattered occlusions, and the final reconstruction is
nearly unaffected by these artifacts. The accuracy of the
clustering is almost identical to that for the artifacts-free
case.

6.2. Sequences with Four Subjects

We also considered a more complex case with four sub-
jects. Since the CMU dataset only includes sequences
with one or two subjects, we combined several of them
to generate seven new sequences including four subjects,

namely: Synchronized4: subjects alternating synchronized
jumping jacks; Zombie4: subjects follow a zombie march;
Chicken4: subjects perform a non-synchronized chicken
dance; Greet4: subjects walk and shake hands; Blind4: four
subjects blind man’s bluff; Soda4: two subjects pass soda
to the other two and all of them drink; and Shelters4: two
subjects individually shelter the other two. Again an or-
thographic camera moving slowly around the scene is con-
sidered. In these examples, the degree of superposition in
the image plane is so extreme, that the task of performing
the spatial segmentation becomes very difficult. Indeed, in
some of the sequences two of the subjects are so intimately
connected, that they can be interpreted as one single object.

The results are summarized in Table 3. Again, our ap-
proach improves other NRSfM approaches in reconstruc-
tion accuracy by a large margin. It is worth pointing out
the good performance of KSTA [22] for the sequences in
which the subjects perform larger trajectories (‘Blind4’ and
‘Greet4’). Regarding the segmentation accuracy, note that
for the ’Shelters4’ we obtain a better segmentation accuracy
by choosing a spatial granularity of 3 instead of 4. This is
because for this specific sequence two of the objects are al-
ways together. We show some similarity matrices and re-
construction examples in Figs. 3 and 4.

Finally, we tested the robustness of the method to scat-
tered and structured occlusions, and as shown in the right-
most columns of Table 3, our approach again demonstrates
great resilience.

7. Conclusion
In this paper we have proposed a novel solution to the

NRSfM paradigm that allows exploring a problem which
had not been tackled before: given a possibly incomplete
monocular sequence of 2D tracks, estimating 3D non-rigid
shape while also providing temporal clustering of the data
into deformation-primitives, and spatial segmentation into
multiple objects. For this purpose, we have presented a
new low-rank model to represent the shape as a dual com-
bination of spatial and temporal subspaces. We formulate
an optimization problem based on this representation which
we solve by means of augmented Lagrange machinery. We
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Figure 3. Spatial and temporal clustering on CMU sequences. We compare the spatial S and temporal T clustering matrices obtained
with our approach with the ground truth ones. Below each matrix we plot a bar with the results of the spectral clustering. Top: Jump and
Zombie sequences with two subjects and three primitives. Bottom: Blind4 and Chicken4 sequences with four subjects and three primitives.
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Figure 4. 3D reconstruction and spatio-temporal segmentation on multi-subject sequences. Results for the ‘Violence’ (top) and
‘Blind4’ (bottom) sequences. For each scene we plot several frames, seen from two viewpoints (x-y and x-z). Colored dots represent the
3D position and spatial cluster index estimated by our approach. Note that the two subjects (top) and the four subjects (bottom) are clearly
identified. No single point is assigned to a wrong subject. Empty circles indicate the ground truth 3D position. The color of these circles
encodes to which temporal prior does the frame belong. Observe that in both sequences we identify three temporal priors. For the sequence
on the top (‘Violence’), the priors have a clear physical meaning: ‘two subjects sitting down’, ‘one subject standing up an threatening the
second one’, ‘one subject attacks the other that falls down’. The physical interpretation of the temporal priors for the four-subject sequence
on the bottom is not that clear, but they seems to encode the type of subject interactions.

have thoroughly evaluated the approach on challenging se-
quences involving up to four interacting persons perform-
ing complex motion patterns. We show that besides pro-
viding correct spatio-temporal segmentation, our approach
does also reconstruct the 3D human poses more accurately
than current state-of-the-art NRSfM methods. In the future,
we aim at using this research as a first step to perform com-
plete reconstruction and recognition of human activities.
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