
May, 2017

IRI-TR-17-01

Kinodynamic Planning
on Constraint Manifolds

IRI Technical Report

Ricard Bordalba
Josep M. Porta
Lluı́s Ros

Abstract
This report presents a motion planner for systems subject to kinematic and dynamic constraints. The
former appear when kinematic loops are present in the system, such as in parallel manipulators, in robots
that cooperate to achieve a given task, or in situations involving contacts with the environment. The latter
are necessary to obtain realistic trajectories, taking into account the forces acting on the system. The
kinematic constraints make the state space become an implicitly-defined manifold, which complicates
the application of common motion planning techniques. To address this issue, the planner constructs
an atlas of the state space manifold incrementally, and uses this atlas both to generate random states
and to dynamically simulate the steering of the system towards such states. The resulting tools are then
exploited to construct a rapidly-exploring random tree (RRT) over the state space. To the best of our
knowledge, this is the first randomized kinodynamic planner for implicitly-defined state spaces. The test
cases presented validate the approach in significantly-complex systems.

Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Cientı́ficas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)
http://www.iri.upc.edu

Corresponding author:

Ricard Bordalba
tel: +34 93 401 0775

rbordalba@iri.upc.edu
http:

//www.iri.upc.edu/staff/rbordalba

Copyright IRI, 2017

http://www.iri.upc.edu
rbordalba@iri.upc.edu
http://www.iri.upc.edu/staff/rbordalba
http://www.iri.upc.edu/staff/rbordalba

Section 1 Introduction 1

1 Introduction

The motion planning problem has been a subject of active research since the early days of Robotics [33].
Although it can be formalized in simple terms—find a feasible trajectory to move a robot between two
states—and despite the significant advances in the field, it is still an open problem in many respects. The
complexity of the problem arises from the multiple constraints that have to be taken into account, such as
potential collisions with static or moving objects in the environment, kinematic loop-closure constraints,
torque and velocity limits, or energy and time execution bounds, to name a few. All these constraints are
relevant in the factory and home environments in which Robotics is called to play a fundamental role in
the near future.

The complexity of the problem is typically tackled by first relaxing some of the constraints. For
example, while obstacle avoidance is a fundamental issue, the lazy approaches initially disregard it [9].
Other approaches concentrate on geometric [31] and kinematic feasibility [27] from the outset, which
constitute already challenging issues by themselves. In these and other approaches [20], dynamic con-
straints such as speed, acceleration, or torque limits are neglected, with the hope that they will be enforced
in a postprocessing stage. Decoupled approaches, however, may not lead to solutions satisfying all the
constraints. It is not difficult to find situations in which a kinematically-feasible, collision-free trajectory
becomes unusable because it does not account for the system dynamics (Fig. 1).

This report presents a sampling-based planner that simultaneously considers collision avoidance,
kinematic, and dynamic constraints. The planner constructs a bidirectional rapidly-exploring random
tree (RRT) on the state space manifold implicitly defined by the kinematic constraints. In the literature,
the suggested way to define an RRT including such constraints is to differentiate them and add them to
the ordinary differential equations (ODE) defined by the dynamic constraints [35]. In such an approach,
however, the underlying geometry of the problem would be lost. The random samples used to guide the
RRT extension would not be generated on the state space manifold, but in the larger ambient space, which
results in inefficiencies [27]. The numerical integration of the resulting ODE system, moreover, would
be affected by drift (Fig. 2). In some applications, such a drift might be tolerated, but in others, such as
in robots with closed kinematic loops, it would render the simulation unprofitable due to unwanted link
penetrations, disassemblies, or contact losses. In this report, the sampling and drift issues are addressed
by preserving the underlying geometry of the problem. To this end, we propose to combine the extension
of the RRT with the incremental construction of an atlas of the state space manifold [37]. The atlas
is enlarged as the RRT branches reach yet unexplored areas of the manifold. Moreover, it is used to
effectively generate random states and to dynamically simulate the steering of the system towards such
states.

This report is organized as follows. Section 2 puts the proposed planner in the context of existing
approaches. Section 3 formalizes the problem and paves the way to Section 4, which describes the fun-
damental tools to map and explore an implicitly-defined state space. The resulting planner is described in
Section 5 and experimentally validated in Section 6. Finally, Section 7 concludes the report and discusses
points deserving further attention.

2 Related Work

The problem of planning under dynamic constraints, also known as kinodynamic planning [35], is harder
than planning with geometric constraints, which is already known to be PSPACE-hard [13, 47]. Al-
though particular, exact solutions for some systems have been given [19], general solutions do also
exist. Dynamic programming approaches, for example, define a grid of cost-to-go values to search for
a solution [1, 17, 39], and can compute accurate solutions in lower-dimensional problems. Such an ap-
proach, however, does not scale well to problems with many degrees of freedom. In contrast, numerical
optimization techniques [5, 29, 45, 48, 53] can be applied to remarkably-complex problems, although
they may not converge to feasible solutions. A widely used alternative is to rely on sampling-based

2 IRI Technical Report

approaches [18, 35]. These methods can cope with high-dimensional problems, and guarantee to find
a feasible solution, if it exists and enough computing time is available. The RRT method [36] stands
out among them, due to its effectiveness and conceptual simplicity. However, it is well known that RRT
planners can be inefficient in certain scenarios [14]. Part of the complexity arises from planning in the
state space instead of in the lower-dimensional configuration space [42]. Nevertheless, the main issue
of RRT approaches is the disagreement of the metric used to measure the distance between two given
states, and the actual cost of moving between such states, which must comply with the vector fields
defined by the dynamic constraints of the system. Several extensions to the basic RRT planner have
been proposed to alleviate this issue [15, 16, 26, 30, 32, 43, 49, 51]. None of these extensions, however,
can deal with the implicitly-defined configuration spaces that arise when the problem includes kinematic
constraints [4, 27, 44, 50]. When considering both kinematic and dynamic constraints, the planning
problem requires the solution of differential algebraic equations (DAE). The algebraic equations derive
from the kinematic constraints and the differential ones reflect the system dynamics.

From constrained multibody dynamics it is well known that, when simulating a system’s motion,
it is advantageous to directly deal with the DAE of the system, rather than converting it into its ODE
form [41]. Several techniques have been used to this end [2, 34]. In the popular Baumgarte method
the drift is alleviated with control techniques [3], but the control parameters are problem dependent and

Figure 1: A kindoynamic planning problem on a four-bar pendulum modeling a
swing boat ride. Left: The start and goal states, both with null velocity. Right: The
kinematic constraints define an helicoidal manifold. A kinematically-feasible tra-
jectory (red) and a trajectory also fulfilling dynamic constraints (green) may be quite
different.

Section 3 Problem formalization 3

there is no general method to tune them. Another way to reduce the drift is to use violation suppression
techniques [6, 11], but they do not guarantee a drift-free integration. A better alternative are the methods
relying on local parameterizations [46], since they cancel the drift to machine accuracy. To the best of
our knowledge, this approach has never been applied in the context of kinodynamic planning. However,
it nicely complements an existing planning method for implicitly-defined configuration spaces [27, 44],
which also relies on local parameterizations. The planner introduced in this report can be seen as an
extension of the latter method to also deal with dynamics, or an extension of [36] to include kinematic
constraints.

3 Problem formalization

A robot configuration is described by means of a tuple q of nq generalized coordinates q1, . . . , qnq , which
determine the positions and orientations of all links at a given instant of time. There is total freedom in
choosing the form and dimension of q, but it must describe one, and only one, configuration. In this
report we restrict our attention to constrained robots, i.e., those in which q must satisfy a system of ne
nonlinear equations

Φ(q) = 0, (1)

which express all joint assembly, geometric, or contact constraints to be taken into account, either in-
herent to the robot design or necessary for task execution. The configuration space C of the robot, or
C-space for short, is the nonlinear variety

C = {q : Φ(q) = 0},

which may be quite complex in general. Under mild conditions, however, we can assume that the Jaco-
bian Φq(q) is full rank for all q ∈ C, so that C is a smooth manifold of dimension dC = nq − ne. This
assumption is common because C-space singularities can be avoided by judicious mechanical design [8],
or through the addition of singularity-avoidance constraints into Eq. (1) [7].

By differentiating Eq. (1) with respect to time we obtain

Φq(q) q̇ = 0, (2)

0 0.05 0.1 0.15 0.2 0.25

-2

0

2

4
10

-3

t [s]

D
ri

ft

Forward Euler (drift×10−4)
Runge-Kutta IV

Figure 2: Drift caused by numerical integration of an ODE system. Left: A particle
moving on a torus under the shown vector field. The trajectory obtained by the
forward Euler method (red) increasingly diverges from the exact trajectory (yellow).
Right: With more accurate procedures, such as the 4th order Runge-Kutta method
(blue), the drift may be reduced, but not canceled.

4 IRI Technical Report

which provides, for a given q ∈ C, the feasible velocity vectors of the robot.
Let F (x) = 0 denote the system formed by Eqs. (1) and (2), where x = (q, q̇) ∈ R2nq . Our

planning problem will take place in the state space

X = {x : F (x) = 0}, (3)

which encompasses all possible mechanical states of the robot [35]. The fact that Φq(q) is full rank
guarantees that X is also a smooth manifold, but now of dimension dX = 2 dC . This implies that the
tangent space of X at x,

TxX = {ẋ ∈ R2nq : Fx ẋ = 0} (4)

is well-defined and dX -dimensional for any x ∈ X .
We shall encode the forces and torques of the actuators into an action vector u of dimension nu. Our

main interest will be on fully-actuated robots, i.e., those for which nu = dC , but the developments that
follow are also applicable to over- or under-actuated robots.

Given a starting state xs ∈ X , and the action vector as a function of time, u = u(t), it is well-known
that the time evolution of the robot is determined by a DAE of the form

F (x) = 0 (5)

ẋ = g(x,u) (6)

The first equation forces the states x to lie in X . The second equation models the dynamics of the sys-
tem [35], which can be formulated, e.g., using the multiplier form of the Euler-Lagrange equations [46].
For each value of u, it defines a vector field over X , which can be used to integrate the robot motion
forward in time, using proper numerical methods.

Since in practice the actuator forces are limited, u is always constrained to take values in some
bounded subset U of Rnu , which limits the range of possible state velocities ẋ = g(x,u) at each x ∈ X .
During its motion, moreover, the robot cannot incur in collisions with itself or with the environment,
constraining the feasible states x to those lying in a subset Xfree ⊆ X of non-collision states.

With the previous definitions, the planning problem we confront can be phrased as follows. Given
two states of Xfree, xs and xg, find an action trajectory u = u(t) ∈ U such that the trajectory x = x(t)
with x(0) = xs of the system determined by Eqs. (5) and (6), fulfills x(tf) = xg for some time tf > 0,
and x(t) ∈ Xfree for all t ∈ [0, tf].

4 Mapping and Exploring the State Space

The fact that X is an implicitly defined manifold complicates the design of an RRT planner able to
solve the previous problem. In general, X does not admit a global parameterization and there is no
straightforward way to sample X uniformly. The integration of Eq. (6), moreover, will yield robot
trajectories drifting away from X if numerical methods for plain ODE systems are used. Even so, we
next see that both issues can be circumvented by using an atlas of X . If built up incrementally, such an
atlas will lead to an efficient means of extending an RRT over the state space.

4.1 Atlas construction

Formally, an atlas of X is a collection of charts mapping X entirely, where each chart c is a local
diffeomorphism ϕc from an open set Vc ⊂ X to an open set Pc ⊆ RdX [Fig. 3(a)]. The Vc sets can
be thought of as partially-overlapping tiles covering X , in such a way that every x ∈ X lies in at least
one Vc. The point y = ϕc(x) provides the local coordinates, or parameters, of x in chart c. Since each
ϕc is a diffeomorphism, its inverse map ψc = ϕ

−1
c exists and gives a local parameterization of Vc.

Section 4 Mapping and Exploring the State Space 5

X

X

(a)

(b)
x

y

ẋ

ẏ

R
dXR

dX

Pc

Vc

Pk

Vk

ψc ψk
ϕc ϕk

x

Txc
X

xc +U cy
xc

Figure 3: (a) An atlas is a collection of maps ϕ providing local coordinates to all
points of X . The inverse maps ψ convert the vector fields on X to vector fields on
RdX . (b) The projection of the points x ∈ X to TxcX leads to specific instances of
ϕc and ψc.

To construct ϕc and ψc we shall use the so-called tangent space parameterization [46]. In this
approach, the map y = ϕc(x) around a given xc ∈ X is obtained by projecting x orthogonally to TxcX
[Fig. 3(b)]. Thus ϕc becomes

y = U>c (x− xc), (7)

where U c is a 2nq × dX matrix whose columns provide an orthonormal basis of TxcX . U c can be
computed efficiently using the QR decomposition of Fxc . The inverse map x = ψc(y) is implicitly
determined by the system of nonlinear equations

F (x) = 0,

U>c (x− xc)− y = 0.
(8)

For a given y, these equations can be solved for x by means of the Newton-Raphson method.
Assuming that an atlas has been created, the problem of sampling X boils down to sampling the Pc

sets, since the y values can always be projected to X using the corresponding map x = ψc(y). Also,
the atlas allows the conversion of the vector field defined by Eq. (6) into one in the coordinate spaces Pc.
The time derivative of Eq. (7), ẏ = U>c ẋ, gives the relationship between the two vector fields, and allows
writing

ẏ = U>c g(ψc(y),u), (9)

which is Eq. (6) but expressed in local coordinates. This equation forms the basis of the so-called tangent-
space parameterization methods for the integration of DAE systems [22, 23]. Given a state xk and an
action u, xk+1 is estimated by obtaining yk = ϕc(xk), then computing yk+1 using a discrete form of
Eq. (9), and finally getting xk+1 = ψc(yk+1). The procedure guarantees that xk+1 will lie on X , which
makes the integration compliant with all kinematic constraints in Eq. (5).

4.2 Incremental atlas and RRT expansion

One could build a full atlas of the implicitly-defined state space [25] and then use its local parameter-
izations to define a kinodynamic RRT. However, the construction of a complete atlas is only feasible
for low-dimensional state spaces. Moreover, only part of the atlas is necessary to solve a given motion

6 IRI Technical Report

‖yk‖

2

ρsρs yk
yc

R
dXR

dX

Pc Pk

Figure 4: Bounding of the parameter sets Pc and Pk of the two neighboring charts
in Fig. 3. Note that yc = ϕk(xc) and yk = ϕc(xk).

planning problem. Thus, a better alternative is to combine the construction of the atlas and the expansion
of the RRT [27]. In this approach, a partial atlas is used to generate random states and to add branches
to the RRT. Also, as described next, new charts are created as the RRT branches reach unexplored areas
of the state space.

Suppose that xk and xk+1 are two consecutive steps along an RRT branch whose parameters in the
chart defined at xc are yk and yk+1, respectively. Then, a new chart at xk is generated if any of the
following conditions holds

‖xk+1 − (xc +U c yk+1)‖ > ε, (10)
‖yk+1 − yk‖
‖xk+1 − xk‖

< cos(α), (11)

‖yk+1‖ > ρ, (12)

where ε, α, and ρ are user-defined parameters. The three conditions are introduced to ensure that the
chart domains Pc capture the overall shape of X with sufficient detail. The first condition limits the
maximal distance between the tangent space and the manifold. The second condition ensures a bounded
curvature in the part of the manifold covered by a local parameterization, as well as a smooth transition
between charts. Finally, the third condition is introduced to ensure the generation of new charts as the
RRT grows, even for (almost) flat manifolds.

4.3 Chart coordination

Since the charts will be used to sample the state space uniformly, it is important to reduce the overlap
between new charts and those already in the atlas. Otherwise, the areas of X covered by several charts
would be oversampled. To this end, the set of valid parameters for each chart c, Pc, is represented as
the intersection of a ball of radius ρs and a number of half-planes, all defined in TxcX . The set Pc

is progressively bounded as new neighboring charts are created around chart c. If, while growing an
RRT branch using the local parameterization provided by TxcX , a chart is created on a point xk with
parameter vector yk in Pc, then the following inequality

y>yk −
‖yk‖2

2
≤ 0 (13)

Section 5 The Planner 7

Algorithm 1: The main procedure of the planner

1 Planner(xs,xg)
input : The query states, xs and xg .
output: A trajectory connecting xs and xg .

2 Ts ← INITRRT(xs)
3 Tg ← INITRRT(xg)
4 A← INITATLAS(xs,xg)
5 repeat
6 xr ← SAMPLE(A, Ts)
7 xn ← NEARESTSTATE(Ts,xr)
8 xl ← EXTENDRRT(A, Ts,xn,xr)
9 x′

n ← NEARESTSTATE(Tg,xl)
10 x′

l ← EXTENDRRT(A, Tg,x′
n,xl)

11 SWAP(Ts, Tg)

12 until ‖xl − x′
l‖ < β

13 RETURN(TRAJECTORY(Ts,xl, Tg,x
′
l))

Algorithm 2: Extend an RRT.

1 ExtendRRT(A, T,xn,xr)
input : An atlas, A, a tree, T , the state from where to extend the tree, xn, and the random sample to be

reached, xr.
output: The updated tree.

2 db ←∞
3 foreach u ∈ U do
4 x← SIMULATEACTION(A, T,xn,xr,u)
5 d← ‖x− xr‖
6 if d < db then
7 xb ← x
8 ub ← u
9 db ← d

10 if xb /∈ T then
11 T ← ADDACTIONSTATE(T,xn,ub,xb)

with y ∈ RdX , is added to the definition of Pc (Fig. 4). A similar inequality is added to Pk, the chart
at xk, by projecting xc to Txk

X . The parameter ρs must be larger than ρ to guarantee that the RRT
branches in chart c will eventually trigger the generation of new charts, i.e., to guarantee that Eq. (12)
eventually holds.

5 The Planner

5.1 Higher-level structure

Algorithm 1 gives the high level pseudocode of the planner. It implements a bidirectional RRT where
one tree is extended (line 8) towards a random sample (generated in line 6) and then the other tree is
extended (line 10) towards the state just added to the first tree. The process is repeated until the trees
become connected with a given user-specified accuracy (parameter β in line 12). Otherwise, the trees
are swapped (line 11) and the process is repeated. Tree extensions are always initiated at the state in the
tree closer to the target state (lines 7 and 9). Different metrics can be used without affecting the overall
structure of the planner. For simplicity, the Euclidean distance in state space is used in the approach

8 IRI Technical Report

Algorithm 3: Sample a state.

1 Sample(A, T)
input : The atlas, A, the tree currently extended, T .
output: A sample on the atlas.

2 repeat
3 r ← RANDOMCHARTINDEX(A, T)
4 yr ← RANDOMONBALL(ρs)

5 until yr ∈ Pr

6 RETURN(xr +U r yr)

presented here. The main difference of this algorithm with respect to the standard bidirectional RRT is
that here we use an atlas (initialized in line 4) to parameterize the state space manifold.

Algorithm 2 provides the pseudocode of the procedure to extend an RRT from a given state xn

towards a goal state xr. The procedure simulates the motion of the system (line 4) for a set of actions,
which can be selected at random or taken from a predefined set (line 3). The action that yields a new
state closer to xr is added to the RRT with an edge connecting it to xn (line 11). The action generating
the transition from xn to the new state is also stored in the tree so that action trajectory can be returned
after planning.

5.2 Sampling

Algorithm 3 describes the procedure to generate random states. First, one of the charts covering the tree
to be expanded is selected at random (line 3) and then a vector of parameters is generated randomly in a
ball of radius ρs (line 4). The sampling process is repeated until the parameters are inside the set Pc for
the selected chart. Finally, the sampling procedure returns the ambient space coordinates corresponding
to the randomly generated parameters (line 6).

5.3 Dynamic simulation

In order to simulate the system evolution from a given state xk, the DAE system is treated as an ODE on
the manifold X , as described in Section 4. Any numerical integration method, either explicit or implicit,
could be used to obtain a solution to Eq. (9) in the parameter space, and then solve Eq. (8) to transform
back to the manifold. However, in this planner an implicit integrator, the trapezoidal rule, is used, as its
computational cost (integration and projection to the manifold) is similar to the cost of using an explicit
method of the same order [46]. Moreover, it gives more stable and accurate solutions over long time
intervals. Using this rule, Eq. (9) is discretized as

yk+1 = yk +
h

2
U>c (g(xk,u) + g(xk+1,u)), (14)

where h is the integration time step. Notice that this rule is symmetric and, thus, it can be used to obtain
time reversible solutions [22, 23]. This property is specially useful in our planner, since the tree with
root at xg is built backwards in time. The value xk+1 in Eq. (14) is still unknown, but it can be obtained
by using Eq. (8) as

F (xk+1) = 0,

U>c (xk+1 − xc)− yk+1 = 0.
(15)

Now, both Eq. (14) and Eq. (15) are combined to form the following system of equations

F (xk+1) = 0,

U>
c (xk+1 − h

2 (g(xk,u) + g(xk+1,u))− xc)− yk = 0,
(16)

Section 6 Test Cases 9

Algorithm 4: Simulate an action.

1 SimulateAction(A, T,xk,xg,u)
input : An atlas, A, a tree, T , the state from where to start the simulation, xk, the state to approach xg ,

and the action to simulate, u.
output: The last state in the simulation.

2 c← CHARTINDEX(xk)
3 FEASIBLE ← TRUE
4 t← 0
5 while FEASIBLE and ‖xk − xg‖ > δ and |t| ≤ tm do
6 yk ← ϕc(xk)
7 (xk+1,yk+1, h)← NEXTSTATE(xk,yk,u,F ,U c, δ)
8 if COLLISION(xk+1) or OUTOFWORKSPACE(xk+1) then
9 FEASIBLE ← FALSE

10 else
11 if ‖xk+1 − (xc +U c yk+1)‖ > ε or ‖yk+1 − yk‖/‖xk+1 − xk‖ < cos(α) or ‖yk+1‖ > ρ then
12 c← ADDCHARTTOATLAS(A,xk)

13 else
14 if yk+1 /∈ Pc then
15 c← NEIGHBORCHART(A, c,yk+1)

16 t← t+ h
17 xk ← xk+1

18 RETURN(xk)

where xk, yk, and xc are known and xk+1 is the unknown to determine. Any Newton method can be
used to solve this system, but the Broyden method is particularly adequate since it avoids the computation
of the Jacobian of the system at each step. Potra and Yen [46] gave an approximation of this Jacobian,
that allowed xk+1 to be found in few iterations.

Algorithm 4 summarizes the procedure to simulate a given action, u from a particular state, xk. The
simulation is carried on while the path is not blocked by an obstacle or by a workspace limit (line 8),
while the goal state is not reached (with accuracy δ), or for a maximum time span, tm (line 5). At each
simulation step, the key procedure is the solution of Eq. (16) (line 7), which provides the next state,
xk+1, given the current one, xk, the corresponding vector of parameters yk, the action to simulate, u,
the orthonormal basis of TxcX for the chart including xk,U c, and the desired step size in tangent space,
δ. For backward integration, i.e., when extending the RRT with root at xg, the time step h in Eq. (16) is
negative. In any case, h is adjusted so that the change in parameter space, ‖yk+1 − yk‖, is bounded by
δ, with δ � ρ. This is necessary to detect the transitions between charts which can occur either because
the next state triggers the creation of a new chart (line 12) or because it is not in the part of the manifold
covered by the current chart (line 14) and, thus, it is in the part covered by a neighboring chart (line 15).

6 Test Cases

The planner has been implemented in C. We next illustrate its performance in three test cases of increas-
ing complexity (Fig. 5). The first case was already mentioned in the introduction. It consists of a planar
four-bar pendulum with limited motor torque that has to move a load. The robot may need to oscillate
several times to move between the two states shown in Fig. 1. The second test case involves a planar five-
bar robot equivalent to the Dextar prototype [10], but with an added spring to enhance its compliance.
The goal here is to move the load from one side to the other of a wall, with null initial and final velocities.
Unlike in the first case, collisions may occur here, and thus they should be avoided. In the third case, a

10 IRI Technical Report

Figure 5: Test cases used to validate the planner: a four-bar pendulum (-left), a
five-bar robot (top-right), and a Delta robot (bottom).

Delta robot moves a heavy load in a pick-and-place scenario. It picks up the load from a conveyor belt
moving at constant velocity, and places it at rest inside a box on a second belt. In contrast to typical
Delta robot applications, here the weight of the load is considerable, which increases dynamics effects
substantially. Table 1 summarizes the problem dimensions, parameters, and performance statistics of all
test cases.

Section 6 Test Cases 11

Table 1: Test case dimensions, parameters, and performance statistics.

Robot nq ne dC dX No. of actions τmax [Nm] β No. of samples No. of charts Exec. Time [s]

Four-Bars

4 3 1 2 3 16 0.1 452 122 2.7
4 3 1 2 3 12 0.1 569 145 3.4
4 3 1 2 3 8 0.1 1063 195 6.3
4 3 1 2 3 4 0.1 2383 248 14.2

Five-Bars 5 3 2 4 5 0.1 0.25 15980 101 124

Delta 15 12 3 6 7 1 0.5 1654 58 183

Figure 6: From left to right, the state manifold (in blue), and the trajectory obtained
(green) for a maximum torque τmax of 16, 12, 8, and 4 [Nm].

In this report, relative joint angles are used to formulate Eq. (1). As the three robots involve nq = 4, 5,
and 15 joints, and each independent kinematic loop introduces 3 or 6 constraints (depending on whether
the robot is planar or spatial), the dimensions of the C-space are dC = 1, 2, and 3, respectively. For the
formulation of the dynamic equations, the Euler-Lagrange equations with multipliers are used. Friction
forces can be easily introduced in this formulation, but we have neglected them.

The robots respectively have nu = 1, 2, and 3 of their base joints actuated, while the remaining joints
are passive. Following Lavalle and Kuffner [36], the set U is discretized in a way reminiscent of bang-
bang control schemes. Specifically, U will contain all possible actions u in which only one actuator is
active at a time, with a torque that can be -τmax or τmax. Additionally, U also includes the action where
no control is applied and the system simply drifts. As shown in Table 1, this results in sets U of 3, 5,
and 7 actions, respectively. The table also gives the τmax values for each case.

In all test cases the parameters are set to tm = 0.1, δ = 0.05, ρs = dC , ρ = ρs/2, cos(α) = 0.1, and
ε = 0.1. The value β is problem-specific and given in Table 1. The table also shows the performance
statistics on an iMac with a Intel i7 processor at 2.93 Ghz with 8 CPU cores, which are exploited to run
lines 4 to 9 of Algorithm 2 in parallel. The statistics include the number of samples and charts, as well as
the execution times in seconds, all averaged over ten runs. The planner successfully connected the start
and goal states in all runs.

In the case of the four-bar mechanism, results are included for decreasing values of τmax. As re-
flected in Table 1, the lower the torque, the harder the planning problem. The solution trajectory on the
state-space manifold (projected in one position and two velocity variables) can be seen in Fig. 6 for the
different values. Clearly, the number of oscillations needed to reach the goal is successively higher. The
trajectory obtained for the most restricted case is shown in Fig. 7, top.

In the five-bars robot, although it only has one more link than the previous robot, the planning

12 IRI Technical Report

Figure 7: Snapshots of the trajectories obtained by the planner for the three test
cases.

problem is significantly more complex. This is due to the narrow corridor created by the obstacle to
overcome. Moreover, the motors have a severely limited torque taking into account the spring constant.
In order to move the weight in such conditions, the planner is forced to increase the momentum of the
payload before overpassing the obstacle, and to decrease it once it is passed so as to reach the goal
configuration with zero velocity (Fig. 7, middle). This increased complexity is reflected in the number
of samples and the execution time needed to solve the problem. However, the number of charts is low,
which shows that the planner is not exploring new regions of the state space, but trying to find a way
through the narrow corridor.

Finally, the table gives the same statistics for the problem on the Delta robot. The execution time
is higher due to the increased complexity of the problem. The robot is spatial, it has a state space
of dimension 6 in an ambient space of dimension 30, and involves more kinematic constraints than in
the previous cases. Moreover, given the velocity of the belt, the planner is forced to reduce the initial
momentum of the load before it can place it inside the box (Fig. 7, bottom).

7 Conclusions

This report has proposed an RRT planner for dynamical systems with implicitly defined state spaces.
Dealing with such spaces presents two major hurdles: the generation of random samples in the state
space and the driftless simulation over such space. We have seen that both issues can be properly ad-
dressed by relying on local parameterizations. The result is a planner that navigates the state space
manifold following the vector fields defined by the dynamic constraints on such manifold. The presented
experiments show that the proposed method can successfully solve significantly complex problems. In
the current implementation, however, most of the time is used in computing dynamics-related quantities.

REFERENCES 13

The use of specialized dynamical simulation libraries may alleviate this issue [21, 52].
To scale to even more complex problems, several aspects of the proposed RRT planner need to be

improved. Probably the main issue is the metric used to measure the distance between states. This is a
general issue of all sampling-based kinodynamic planners, but in our context it is harder since the metric
should not only consider the vector fields defined by the dynamic constraints, but also the curvature of
the state space manifold defined by the kinematic equations. Using a metric derived from geometric
insights provided by the kinodynamic constraints may result in significant performance improvements.
In a broader context, another aspect deserving attention is the analysis of the proposed algorithm, in par-
ticular its completeness and the optimality of the resulting trajectory. The former should derive from the
properties of the underlying planners. With respect to the latter, locally optimal trajectories could be ob-
tained using the output of the planner to feed optimization approaches [12, 45], or globally optimal ones
considering the trajectory cost into the planner [24, 38]. Finally, the relation of the proposed approach
with variational integration methods [28, 40] should also be examined.

References

[1] J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots: controllability and
motion planning in the presence of obstacles. In IEEE International Conference on Robotics and
Automation, volume 3, pages 2328–2335, 1991.

[2] O. A. Bauchau and A. Laulusa. Review of contemporary approaches for constraint enforcement in
multibody systems. Journal of Computational and Nonlinear Dynamics, 3(1):011005, 2008.

[3] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Computer
Methods in Applied Mechanics and Engineering, 1(1):1–16, 1972.

[4] D. Berenson, S. Srinivasa, and J. J. Kuffner. Task space regions: A framework for pose-constrained
manipulation planning. International Journal of Robotics Research, 30(12):1435–1460, 2011.

[5] J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.
SIAM Publications, 2010.

[6] W. Blajer. Elimination of constraint violation and accuracy aspects in numerical simulation of
multibody systems. Multibody System Dynamics, 7(3):265–284, 2002.

[7] O. Bohigas, M. E. Henderson, L. Ros, M. Manubens, and J. M. Porta. Planning singularity-free
paths on closed-chain manipulators. IEEE Transactions on Robotics, 29(4):888–898, 2013.

[8] O. Bohigas, M. Manubens, and L. Ros. Singularities of robot mechanisms: numerical computation
and avoidance path planning, volume 41 of Mechanisms and Machine Science. Springer, 2016.

[9] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In IEEE International Conference on
Robotics and Automation, volume 1, pages 521–528, 2000.

[10] F. Bourbonnais, P. Bigras, and I. A. Bonev. Minimum-time trajectory planning and control of a
pick-and-place five-bar parallel robot. IEEE/ASME Transactions on Mechatronics, 20(2):740–749,
2015.

[11] D. J. Braun and M. Goldfarb. Eliminating constraint drift in the numerical simulation of constrained
dynamical systems. Computer Methods in Applied Mechanics and Engineering, 198(3740):3151–
3160, 2009.

http://doi.org/10.1109/ROBOT.1991.131750
http://doi.org/10.1109/ROBOT.1991.131750
http:/doi.org/10.1115/1.2803258
http:/doi.org/10.1115/1.2803258
http://doi.org/10.1016/0045-7825(72)90018-7
http://doi.org/10.1177/0278364910396389
http://doi.org/10.1177/0278364910396389
http://doi.org/10.1137/1.9780898718577
http://doi.org/10.1023/A:1015285428885
http://doi.org/10.1023/A:1015285428885
http://doi.org/10.1109/tro.2013.2260679
http://doi.org/10.1109/tro.2013.2260679
http://www.springer.com/us/book/9783319329208
http://www.springer.com/us/book/9783319329208
http://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/tmech.2014.2318999
https://doi.org/10.1109/tmech.2014.2318999
http://doi.org/10.1016/j.cma.2009.05.013
http://doi.org/10.1016/j.cma.2009.05.013

14 REFERENCES

[12] S. D. Butler, M. Moll, and L. E. Kavraki. A general algorithm for time-optimal trajectory generation
subject to minimum and maximum constraints. In Workshop on the Algorithmic Foundations of
Robotics, 2016.

[13] J. Canny. Some algebraic and geometric computations in PSPACE. In ACM Symposium on Theory
of Computing, pages 460–467, 1988.

[14] P. Cheng. Sampling-based motion planning with differential constraints. Phd dissertation, Depart-
ment of Computer Science, University of Illinois, 2005.

[15] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory design. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 43–48,
2001.

[16] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random trees. In IEEE Inter-
national Conference on Robotics and Automation, volume 1, pages 267–272, 2002.

[17] M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In IEEE International
Conference on Robotics and Automation, volume 1, pages 317–322, 1999.

[18] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. Intelligent Robotics and
Autonomous Agents. MIT Press, 2005.

[19] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal of the ACM,
40(5):1048–1066, 1993.

[20] S. Dubowsky and Z. Shiller. Optimal dynamic trajectories for robotic manipulators. In IFToMM
Symposium on Robot Design, Dynamics and Control, pages 133–143, 1985.

[21] Georgia Tech and Carnegie Mellon University. DART: Dynamic animation and robotics toolkit.
https://dartsim.github.io, 2017.

[22] E. Hairer. Geometric integration of ordinary differential equations on manifolds. BIT Numerical
Mathematics, 41(5):996–1007, 2001.

[23] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algo-
rithms for ordinary differential equations, 2006.

[24] K. Hauser and Y. Zhou. Asymptotically optimal planning by feasible kinodynamic planning in a
state-cost space. IEEE Transactions on Robotics, 32(6):1431–1443, 2016.

[25] M. E. Henderson. Multiple parameter continuation: computing implicitly defined k-manifolds.
International Journal of Bifurcation and Chaos, 12(3):451–476, 2002.

[26] L. Jaillet, J. Hoffman, J. van den Berg, P. Abbeel, J. M. Porta, and K. Goldberg. EG-RRT:
Environment-guided random trees for kinodynamic motion planning with uncertainty and obsta-
cles. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2646–2652,
2011.

[27] L. Jaillet and J. M. Porta. Path planning under kinematic constraints by rapidly exploring manifolds.
IEEE Transactions on Robotics, 29(1):105–117, 2013.

[28] E. R. Johnson and T. D. Murphey. Scalable variational integrators for constrained mechanical
systems in generalized coordinates. IEEE Transactions on Robotics, 25(6):1249–1261, 2009.

http://www.wafr.org/papers/WAFR_2016_paper_81.pdf
http://www.wafr.org/papers/WAFR_2016_paper_81.pdf
http://doi.acm.org/10.1145/62212.62257
http://hdl.handle.net/2142/11080
http://doi.org/10.1109/IROS.2001.973334
http://doi.org/10.1109/ROBOT.2002.1013372
http://doi.org/10.1109/ROBOT.1999.769998
http://mitpress.mit.edu/books/principles-robot-motion
http://doi.org/10.1145/174147.174150
http://doi.org/10.1007/978-1-4615-9882-4_15
https://dartsim.github.io
http://doi.org/10.1023/A:1021989212020
http://doi.org/10.1007/978-3-662-05018-7
http://doi.org/10.1007/978-3-662-05018-7
http://doi.org/10.1109/TRO.2016.2602363
http://doi.org/10.1109/TRO.2016.2602363
http://doi.org/10.1142/S0218127402004498
http://doi.org/10.1109/IROS.2011.6094802
http://doi.org/10.1109/IROS.2011.6094802
http://doi.org/10.1109/IROS.2011.6094802
http://doi.org/10.1109/TRO.2012.2222272
http://doi.org/10.1109/tro.2009.2032955
http://doi.org/10.1109/tro.2009.2032955

REFERENCES 15

[29] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP: Stochastic trajec-
tory optimization for motion planning. In 2011 IEEE International Conference on Robotics and
Automation, pages 4569–4574, 2011.

[30] M. Kalisiak. Toward more efficient motion planning with differential constraints. PhD thesis,
Computer Science,University of Toronto, 2008.

[31] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 1996.

[32] A. M. Ladd and L. E. Kavraki. Fast tree-based exploration of state space for robots with dynamics.
In Algorithmic Foundations of Robotics VI, pages 297–312, 2005.

[33] J.-C. Latombe. Robot Motion Planning. Engineering and Computer Science. Springer, 1991.

[34] A. Laulusa and O. A. Bauchau. Review of classical approaches for constraint enforcement in
multibody systems. Journal of Computational and Nonlinear Dynamics, 3(1):011004, 2008.

[35] S. M. LaValle. Planning Algorithms. Cambridge University Press, New York, 2006.

[36] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International Journal of
Robotics Research, 20(5):378–400, 2001.

[37] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2001.

[38] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal sampling-based kinodynamic plan-
ning. The International Journal of Robotics Research, 35(5):528–564, 2016.

[39] K. M. Lynch and M. T. Mason. Stable pushing: mechanics, controllability, and planning. The
International Journal of Robotics Research, 15(6):533–556, 1996.

[40] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numerica 2001,
10:357–514, 2001.

[41] L. R. Petzold. Numerical solution of differential-algebraic equations in mechanical systems simu-
lation. Physica D: Nonlinear Phenomena, 60(1–4):269–279, 1992.

[42] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura. Admissible velocity propagation: Be-
yond quasi-static path planning for high-dimensional robots. The International Journal of Robotics
Research, 36(1):44–67, 2017.

[43] E. Plaku, L. Kavraki, and M. Vardi. Discrete search leading continuous exploration for kinodynamic
motion planning. In Proceedings of Robotics: Science and Systems, 2007.

[44] J. M. Porta, L. Jaillet, and O. Bohigas. Randomized path planning on manifolds based on higher-
dimensional continuation. The International Journal of Robotics Research, 31(2):201–215, 2012.

[45] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories for con-
strained dynamical systems. In IEEE International Conference on Robotics and Automation, pages
1366–1373, 2016.

[46] F. A. Potra and J. Yen. Implicit numerical integration for Euler-Lagrange equations via tangent
space parametrization. Journal of Structural Mechanics, 19(1):77–98, 1991.

[47] J. H. Reif. Complexity of the mover’s problem and generalizations. In Annual Symposium on
Foundations of Computer Science, pages 421–427, 1979.

http://doi.org/10.1109/ICRA.2011.5980280
http://doi.org/10.1109/ICRA.2011.5980280
http://hdl.handle.net/1807/11215
http://doi.org/10.1109/70.508439
http://doi.org/10.1109/70.508439
http://doi.org/10.1007/10991541_21
http://doi.org/10.1007%2F978-1-4615-4022-9
http:/doi.org/10.1115/1.2803257
http:/doi.org/10.1115/1.2803257
http://planning.cs.uiuc.edu/
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1007/978-0-387-21752-9
http://doi.org/10.1177/0278364915614386
http://doi.org/10.1177/0278364915614386
http://doi.org/10.1177/027836499601500602
http://doi.org/10.1017/s096249290100006x
http://doi.org/10.1016/0167-2789(92)90243-G
http://doi.org/10.1016/0167-2789(92)90243-G
http://doi.org/10.1177/0278364916675419
http://doi.org/10.1177/0278364916675419
http://doi.org/10.15607/RSS.2007.III.040
http://doi.org/10.15607/RSS.2007.III.040
http://doi.org/10.1177/0278364911432324
http://doi.org/10.1177/0278364911432324
http://doi.org/10.1109/ICRA.2016.7487270
http://doi.org/10.1109/ICRA.2016.7487270
http://doi.org/10.1080/08905459108905138
http://doi.org/10.1080/08905459108905138
http://doi.org/10.1109/SFCS.1979.10

16 REFERENCES

[48] J. Schulman, Duan Y, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and
P. Abbeel. Motion planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[49] A. Shkolnik, M. Walter, and R. Tedrake. Reachability-guided sampling for planning under differen-
tial constraints. In IEEE International Conference on Robotics and Automation, pages 2859–2865,
2009.

[50] M. Stilman. Task constrained motion planning in robot joint space. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3074–3081, 2007.

[51] I. A. Şucan and L. E. Kavraki. A sampling-based tree planner for systems with complex dynamics.
IEEE Transactions on Robotics, 28(1):116–131, 2012.

[52] The Neuroscience and Robotics Lab, Northwestern University. Trep: Mechanical simulation and
optimal control. http://murpheylab.github.io/trep, 2016.

[53] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bag-
nell, and S. S. Srinivasa. CHOMP: Covariant Hamiltonian optimization for motion planning. The
International Journal of Robotics Research, 32(9-10):1164–1193, 2013.

http://doi.org/10.1177/0278364914528132
http://doi.org/10.1109/ROBOT.2009.5152874
http://doi.org/10.1109/ROBOT.2009.5152874
http://doi.org/10.1109/IROS.2007.4399305
http://doi.org/10.1109/TRO.2011.2160466
http://murpheylab.github.io/trep
http://doi.org/10.1177/0278364913488805

Acknowledgements

This research has been partially funded by project DPI2014-57220-C2-2-P.

IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.

http://www.iri.upc.edu

	Introduction
	Related Work
	Problem formalization
	Mapping and Exploring the State Space
	Atlas construction
	Incremental atlas and RRT expansion
	Chart coordination

	The Planner
	Higher-level structure
	Sampling
	Dynamic simulation

	Test Cases
	Conclusions

