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C/. Llorens i Artigas 4-6, 08028 Barcelona, Spain
bCetaqua, Water Technology Centre, Ctra. d’Esplugues 75, Cornellà de Llobregat, 08940 Barcelona, Spain

Abstract

This paper addresses a non-linear economic model predictive control (EMPC) strategy for
water distribution networks (WDNs). A WDN could be considered as a non-linear system
described by differential-algebraic equations (DAEs) when flow and hydraulic head equa-
tions are considered. As in other process industries, the main operational goal of WDNs is
the minimisation of the economic costs associated to pumping and water treatment, while
guaranteeing water supply with required flows and pressures at all the control/demand nodes
in the network. Other operational goals related to safety and reliability are usually sought.
From a control point of view, EMPC is a suitable control strategy for WDNs since the opti-
mal operation of the network can not be established a priori by fixing reference volumes in
the tanks. Alternatively, the EMPC strategy should determine the optimal filling/emptying
sequence of the tanks taking into account that electricity price varies between day and night
and that the demand also follows a 24-hour repetitive pattern. On the other hand, as a
result of the ON/OFF operation of parallel pumps in pumping stations, a two-layer control
scheme has been used: a non-linear EMPC strategy with hourly control interval is chosen
in the upper layer and a pump scheduling approach with one-minute sampling time in the
lower layer. Finally, closed-loop simulation results of applying the proposed control strategy
to the D-Town water network are shown.

Keywords: Economic model predictive control, pump scheduling approach, two-layer
control scheme, non-linear differential-algebraic equations, water distribution networks

1. Introduction

Water distribution networks (WDNs) are critical infrastructures in urban areas. Their
operational management is a subject of increasing interest, taking into account the economic
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and environmental factors. WDNs are also of vital importance for supporting all kinds of
social activities. For the individuals living in a modern city, requiring sustainable water5

supply service is one of basic necessities. Besides, as the progress of society and the evolution
of human civilisations, a growing number of people migrate into cities. Therefore, the
increasing complexity of the WDN would cause some difficulties for the management under
multiple objectives, such as economic operations, guaranteeing the whole system safe and
stable.10

Model predictive control (MPC) has attracted much attention of the research community
all over the world throughout the past decades and has been applied to many different
applications of the process industry [1, 2]. Compared with the other classical control theories,
the success is due to the fact that MPC is able to handle multi-input and multi-output
(MIMO) control systems with hard and soft constraints for the system inputs and states,15

and meanwhile, having the ability to directly reach some certain system performances and
operational objectives. In general, the MPC strategy (also regarded as receding horizon
strategy) is based on finding the optimal control action from a sequence of open-loop control
actions along the prediction horizon minimising a set of control objectives and satisfying a
set of constraints including the system dynamic model and physical/operational limitations.20

By investigating optimal control strategies for the management of water systems, MPC
is not used in a classical way since there is no reference to be tracked. In applications of
conventional MPC, the control objective is mainly focused on tracking a given reference
or a family of trajectories in order to operate the plant to reach its steady state. Unlike
conventional MPC, the common operational goal of many process industries, as WDNs, is25

the minimisation of economic costs of the energy consumptions. This lead to the so-called
economic MPC (EMPC). The optimisation problem behind the EMPC strategy is in charge
of finding a family of the optimal set-points taking into account economic benefits instead
of driving the controlled system to a given set-point. The stability and cost improvement
of EMPC have been investigated for non-linear processes in [3, 4], where Lyapunov-based30

technique has been employed over the conventional MPC. In order to reduce the computa-
tional complexity, the general EMPC is divided into two layers [5], where EMPC is set in
the upper layer and a lower feedback control layer is used.

Related research for WDNs has been carried out in the past several years [6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. These research works are focused on finding the optimal operation on35

the WDN in order to achieve the desired control objectives. For this purpose, some optimal
control problems are posed and solved to minimise the total operational costs of WDNs,
for instance in [6, 16] the genetic algorithm (GA) is chosen. In [7, 8, 10, 13], authors have
successfully applied the MPC strategy in the WDN using a control-oriented model that
considers only flows, i.e., the pressure/head model of each element in the WDN including40

water storage tanks/reservoirs, water demand sectors, pressurised pipes, booster pumps and
pressure/flow-controlled valves, are not considered explicitly. For a certain WDN, in addi-
tion to satisfy water demands, it is also necessary to meet the required pressure/head at
each water demand sector and particular control points. A first attempt to consider the
pressure/head model in the flow-based MPC is presented in [17], where the non-linear con-45

straints coming from the flow-head equations are used to update the operational constraints

2



of tanks and actuators by solving a constraint satisfaction problem before the flow-based lin-
ear MPC problem is solved. Later on, an explicit iterative approach to implement non-linear
constraint relaxation is proposed in [15]. The non-linear hydraulic equations in the WDN
model are relaxed to be a sequence of linear approximating constraints. The underlying50

linear optimisation problem with the relaxed constraints can produce similar performance.
The control-oriented model of a WDN may be built by a series of linear and non-linear

differential-algebraic equations (DAEs). Subsequently, the non-linear DAE model of a WDN
is used as the prediction model in the EMPC controller design. The application of EMPC
to WDNs present some difficulties because of the non-linear nature of the DAE model and55

the ON/OFF operation of the pumps. Because of these features, the MPC problem for
WDNs leads to solve a non-linear mixed-integer problem [7]. In order to avoid solving such
a complex optimisation problem, a two-layer optimal control scheme is proposed in this
paper as shown in Figure 1. The upper layer is in charge of finding the optimal hourly flow
set-points for actuators (pumps and valves) using a non-linear EMPC (NEMPC) strategy60

and the demand 24-hour forecasts using an appropriate forecasting algorithm, such as [18,
19]. So far, the conventional non-linear MPC has been applied to water systems but the
use of NEMPC has still not been proposed [20, 21]. The lower layer is in charge of the
pump scheduling, i.e., the translation of the continuous flow set-points determined in the
upper layer into ON/OFF set-points for pump operation. Pumps are typically operated65

in ON/OFF discrete way to produce at each hourly time-step, the same water volume as
the optimal strategy computed by the first layer within an hour corresponding to each
MPC step. By means of the two-layer scheme, the non-linear and integer features of the
EMPC optimisation problem is decoupled in two problems: one dealing with the non-linear
behaviours of WDNs and the other with discrete operations of the pumps.70

The main contribution of this paper is to propose a two-layer control scheme that com-
bines the NEMPC strategy in the upper layer, and the pump scheduling approach in the
lower layer. The NEMPC strategy is implemented by using the non-linear programming
technique and the pump scheduling approach is realised by solving a local optimisation
problem. The proposed two-layer control strategy is validated using a hydraulic simula-75

tor that emulates the real WDN behaviour. The D-Town water network, a well known
benchmark, is used as the case study. The closed-loop simulation is implemented using
a simulation platform with a virtual-reality hydraulic simulator that emulates the on-line
operation.

The remainder of this paper is structured as follows: The control-oriented model of80

WDNs including the flow and pressure/head variables is presented in Section 2. The NEMPC
strategy of the WDN in the upper layer is introduced in Section 3. A pump scheduling
approach in the lower layer is provided in Section 4. The description and introduction of the
case study of the D-Town water network is presented in the Section 5. In Section 6, results
of applying the proposed control strategy to the D-Town water network are summarised.85

Finally, some conclusions are drawn in Section 7.
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Upper layer:

Non-linear EMPC

Lower layer:

Pump Scheduling

Network System

Two-Layer Optimal Control Strategy

Figure 1: Two-layer optimal control strategy of WDNs

2. Control-oriented modelling water distribution networks

This section briefly introduces the control-oriented mathematical modelling methodol-
ogy of the WDN including the flow and hydraulic head relations for the different network
components. As result of the application of this methodology to a particular WDN, a set of90

dynamic and static relationships that lead to a system of DAEs in discrete-time ready to be
used in the implementation of the MPC is obtained. A WDN can be decomposed by a set
of constitutive elements: reservoirs/tanks, control valves, pump stations, nodes and water
demand sectors, each being characterised by means of flow-head relations [8, 16, 22, 23].

2.1. Tanks95

Water tanks supply and provide the entire WDN with the storage capacity of drinking
water to consumers guaranteeing adequate water pressure service. The mass balance ex-
pression relating the stored volume v in the m-th tank can be written as the discrete-time
difference equation which describes the tank dynamical evolution as

vm(k + 1) = vm(k) + ∆t

(∑
i

qin
i,m(k)−

∑
j

qout
m,j(k)

)
, (1)

where qin
i,m(k) denotes the inflows from the i-th element to the m-th tank and qout

m,j(k) denotes100

the outflows from the m-th tank to the j-th element. ∆t is the sampling time and k is the
discrete-time instant. The physical limitation related to the storage volume in the m-th
tank is described as

vm ≤ vm(k) ≤ vm, ∀k ∈ N+, (2)
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(a) Pump
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Figure 2: Conceptual models of the pump and valve

where vm and vm denote the minimum and maximum admissible storage capacity, respec-
tively.105

The head model in WDN is typically written in terms of the hydraulic head that relates
the energy in an incompressible fluid to the height of an equivalent static column of that
fluid. Note that head is expressed in units of height.

Using this concept, the head related to the m-th tank with respect to the volume of
storage water inside can be determined as follows:110

hm(k) =
vm(k)

Sm
+ Em, ∀k ∈ N+, (3)

where Sm is the cross-sectional area of the m-th tank and Em corresponds the m-th tank
elevation.

2.2. Pumping stations

Pumps located in pumping stations of a WDN can be of several types: fixed-speed pumps
(FSP), variable-speed pumps (VSP) and variable throttle pumps (VTP) [22] depending on115

how they are controlled. In this paper, we will consider fixed-speed pumps that are the most
used in WDN because of the simplicity of operation, i.e., they are operated in an ON/OFF
manner. However, such simplicity introduces an additional problem when implementing a
continuous control strategy as MPC since the ON/OFF operation involves including discrete
variables in the optimisation problem.120

Pump flows are regarded as the manipulated variables. Therefore, the physical limita-
tions for pumps can be regarded as input constraints, which can be expressed as

qun ≤ qun(k) ≤ qun, ∀k ∈ N+, (4)

where qun represents the manipulated flow of the n-th pump (or valve), qun and qun represent
the minimum and maximum flow capacity of the n-th pump, respectively. These limitations
vary with the pressure according to hydraulic flow/head curve of the pump.125

The hydraulic characteristic of a pump is formulated by a non-linear function related
to the flow and head variables. Therefore, for a pump shown in Figure 2(a), the hydraulic
characteristics are bounded by the following constraints:
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∆hp(k) = hd(k)− hs(k) ≥ 0, ∀k ∈ N+, (5a)

hd(k) ∈
[
hd, hd

]
, (5b)

hs(k) ∈
[
hs, hs

]
, (5c)

where hd(k) and hs(k) denote the suction head and the delivery head at time instant k,
respectively, with the physical limitation of hd(k) ≥ hs(k). Moreover, hd and hs denote the130

minimum values of the suction and delivery heads. hd and hs denote the maximum values
of the suction and delivery heads.

2.3. Valves

In terms of the type of valves, there is a variety of options, such as pressure modulat-
ing, non-return, pressure reducing, flow variable control, head control and so on [22]. For135

simplicity, valves considered in this paper are of the flow-control type.
Similar to pumps, the characteristic of valves is difficult to be modelled. Hence, the

static relationship between head and flow of a valve shown in Figure 2(b) is constrained as
follows:

∆hv(k) = hus(k)− hds(k) ≥ 0, ∀k ∈ N+, (6a)

hus(k) ∈
[
hus, hus

]
, (6b)

hds(k) ∈
[
hds, hds

]
, (6c)

where hus(k) and hds(k) denote the heads at the nodes around the valve in the upstream and140

downstream at time instant k, respectively. hus and hds denote the minimum values of the

upstream and downstream heads. hus and hds denote the maximum values of the upstream
and downstream heads.

2.4. Nodes

Water flow through each node of the network must fulfil the mass balance relations. The145

expression of the mass conservation in these nodes can be written as∑
i

qin
i,l(k) =

∑
j

qout
l,j (k), ∀k ∈ N+, (7)

where qin
i,l represents the non-manipulated inflow through l-th node from the i-th element

and qout
l,j represents the non-manipulated outflow through l-th node to the j-th element.

2.5. Water demand sectors

A demand sector represents water demand of the network users of a certain physical area.150

At a certain time instant k, the consumed water in the r-th demand sector can be expressed
as dr(k). Since the optimal control strategy is considered as a predictive one, the short-term
demand forecasts are able to obtain by using a suitable demand forecasting algorithm, such
as [18, 19].
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2.6. Pipes155

Pipes convey water from one place in the network to another. Water inside pressurised
pipes flows from the higher hydraulic head to that at lower head. Therefore, the head-flow
relationship for a pipe can be described as

qi,j(k) = Φi,j

(
hi(k)− hj(k)

)
, (8)

where Φi,j is a non-linear relationship, usually described by an empirical equation, for in-
stance, the Hazen-Williams formula. Hence, the head drop through a pipe ∆hd(k) for160

∀k ∈ N+ can be calculated as

∆hd(k) = hi(k)− hj(k) = Ri,jqi,j(k)
∣∣qi,j(k)

∣∣0.852
, (9)

with

Ri,j ,
10.67Li,j
C1.852
i,j D4.87

i,j

,

where Li,j, Di,j and Ci,j denote the pipe length, diameter and roughness coefficient, respec-
tively.

Basically, pipes can be classified based on the flow sense into unidirectional and bidirec-165

tional. Therefore, ∆hd(k) for ∀k ∈ N+ in the unidirectional pipe is always positive with
its selected direction while in the bidirectional pipe ∆hd(k) for ∀k ∈ N+ could be varying
between positive and negative since the direction of the flow can be reversed.

3. Non-linear economic model predictive control of water distribution networks

3.1. Control-oriented model of the water distribution network170

Considering the modelling methodology of each component in the WDN presented above,
the control-oriented model of WDNs can be formulated by means of DAEs. The generalised
discrete-time DAE model can be written as follows:

x(k + 1) = F
(
x(k), z(k), u(k), w(k), d(k)

)
, (10a)

0 = G
(
x(k), z(k), u(k), w(k), d(k)

)
, (10b)

where x ∈ X ⊆ Rm represents the vector of hydraulic heads at storage nodes (tanks) as
differential states, z ∈ Z ⊆ Rz represents the vector of hydraulic heads at non-storage175

nodes as algebraic states, u ∈ U ⊆ Rn denotes the vector of the manipulated flows through
actuators (pumps and valves) as control inputs, w ∈ W ⊆ Rw denotes the vector of non-
manipulated flows through interconnected pipes and d ∈ D ⊆ Rd corresponds to the vector
of water demands as system disturbances. k ∈ N+ denotes the time instant. F (·) and G(·)
are vectors of mapping functions. Moreover, (10a) is the discrete-time differential equation180

describing the system dynamics while (10b) is the discrete-time algebraic equation presenting
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the static relations of components in the WDN. All the considered variables of the WDN in
Section 2 are classified as control-oriented variables as summarised in Table 1. Considering
that the tanks are the only elements with dynamics in the WDN, (10a) can be explicitly
expressed as185

x(k + 1) = Ax(k) +Buu(k) +Bww(k) +Bdd(k), (11)

where A, Bu, Bw and Bd are system matrices of appropriate dimensions.

Table 1: Variable assignments in the control-oriented model of the WDN

Type of variable Related symbols Description

Difference states: x hm Hydraulic heads at the storage
nodes (i.e. storage tanks)

Algebraic states: z hd, hs, hi, hj Hydraulic heads at the non-
storage nodes

Control inputs: u qun Manipulated flows through actu-
ators (pumps and valves)

Non-control inputs: w qi,j Non-manipulated flows through
interconnected pipes

System disturbances: d dr Water demands

Furthermore, considering the static relations related to flow and head variables in (3),
(7) and (9), the static equation (10b) can be explicitly reformulated as follows:

0 = Euu(k) + Eww(k) + Edd(k), (12a)

0 = Pxx(k) + Pzz(k) + ψ
(
w(k)

)
, (12b)

where (12a) describes the mass balance equations of flow variables at non-storage nodes in
the WDN and the dynamic of z(k) is related to x(k) in (12b). Besides, Eu, Ew, Ed, Px190

and Pz are system matrices of appropriate dimensions determined by the network topology.
Moreover, ψ(·) denotes the vector of non-linear Hazen-Williams mapping functions.

In general, the control-oriented model of the WDN can be written as

x(k + 1) = Ax(k) +Buu(k) +Bww(k) +Bdd(k), (13a)

0 = Euu(k) + Eww(k) + Edd(k), (13b)

0 = Pxx(k) + Pzz(k) + ψ
(
w(k)

)
. (13c)

Note that units of all the control-oriented variables need to be consistent. In this paper,
the unit of the head is selected as m (meter). The water flows is with unit of m3/s (cubic-195

meter per second).
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3.2. Cost function settings

3.2.1. Management criteria of the water distribution network

The operational goals for the management of the WDN include:

• Economic: To provide a reliable water supply with the required pressure minimising200

operational costs;

• Safety: To guarantee the availability of enough water with suitable pressure in each
storage tank to satisfy its underlying uncertain water demands;

• Smoothness: To operate actuators (pumps and valves) in the WDN under smooth
control actions.205

3.2.2. Minimisation of water distribution costs

The main control objective of the WDN is to minimise the water distribution costs that
includes water acquisition costs and electrical costs especially for pumping water through the
pumps. The water is delivered into the nodes with different heads (and elevations) through
the distribution network implying many electrical costs on the booster pumping. Therefore,210

the cost function associated to this objective can be formulated as

`1(k) ,
(
α1 + α2(k)

)T
u(k), (14)

where α1 denotes the single-column vector of static economic costs of the water depending
on the selected water sources and α2(k) represents the vector of the time-varying electrical
costs. Considering the variable daily electrical tariff, α2(k) is time-varying.

3.2.3. Guarantee of safe water storage215

For the purpose of maintaining the water supply in spite of the variation of water demands
between two consecutive MPC sampling steps, a suitable safety head for each storage tank
is necessary to be maintained. Hence, the mathematical expression for this objective is
formulated in a quadratic way as

`2(k) ,

{
‖x(k)− xS‖2

2, if x(k) ≤ xS,

0, otherwise,
(15)

where xS denotes the vector of the safety heads for all the tanks and ‖·‖2
2 is the squared220

2-norm symbol. This cost function can be also realised by means of a soft constraint with
adding a slack variable ξ(k), which can be reformulated as

`2(k) , ‖ξ(k)‖2
2, (16)

in addition to the following soft constraint:

x(k) ≥ xS − ξ(k). (17)
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3.2.4. Smoothness of control actions

The actuators in the WDN mainly includes pumps and valves. Thus, the flow-based225

control actions found by the EMPC controller is required to be smooth in order to maximise
the lifespan of the actuators. In addition, the use of the smooth operations is potentially
benefit for the lower-layer regulatory performance. To achieve a sequence of smooth opera-
tions, the slew rate of the control actions between two consecutive time steps is penalised.
Hence, the cost function for this part can be written as230

`3(k) , ‖∆u(k)‖2
2, (18)

where

∆u(k) , u(k)− u(k − 1). (19)

3.2.5. Multi-objective cost function

In general, the multi-objective cost function that gathers all the control objectives for
the operational management of the WDN can be summarised as

J (k) =
Γ∑
j=1

λj`j(k), (20)

where λj denotes the weighting term that indicates the prioritisation of control objectives235

and Γ is the number of the selected control objectives.

3.3. System constraint settings

In the real components of a WDN, there are the physical limitations associated to the
system variables. Therefore, these constraints should complement the mass balance princi-
ples and physical relations between flow and head introduced in (13). In the following, these240

physical constraints are described in detail.

3.3.1. Tank capacity constraints

The hard constraint on the system states x comes from the tank capacity in the WDN,
which can be described as

xi ≤ xi(k) ≤ xi, ∀k ∈ N+ and i ∈ [1,m] ⊂ Z+, (21)

where xi and xi represent the minimum and maximum heads with respect to capacities of245

the i-th tank, respectively. The tank volumetric capacity can be transformed into hydraulic
head constraints by (3).

10



3.3.2. Flow constraints on actuators

The manipulated flows are also limited taking the physical capacity of different actuators,
which can be expressed as250

ui ≤ ui(k) ≤ ui, ∀k ∈ N+ and i ∈ [1, n] ⊂ Z+, (22)

where ui and ui denote the minimum and maximum manipulated flows of the i-th actuator,
respectively. On the other hand, the non-manipulated flows throughout the interconnected
pipes can be limited between wi and wi as

wi ≤ wi(k) ≤ wi, ∀k ∈ N+ and i ∈ [1, np] ⊂ Z+, (23)

where np is the number of pipes.

3.3.3. Head constraints on demand sectors255

The heads at some certain non-storage nodes are required to be up to some minimum
levels as in the case of the water demand sectors. Hence, the following inequality constraint
is necessary to be considered:

zi(k) ≥ zi, ∀k ∈ N+ and i ∈ [1, nh] ⊂ Z+, (24)

where zi are the required heads at the water demand sectors. Moreover, nh is the total
number of the water demand sectors.260

3.4. NEMPC optimisation problem formulation

In general, the NEMPC strategy can be implemented by solving a finite-horizon op-
timisation problem over a prediction horizon Hp, where the multi-objective cost function
is minimised subject to the prediction model and a set of system constraints. Thus, the
optimisation problem behind the NEMPC strategy can be formulated as follows:265

Problem 1 (NEMPC of the WDN).

min
u(k|k),...,u(k+Hp−1|k)

Hp−1∑
i=0

Γ∑
j=1

λj`j (k + i | k) , (25a)

subject to

x(k + i+ 1 | k) = Ax(k + i | k) +Buu(k + i | k) +Bww(k + i | k) +Bdd(k + i | k), (25b)

0 = Euu(k + i | k) + Eww(k + i | k) + Edd(k + i | k), (25c)

0 = Pxx(k + i | k) + Pzz(k + i | k) + ψ
(
w(k + i | k)

)
, (25d)

x ≤ x(k + i+ 1 | k) ≤ x, (25e)

u ≤ u(k + i | k) ≤ u, (25f)

z(k + i | k) ≥ z (25g)

x(k + i+ 1 | k) ≥ xS − ξ(k + i), (25h)(
x(k|k), d(k|k)

)
=
(
x(k), d(k)

)
. (25i)

11



Since the control-oriented model of the WDN includes the non-linear relations in (25d),
the above optimisation problem naturally becomes non-linear. Thus, Problem 1 should be
solved using a suitable non-linear programming technique. Assuming that Problem 1 is
feasible, the sequence of control actions can be given as

u∗(k) =
[
u∗(k | k), u∗(k + 1 | k), · · · , u∗(k +Hp − 1 | k)

]
. (26)

And then by deploying the receding-horizon strategy, the optimal control action at time270

instant k is the first component of the sequence of control actions denoted by

uopt(k) , u∗(k | k). (27)

4. Pump scheduling approach

In practice, the main energy consumption is used for pumping water through the pumping
stations. In case of the pumps with ON/OFF operation, the flows in (26) become discrete
values and subsequently Problem 1 becomes a non-linear mixed-integer problem. In this275

section, this non-linear mixed-integer optimisation problem is firstly introduced. In order to
avoid solving this complicated optimisation problem, a two-layer control strategy is proposed
including the NEMPC strategy and the pump scheduling approach.

4.1. Pump efficiency in ON/OFF operation

A pump operated at a fixed speed in an ON/OFF manner delivers a flow between zero280

and a maximum value that depends of boundary head drops conditions. Commonly, the
pump performance is typically characterised by the flow-head and efficiency curves as shown
in Figure 3. Figure 3(a) presents the relationship between hydraulic head and the delivered
flow through the considered pump. Figure 3(b) presents the operational efficiency of the
pump in a function of the water flow through the pump. From these two figures, it can285

be observed that flow and head present an inverse relation, that is, if the flow increases
the water head provided by the pump decreases. On the other hand, the maximum pump
efficiency is obtained for a given flow that can be determined by the efficiency curve. Thus,
when selecting a pump, these curves should be taken into account in such a manner the
pump operates in the optimal efficiency region.290

The cost α2(k) in (14) can be calculated taking into account the electricity price from a
given tariff and pump efficiency at time instant k as [24]

α2(k) =
ρw · g ·∆z(k) · ϕe(k)

η(k)
, (28)

where ρw is the water density (approximately 1000 kg/m3), g is the acceleration correspond-
ing to the gravity (9.8 m/s2), ϕe(k) denotes the electricity price per kilowatt-hour at the
time instant k with unit of (AC/kWh), ∆z(k) , zi(k)−zj(k) denotes the gained head for the295
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Figure 3: Pump characteristic curves

pumping water (m) and η(k) represents the pump wire-to-water efficiency1 (%) due to the
flow at time instant k. The efficiency curves can be built by approximating the polynomial
functions with experimental data or provided by the pump manufacturer.

4.2. Mixed-integer NEMPC including discrete ON/OFF pump scheduling

Considering that pumps are operated in an ON/OFF discrete manner, Problem 1300

should be reformulated. By introducing new time-varying binary decision variable ζ(k) ∈
{0, 1} that correspond to the ON/OFF operation of the pumps, the pumping flow u(k) at
time instant k should be replaced by

u(k) = ζ(k)ũ(k), (29)

where the decision variable u(k) involves a binary variable ζ(k) representing ON/OFF pump
status and ũ(k) corresponding to the flow when the pump is ON. Therefore, the cost function305

(1) can be rewritten considering (29) as ˜̀
j(·) for j ∈ [1, Γ ] ⊂ Z+.

Thus, Problem 1 is reformulated as a mixed-integer optimisation problem in the fol-
lowing:

Problem 2 (Mixed-integer NEMPC of the WDN).

min
ζ(k),...,ζ(k+Hp−1|k)
ũ(k|k),...,ũ(k+Hp−1|k)

Hp−1∑
i=0

Γ∑
j=1

λj ˜̀j (k + i | k) , (30a)

1Pump Efficiency indicates the percentage of brake horsepower converted into useful work. Pump
efficiency, along with flow, head, and liquid specific gravity affect the power required to drive the pump.
The more efficient pump, the less power required to drive it.
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subject to

x(k + i+ 1 | k) = Ax(k + i | k) +Buζ(k + i)ũ(k + i | k) +Bww(k + i | k) +Bdd(k + i | k), (30b)

0 = Euζ(k + i)ũ(k + i | k) + Eww(k + i | k) + Edd(k + i | k), (30c)

0 = Pxx(k + i | k) + Pzz(k + i | k) + ψ
(
w(k + i | k)

)
, (30d)

x ≤ x(k + i+ 1 | k) ≤ x, (30e)

u ≤ ζ(k + i)ũ(k + i | k) ≤ u, (30f)

z(k + i | k) ≥ z (30g)

x(k + i+ 1 | k) ≥ xS − ξ(k + i), (30h)

ζ(k + i) ∈ {0, 1} , (30i)(
x(k|k), d(k|k)

)
=
(
x(k), d(k)

)
, (30j)

where ζ(k+ i) ∈ {0, 1} represents the vector of binary decision variables that correspond to
the ON/OFF pump status at time instant k, where 0 and 1 corresponds to the ON-status310

and OFF-status of the pumps, respectively. The ON-status pumping flow ũ(k) should be
estimated based on the pressure conditions that the pumps should operate defined in (5).
Problem 1 is considered to operate at hourly basis, which means that optimal hourly
flows for actuators are determined. In Problem 2, the sampling time should be shorter
(at the minutely scale) in order to approximate the optimal continuous flow that would315

be obtained by solving Problem 1 assuming that actuator flows are manipulated in a
continuous manner.

Solving a large-scale non-linear mixed-integer optimisation problem with a long horizon
leads Problem 1 to be computationally complex without a guaranteed convergence in a
limited time, for the purpose of real-time control. For this reason, Problem 2 is proposed320

to be replaced by a two-layer optimal control strategy.

4.3. Two-layer optimal control strategy

4.3.1. The upper layer: NEMPC strategy

The two-layer optimal control strategy is presented by gathering all the considerations
discussed before. In the upper layer, Problem 1 is adopted. Note that the NEMPC of the325

WDN is operated on the hourly basis (∆tu = 3600s) over the MPC prediction horizon Hp

to find the optimal flow set-points. In the lower layer, the sampling time is usually selected
as one minute (∆tl = 60s), which means that the optimal flow set-points at one MPC step
decides 60 values using the pump scheduling approach.

4.3.2. The lower layer: pump scheduling approach330

Usually, the pumping stations are set independently in a WDN. Hence, the control
objective in the lower layer is to find a set of ON-OFF sequences for each pumping station.
Denote Qopt

j = uoptj for ∀j ∈ [1, ns] ⊂ Z+ as the optimal hourly flow set-point of the j-th
pumping station obtained from the upper layer, where ns is the total number of pumping
stations in a WDN.335

The control objectives of the lower layers can be summarised as follows:
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• To provide enough water to reach the optimal water flow set-points.

• To use the minimum possible number of parallel pumps and avoid too many switches
in order to maximise their working lives.

In terms of the j-th pumping station, the pumping flow of the i-th pump is affected by340

the factors of the suction and delivery heads. Hence, if these boundary heads are given, the
actual flow qri,j through the pump is considered within an interval, which can be formulated
as

qri,j ∈
[
qni,j − σi,j, qni,j + σi,j

]
, (31)

where qni,j denotes nominal pumping flow produced through the i-th pump, and σi,j represents
the variance of the pumping flow depending on the uncertainty of the boundary heads. It345

is assumed that the actual flow qri,j can be measured. In some cases, only one pump cannot
provide enough flows to maintain the optimal flow set-point. Hence, parallel pumps are set
in each pumping station. Ideally, the optimal pumping flow Qopt

j can be satisfied when all
the pumps are open in the lower layer such that the following condition holds:

Qopt
j ∆tu =

ncj∑
i=1

Hl∑
t=1

qri,j∆tl. (32)

where ncj is the total number of parallel pumps in the j-th pumping station and Hl is the350

control horizon of the lower layer.
Consider that the parallel pumps are operated in ON/OFF way, the binary variable

χi,j(t) ∈ {0, 1} at time instant t is chosen, where χi,j(t) = 0 describes the OFF-status and
χi,j(t) = 1 presents the ON-status. Therefore, the actual flow of the i-th pump can be
computed by355

qi,j(t) = χi,j(t)q
r
i,j, ∀i ∈

[
1, ncj

]
⊂ Z+,∀t ∈ [1, ns] ⊂ Z+. (33)

Furthermore, the minimum usages of required parallel pumps and switches are necessary
to be taken into account. It is considered that the parallel pumps are selected in a sequence
order from i = 1 to i = ncj . Therefore, the required parallel pumps for j-th pumping station
can be constrained by the following condition:

χi+1,j(t) +
(
1− χi,j(t)

)
≤ 1, ∀i ∈

[
1, ncj

]
⊂ Z+, (34)

which means if i-th pump is not used, then i + 1-th pump is also not used. Additionally360

to (34), the minimum required parallel pumps with their selection orders can be decided by
maximising the following term:

Jp =

ncj∑
i=1

Hl∑
t=1

µiχi,j(t), (35)
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where µi > 0 for ∀i ∈
[
1, ncj

]
⊂ Z+. Considering the pump operations in a order, the

lexicographic prioritisation is used to set this sequence of weights as µ1 > · · · > µncj
[11].

On the other hand, during total horizon of the lower layer, the used parallel pumps365

are switched once in order to get smooth control actions. The required pumps are used at
the beginning and then turned off when the optimal set-point is satisfied. Therefore, this
objective can be realised by

χi,j(t+ 1)− χi,j(t) ≤ 0, ∀t ∈ [1, ns] ⊂ Z+, (36)

which means that the required parallel pumps can be switched from ON-status to OFF-
status only once.370

Thus, the pump scheduling approach in the lower layer can be implemented by solving
the following optimisation problem:

Problem 3 (Pump scheduling approach of the WDN).

min
χ∗
i,j(t)

φv

∥∥∥V p
j − V

opt
j

∥∥∥2

2
− φp

ncj∑
i=1

Hl∑
t=1

µiχi,j(t), (37a)

subject to

V p
j =

ncj∑
i=1

Hl∑
t=1

qi,j(t)∆tl, (37b)

V opt
j = Qoptj ∆tu, (37c)

qi,j(t) = χi,j(t)q
r
i,j , (37d)

χi+1,j(t) +
(
1− χi,j(t)

)
≤ 1, (37e)

χi,j(t+ 1)− χi,j(t) ≤ 0, (37f)

χi,j(t) = {0, 1} , (37g)

where the weight φv and φp are prioritisation weights, where φv should be chosen to be much
bigger than φp because the main objective is to reach the optimal flow set-point from the
upper layer.375

By solving Problem 3 for each pumping station, the pump scheduling χ∗i,j(t) for ∀i ∈[
1, ncj

]
⊂ Z+,∀j ∈ [1, ns] ⊂ Z+,∀t ∈ [1, ns] ⊂ Z+ can be obtained for the lower layer.

5. Case study: D-Town water network

5.1. Description of D-Town water network

The D-Town water network shown in Figure 4 is selected as the case study to illustrate380

the proposed strategy in this paper. The benchmark of D-Town network contains 388
water demand sectors, 405 links (pipes), 7 tanks, which contains multiple unidirectional
and bidirectional links. The required pressure for all the water demand sectors is selected
to be equal to 20 meters. In order to explore the optimal control strategy, especially for
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Figure 4: Original topology of the D-Town water network

the NEMPC strategy, the unidirectional pipes and water demand sectors inside can be385

aggregated into its root node. Therefore, the aggregate topology of the D-Town water
network is shown in Figure 5. The required water demands in the root nodes are modified
by aggregating the demands from a branch of unidirectional pipes and nodes while the
required head of a branch is equivalent to the maximum head in this branch taking the
head-loss through the pipes into account as well. Hence, the aggregate model of the D-Town390

network is selected as the prediction model for the NEMPC strategy and the original one is
used in the hydraulic simulator.

The required hydraulic head at each demand node is time-varying during one day since
the head-loss through the pipes has been taken into account and the head depends on the
water flow. For the control objectives associated to management of this case study, the395

prioritisations are determined considering the economic objective is the most important and
then the safety objective is more significant than the smoothness objective.

As numerous water networks, depending on the scanning time of the telemetry system
and on the dynamics of water distribution, a supervision sampling time and control in-
terval of one hour is considered. Furthermore, water consumption in urban areas can be400

observed with potential pattern on a daily, weekly or monthly basis. In this case study, wa-
ter consumption is regarded on a daily basis with the proper hourly 24-step-ahead demand
forecasting. Under the aforementioned considerations, the MPC prediction horizon of 24
hours is considered appropriate for evaluating the effects of different control strategies on
the water network.405
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Figure 5: Aggregate topology of the D-Town water network
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Figure 6: Water demand pattern in the D-Town water network

Moreover, the demand patterns of one week in the database are shown in Figure 6. For
the different nodes, the demands has been defined by means of the pattern scaled by a set of
numbers. From the control-oriented model, the short-term demand forecasting results are
required, which can be obtained by using a certain forecasting method.

5.2. Validations of the aggregate model of D-Town water network410

It is necessary to verify the behaviour of the aggregate model of the D-Town network
is equivalent to the original model of the D-Town network. The validation simulation is
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(a) The original D-Town model

(b) The aggregate D-Town model

Figure 7: Validation of the produced and consumed system flows

realised in the EPANET software. The simple control rules provided in the original network
are used for the simulation in four days. As a result, the simulation results with two models
are shown in Figure 7(a) and Figure 7(b).415

The blue solid lines and red in Figure 7(a) and Figure 7(b) present the total water flow
in the network system. It is obvious that results of two figures are very similar. Hence, the
aggregate model is proper representation for this case study. For the purpose of simplicity,
the aggregate model is used for replacing the original model as the system model in the
MPC controller while the original model is used in the simulator.420

19



6. Simulation results

6.1. On-line simulation platform

The on-line simulation is carried out in a PC with the CPU of Intel (R) Core (TM)
i7-5500U 2.4GHz, the memory of 12GB and MATLAB R2014a.The NEMPC strategy is
implemented by means of the GAMS2 and the CONOPT3 non-linear solver, the EPANET3

425

hydraulic simulator and MATLAB that is used for the communication between the GAMS
model of the NEMPC controller and the EPANET hydraulic simulator. Besides, the pro-
posed pump scheduling approach is also implemented in the MATLAB environment. The
mixed-integer optimisation problem of the pump scheduling approach is solved by using the
MOSEK solver [27]. The topological graph of the communication is shown in Figure 8. The430

database includes the water demands data and electrical tariff data.

SimulatorOptimiser

MATLABGAMS EPANET

DB

Figure 8: On-line simulation platform

The non-linear optimisation problem is solved using a generalized reduced gradient search
[28] implemented in GAMS/CONOPT3 library [29]. It follows an iterative procedure, which
can be summarised as follows:

• Initialise and find a feasible solution;435

• Compute the Jacobian of the constraints;

• Select a set of basic variables such that the sub-matrix of the basic column from the
Jacobian is non-singular;

• Compute the reduced gradient and find a search direction;

• Performing a search in this direction, using a pseudo-Newton process;440

2General Algebraic Modelling System (GAMS) is a programming language for mathematical opti-
misation and able to solve the complex, large-scale and non-linear optimisation problems [25].

3EPANET software is a hydraulic simulator used for the hydraulic behaviour analysis of a WDN. The
WDN is built in EPANET consisting of water storage tanks/reservoirs, pumps, valves, pipes and nodes [26].
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• Ending the search until a convergence criterion is satisfied.

The detailed description of this algorithm can be found in [29]. This method is well suitable
for models with many non-linear constraints.

6.2. Results

Problem 1 is implemented in the GAMS programming language. Problem 3 is imple-445

mented in the MATLAB environment. The MPC prediction horizon is chosen as 24 with the
sampling time of 1 hour in the upper layer. In the lower layer, the computational horizon of
the optimisation problem is chosen as 60 with the sampling time of 1 minute. In the upper
layer, the prioritisation weights for economics, safety and smoothness objectives are chosen
as 10, 1 and 0.1, respectively. In the lower layer, the prioritisation weights φv and φp are450

chosen to be 10 : 1. For the pumping station having three parallel pumps, the weights of µ1,
µ2 and µ3 are chosen as 1.5, 1 and 0.5. For the pumping station having two parallel pumps,
the weights of µ1 and µ2 are chosen as 1 and 0.5. The tolerance of the non-linear solver is
set as 10−4.

The average single-step computation time of solving the upper layer non-linear optimisa-455

tion problem is 53.21 seconds, being considerably smaller than the sampling time of 1 hour
used in this layer. On the other hand, the average single-step computation time of solving
the lower layer mixed-integer optimization problem is 4.19 seconds, being also smaller than
the sampling time of 1 minute used in this layer. Thus, the proposed strategy can be applied
in real-time.460

Figure 9 shows the head evolutions of selected storage tanks. The dash blue line denotes
the optimal hydraulic heads of the storage tanks. It is obvious that the head has daily quasi-
periodic feature mainly because of the daily water demands and electricity tariffs. Moreover,
results from the EPANET hydraulic simulator are plotted in the cyan lines. By means of
this state comparison between the EPANET simulator and optimiser, it is clear that the465

optimal system trajectories can be reached with the two-layer control strategy.
The selected average hourly water flows of the pumping stations are shown in the Fig-

ure 10 in the magenta lines. The average hourly water flow of a pumping station can be
calculated by

Qave
j =

∑Nq

i=1 q
real
i,j

60
. (38)

The water flow in Figure 10(a) is associated to the pumping station S1 and the average470

water flow is approximately similar and sometimes below the optimal flow set-point because
the actual pumping flow is varying during each control interval depending on the boundary
heads. Furthermore, the patterns of electrical tariff are added for reference in all the plots
in Figure 10. In general, the optimal flows are small when the electricity price is expensive.
On the contrary, the flows are increasing when the electricity price becomes cheaper.475

Figure 11 shows the optimal flow set-point and actual flow evolution of the valve in
D-Town water network. The type of the valve is flow-controlled. The simulation flow is
approximately tracking the optimal flow set-point. Hence, there is single-layer control for
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Figure 9: Results of the head evolutions of storage tanks
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(a) Pumping station: S1

10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

F
lo

w
 [m

3 /s
]

Time [h]

 

 

Simulator Optimiser Tariff umax umin

(b) Pumping station: S2
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(c) Pumping station: S4

Figure 10: Results of the flows through pumping stations
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Figure 11: Result of the flow through the valve: V2
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(a) EMPC cost evaluated at each iteration
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(b) EMPC cost with EPANET as virtual reality

Figure 12: Economic costs in NEMPC

the valve and the optimal flow set-point is applied to the valve during one hour at a MPC
step from the upper layer. But from this plot, there are small differences between the actual480

flow and optimal flow set-point.
Figure 12(a) presents the economic cost achieved by the EMPC controller at each sam-

pling time (EMPC cost). It can be observed, that after a transient, the cost converges to
a stable small cost. These results are confirmed with the results presented in Figure 12(b)
where the EMPC cost obtained using the EPANET simulator to emulate the real network485

is presented. From this last figure, it can be observed that the EMPC cost converges to a
stable mean value. The cost fluctuations around this mean value are due to the mismatch
between the control-oriented model used by the EMPC and the high fidelity hydraulic cost
used by EPANET.
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Table 2: Safety heads of storage tanks

Tank Safety head (m)

T1 72.25
T2 65.42
T3 114.38
T4 133.90
T5 106.41
T6 102.83
T7 102.97

6.3. Operational costs of the D-Town water network490

Table 2 proposes the safety tank water heads used in the on-line simulation to cope with
the underlying stochastic water demands, which is considered as the initial conditions to
compute the operational costs of the WDN.

The weekly electrical costs for the pumping water can be calculated by the mathemati-
cally formulation below:

κw ,
168∑
i=1

Λ∑
j=1

ρwg∆Have
j (i)ϕe(i)Q

ave
j (i)

η(i)
, (39)

where κw denotes the average weekly electricity costs for the utilisation of the total pumping
stations. ∆Have denotes mean head supplied by the pump and Qave represents the produced495

flows by the pump.
The annual electrical cost can be calculated by

κa ,
52× κw

%
, (40)

where % is the peak-day factor of 1.3 because the variability of the electric tariff, of the
demand, and of any other design variable, during the year and the lifetime of this case study
is not considered.

As a result, the annual operational cost of the D-Town water network is approximated500

to be 104, 482AC. Compared to previous similar results for the D-Town network 117, 740AC
by using the successive linear programming (SLP) in [30] and approximately 168, 118AC by
using the pseudo-genetic algorithm (PGA) in [31], the two-layer NEMPC strategy is able to
bring less operational costs for the management of the D-Town water network.

7. Conclusions505

In this paper, a two-layer NEMPC control strategy of WDNs is proposed. The optimal
set-points for actuators have been calculated by means of solving an non-linear optimisation
problem and subsequently used for deploying the pump scheduling approach considering the
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ON/OFF manner of the pumps. Throughout the case study of the D-Town water network,
the on-line simulation results are shown the feasibility of the proposed control strategy and510

its economic merits. Compared with previous MPC strategies of the WDN only considering
the flow-based model, the NEMPC strategy of the WDN is able to meet all the demands in
water demand sectors with their required pressure at the same time. Hence, the NEMPC
strategy is considered an adequate control strategy for the operational management of the
WDN. Furthermore, the lower layer determines the hourly flow set-points for each pumps515

in the pumping stations. For pumps, a logic controller should be used. The difficulty of the
lower layer is to realise the optimal flow of the pumps within an accurate range. On the other
hand, it is necessary to maximise the service life of the pump by minimising the switches,
which will be considered in the pumping scheduling approach as the further research.

As the on-line simulation platform presented in this paper, the EPANET hydraulic sim-520

ulator is used, which has a number of the physical constraints for the pumping stations, such
as the pumping curve, speed and efficiency curve. Therefore, the head evolutions in storage
tanks in the EPANET hydraulic simulator is tracking the optimal set-points provided by
the two-layer control strategy, which means the proposed control strategy is effective.

A large class of state-of-the-art methods for solving large-scale non-linear mixed integer525

optimisation problems, such as branch-and-bound and evolutionary-programming methods
cannot provide a guarantee of convergence to an optimum in a limited computation time.
The main advantage behind using this two-layer approach is to take advantage of the guar-
anteed convergence properties of non-linear programming, to obtain a reference optimal
control strategy with a computation time that is well within the real-time limitations. The530

second layer translates the reference control strategy into ON/OFF schedules for specific
pumps, which can be implemented directly in the actuators, as shown in this work, using a
realistic network simulator. The simulation results show that NEMPC in the upper layer as
the reference strategy are followed closely by means of the lower layer scheme.
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