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Abstract— Vehicle detection and tracking is a core ingredi-
ent for developing autonomous driving applications in urban
scenarios. Recent image-based Deep Learning (DL) techniques
are obtaining breakthrough results in these perceptive tasks.
However, DL research has not yet advanced much towards
processing 3D point clouds from lidar range-finders. These
sensors are very common in autonomous vehicles since, despite
not providing as semantically rich information as images, their
performance is more robust under harsh weather conditions
than vision sensors. In this paper we present a full vehicle detec-
tion and tracking system that works with 3D lidar information
only. Our detection step uses a Convolutional Neural Network
(CNN) that receives as input a featured representation of the 3D
information provided by a Velodyne HDL-64 sensor and returns
a per-point classification of whether it belongs to a vehicle or
not. The classified point cloud is then geometrically processed
to generate observations for a multi-object tracking system im-
plemented via a number of Multi-Hypothesis Extended Kalman
Filters (MH-EKF) that estimate the position and velocity of the
surrounding vehicles. The system is thoroughly evaluated on the
KITTI tracking dataset, and we show the performance boost
provided by our CNN-based vehicle detector over a standard
geometric approach. Our lidar-based approach uses about a 4%
of the data needed for an image-based detector with similarly
competitive results.

I. INTRODUCTION

Autonomous driving (AD) is nowadays a reality. The
main reasons for this success are twofold. On the one hand,
research advances in related areas such as machine learning
and computer vision are obtaining a high level of scene
comprehension of the vehicle surroundings. On the other
hand, new hardware and on-vehicle sensors are providing
the community with enough data to develop new and robust
perception algorithms as well as the ability to process them
in real time.

However, there is still a long road until fully autonomous
vehicles (AV) drive along totally free in our cities. Urban
traffic is very challenging and dynamic, with numerous
intervening elements like pedestrians, cyclists, other vehicles
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Fig. 1. We introduce a novel CNN-based vehicle detector on 3D range
data. The proposed model is fed with an encoded representation of the
point cloud and computes for 3D each point its probability of belonging
to a vehicle. The classified points are then clustered generating trustworthy
observations that are fed to our MH-EKF based tracker. Note: Bottom left
RGB image is shown here only for visualization purposes.

and even street furniture. To this end, accurate detection
and tracking algorithms are elements of vital importance in
AVs. These systems must be robust enough to recognise,
understand, and act in response to any possible situation
while assuring the safety of drivers, pedestrians, and other
elements in our roads.

With the advent of deep learning technologies, image-
based scene understanding involving tasks such as object
detection, semantic segmentation or motion capture have
experienced an impressive performance and accuracy boost
[11, [2], [3], [4]. However, image-based methods may suffer
a high performance decrease in real driving scenarios under
harsh environmental conditions e.g. heavy rain, snow, fog,
or even night scenes. To avoid such situations and increase
robustness, redundancy must be included in AVs. This is
commonly tackled by creating autonomous perception sys-
tems that rely on other sensors such as radar or 3D lidar
range-scanners.

Lidar sensors are specially suitable for AD purposes
since they provide very accurate spatial information of the
environment, are robust to hard climate conditions and their
performance is almost independent on the illumination of
the scene. Yet, deep learning methods deployed over 3D-
lidar point clouds are far from the successful performance
achieved on 2D-RGB images. This is mainly due to the
computational burden introduced by the change in problem
dimensionality as well as lack of annotated training data.

We present a robust and accurate vehicle detection and



tracking system that uses solely 3D lidar information as
input. A sketch of the developed system is shown in Fig. 1.
The main core of the presented approach is a tailored
Fully Convolutional Network (FCN) [3] trained to detect
vehicles from featured range and reflectivity representations
of the 3D point cloud provided by a Velodyne 64-HDL
sensor. Our FCN fulfils this task by performing a point-wise
classification of whether each 3D point belongs to a vehicle
or not. Positive samples are then clustered and 2D vehicle
poses are obtained. This is performed by choosing the best
fitting oriented bounding boxes (z,y, ) over the external
perimeter resulting after projecting the clusters to the ground
plane. This 2D information is finally fed to a tracker based
on a Multi-Hypothesis Extended Kalman Filter (MH-EKF)
which, along with extracted 3D features such as the heigh
of the corresponding cluster, provide the final results on 3D
tracking.

We test our system over the Kitti tracking benchmark [5],
where lidar-only methods are heavily penalised due to the
image-based 2D evaluation measurements. However, we
show the competitiveness of our approach and validate the
hypothesis of using CNN-based lidar detectors against other
geometrical methods.

II. RELATED WORK

Deep learning techniques, and more specifically Convolu-
tional Neural Networks (CNNs), have demonstrated an out-
standing performance in classical computer vision problems
such as object classification [1], [6], detection [2], [7], and
semantic segmentation [3]. However, CNNs have not yet
deployed its potential over range lidar point clouds. We next
review some approaches proposed to detect objects in such
3D sparse point clouds, and how Deep Learning methods are
approaching this task.

Classical Object Detection in Lidar Point Clouds. Ex-
tensive literature exists about detecting objects in lidar-
generated point clouds. Most common, are segmentation
approaches that try to cluster closer points together and
classify the resulting groups [8], [9], [10], [11]. These
methods typically hold for both single (2D) and multi-layer
(3D) lidars. For the latter, voting schemes are also used
to vertically fuse single-layer clusters, obtaining part-based
models of the objects [12], [13]. In autonomous driving
applications, segmentation approaches previously tend to
remove the ground-plane [14], [15], easing the clustering
and classification steps. This heuristic is useful for the com-
putation of the bounding box of the detected object, as will
be shown in Section III-C. Other subtle clustering methods
create graphs over pre-processed 3D voxels, exploiting their
connectivity later in the classification step [16], [17], [18].
Recent methods scrutinize directly the 3D range scan
space with sliding window approaches. Vote3D [19] for
example encode the sparse lidar point cloud in a grid with
different features such as mean and variance of intensity, a
grade of occupancy, and other three different shape factors.
The resulting representation is scanned in a sliding manner

with 3D windows of different sizes and orientations, classi-
fying the final candidates using SVMs and a voting scheme.

For the classification of point cloud clusters, the standard
approach inherited from RGB algorithms, is to hand-craft
features such as spin images, shape models or geometric
statistics. Details of the most commonly used 3D features
can be found in [20]. Learning procedures have also been
used to obtain useful features via sparse coding, such as the
work in [21].

Deep Learning for 3D Lidar Object Detection. Following
the feature learning tendency, and aware of the success
of CNN models, a few authors are applying convolutions
over 3D lidar point clouds. For example, 3D convolutions,
which are commonly used for video analysis (devoting its
third dimension to the time variable) have been applied
for 3D vehicle detection in [22]. However, due to the
high dimensionality and sparsity of the data, deploying this
methods over point clouds implies a high computational
burden, which is not yet practical for on-line applications.
Reformulating convolutions is a solution. In this way, Vote3D
has been very recently extended in [23] by replacing SVMs
with novel sparse 3D convolutions that act as voting weights
for predicting the detection scores. Other methods design and
apply sparse convolutions, such as [24], [25].

Another adopted approach is to obtain equivalent 2D
representations of the 3D point cloud to apply the well know
and optimized 2D convolution tools. In this way, [26] built
a front view representation in which each element encodes
a ground-measured distance and height of the 3D point. On
top of this representation they apply a Fully Convolutional
Network trained to predict the objectness of each point, and
simultaneously perform a regression of the 3D bounding
box of each vehicle. Similarly, we classify 3D points as
belonging to vehicles or background although our image-like
lidar representation includes direct information about range
and reflectivity of the points and we use a more advanced
deconvolutional architecture, as it will be shown in Sections
III-A and III-B.

The very recent evolution of [26] combines their front
view representation of the lidar information with a bird’s
eye view to generate accurate 3D bounding box proposals
[27]. These are later fused with RGB images in a region-
based fusion network, obtaining state of the art results in the
detection challenge of the Kitti dataset. However, this method
does not fulfil the lidar-only requirement that we impose in
our work.

III. VEHICLE DETECTION & TRACKING

We reformulate the task of detecting vehicles in lidar
point clouds as a per-point classification problem in which
we want to obtain the probability of each sample to be a
vehicle, therefore: p(k|p;), where k € {vehicle, no-vehicle};
i € 1,..N, and p; € R? represents each point of the point
cloud P in the Euclidean space.



A. 2D Representation of Range Data

To efficiently exploit the successful deep convolutional
architectures, we project our point cloud to an image-like
representation through G(P) € R¥*W. This process is
sketched in Fig. 2.

To obtain the transformation G(-), we first project
the 3D Cartesian point cloud to spherical coordinates
sph(p;) = {&:,0;i,pi}. According to the Velodyne HDL-
64 specifications, elevation angles 6 are represented as a
H € R% vector with a resolution A of 1/3 degrees for the
upper laser rays and 1/2 degrees the lower half respectively.
Moreover, G(-) needs to restrict the azimuth field of view,
¢ € [—40.5,40.5] to avoid the presence of unlabelled vehicle
points, as the Kitti tracking benchmark has labels only for
the front camera viewed elements. The azimuth resolution
was set to a value of A¢ = 0.18 degrees according to the
manufacturer, and hence lying in W € R**'. Each H, W pair
encodes the range (p) and reflectivity of each projected point,
so finally our input data representation lies in an image-like
space G(P) € RO4x451x2,

To get the equivalent ground-truth representation needed
for the learning process, we use the Kitti tracklets, which
are given in the RGB space. These tracklets are converted to
3D and P* is obtained after labelling the inlier points. These
ground-truth 3D class labels are also encoded as one channel
in the G(-) image-like space, with pixels taking values of
1 for background and 2 for vehicles. Within the ‘vehicle’
class, we consider the associated Kitti classes for car, van
and truck. Yet, the evaluation methods of the benchmark do
not have into account truck classes, which may penalize our
Kitti measured performance.

B. Deconvolutional Networks for Vehicle Detection

For the per-pixel vehicle classification task, we propose the
deconvolutional architecture shown in Fig. 3, having in mind
the recent success of these architectures. Here we disclose
some of the key insights of our design.

To reduce the imbalance in the vertical and horizontal
dimensions of the Velodyne representations and obtain more
tractable intermediate feature maps, in the first convolutional
layer we impose twice horizontal than vertical. Initial convo-
lutional filter sizes are also designed according to the shape
of the vehicles observed in the new representation, so that
to obtain a receptive field consistent with it. Moreover, to
address the disproportion between the number of samples
of each class, we penalize misclassification of the positive
vehicle samples with w as seen in Eq. 2.

Since our contractive-expansive design could suppose an
information bottleneck in the narrow layers, we introduce
skip connections concatenating equivalent feature maps from
both parts. These links help the learning process of the lower
layers by back-propagating purer gradients from the upper
parts. Finally, we state the classification problem at different
resolutions of the network in order to obtain a direct and finer
control of the learning process. This is done by including
intermediate losses that guide the network faster to a correct
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Fig. 2. To obtain a useful input for our CNN-based vehicle detector, we
project the 3D point cloud raw data to a featured image-like representation
containing ranges and reflectivity information by means of G(-). Ground-
truth for learning the proposed classification task is obtained by first
projecting the image-based Kitti tracklets over the 3D Velodyne information,
and then applying again G(-) over the selected points.

solution, introducing new valuable gradients at these middle
levels.

Hence, the network is trained via end-to-end back-
propagation guided by the following loss function:

3

LOD,Y) =D MLe (P, V), )

r=1

where r represents the intermediate loss-control positions,
A, are regularization weights for the loss at each resolution,
and ), are respectively the predictions and ground-truth
classes at those resolutions.

In our approach, £, is a multi-class Weighted Cross
Entropy loss (WCE) [28], defined as:
H, W, K,

> wi)dy, jlog(Vijik),  (2)
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where Id|,(x) is an index function that selects the proba-
bility associated to the expected ground truth class and w(k)
is the previously mentioned class-imbalance regularization
weight computed from the training set statistics.

C. Obtaining the Vehicle Bounding Boxes

The output Y of the designed network is a matrix laying
in the G(-) € R%%45! space where each pixel represents
the probability of the corresponding 3D point to belong to
a vehicle. In order to obtain the vehicle bounding boxes
needed for the tracking and evaluation steps, we first apply
the inverse transformation G~*()) to the network output. In
this way, we obtain the equivalent classified 3D point cloud
P € R? that is finally clustered by means of an euclidean
threshold. For each resulting cluster a set of features is
extracted to build the EKF observation vector, such as the
centroid, height and ‘vehicleness’ (calculated as the mean of
the classification scores given by the network to that cluster).
Clusters are then projected over a polar grid on the ground
plane, accounting for each azimuth angle only the closest
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Our network encompasses only convolutional and deconvolutional blocks followed by Batch Normalization (BN) and ReLu (RL) non-linearities.

The first three blocks conduct the feature extraction step controlling, according to our vehicle detection objective, the size of the receptive fields and the
feature maps generated. The next three deconvolutional blocks expanse the information enabling the point-wise classification. After each deconvolution,
feature maps from the lower part of the network are concatenated (CAT) before applying the normalization and non-linearities, providing richer information
and better performance. During training, three losses are calculated at different network points, as shown in the bottom part of the graph.

point to the sensor. The aim of this process is to get the
external perimeter of each vehicle, which will ease the task
of fitting a 2D oriented rectangular model to any of them.

The oriented bounding box fitting process consist on
first performing an angular swept of bounding boxes in
the [—7, 7] interval. For each one we cast simulated 2D
Velodyne rays to obtain the geometrically equivalent impact
over the boxes. The best 2D fitting box is then chosen as the
one with the minimum mean square distance between the
real vehicle detected points and the simulated ones. Finally
we extract useful features for the vehicle observation vector
of the tracker, such as width, length and centre of the 2D
bounding box, as well as recover the 3D box using the

previously calculated cluster height.

D. Lidar-based Vehicle Tracking

We implemented a multi-hypothesis extended Kalman
filter (MH-EKF) for tracking bounding boxes according to
a realistic motion model suited for wheeled vehicles in road
environments. As vehicles transit on the road plane, the
2D bounding boxes (BB) are considered for tracking. Since
the true vehicle dimension and centroid are not measurable
through simple detections, we locate the BB origin at the
closest visible corner, which is indeed measurable. For each
BB we start a MH-EKF, which tracks its 2D position,
orientation and velocity. The state vector is

X:[pT 0 v p]T:[x y 6 w p]T 3)
where p £ (x,y) and ™ = (x,y,6) are the BB’s position
and pose, v is the linear velocity in the local z direction, and
p is the inverse of the curvature radius (so that the angular
velocity is w = vp).

Due to the limited geometrical information of the detected
bounding boxes, we establish multiple hypotheses for the box
motion: i.e, one moves along the main horizontal axis, and
another one across it. Initially we assign uniform weights
to all hypotheses w; = 1/N, i € [1,---,N]. Each EKF
estimation x; evolves normally according to the motion

model x < f(x,w, At), described as

Pi < Pi v [gfgggig] At “4)
0; < 0; +vip; At &)
Vi 4= VU + Wy (6)
pi < pi W, , @)

where <— represents a time-update; and the measurement
model y = h(x;) + v, described as

y=(mony)onms+v. (8)

In these models, w = (w,,w,) and v are white Gaussian
processes, © is the subtractive frame composition, 7y, is the
pose of the own vehicle, which is considered known through
simple odometry, and mg is the sensor’s mounting pose in
the vehicle. The measurement y = (g, ys,0s) matches the
result of the detection algorithm in sensor frame. At each
new observation, the weights are updated according to the
current hypothesis likelihood A;, that is,

1
Xi = exp(—=z] Z; 'z;) ©)

2 K3
W; < wi)\i, (10)

where z; =y — h(x;) is the current measurement’s innova-
tion, and Z; its covariances matrix. Weights are systemati-
cally normalized so that > w; = 1. Finally, when a weight
drops below a threshold T, its hypothesis is discarded. A few
observations after the initial detection only one hypothesis
remains for each filter.

This basic scheme is modified with the management of
the visible corners: in cases of partial occlusion or vehicle
overtake, we may have to switch the initially detected corner
(which may has gone out of sight) by the closest currently
visible one. This is done by trivially updating the (x, y) states
to the new visible corner, leaving all other states untouched.



IV. RESULTS

We measure the performance increase provided by our
CNN-based lidar detector over the presented MH-EKF
tracker in the Kitti Tracking benchmark. Additionally, we
provide insights of the precision/recall obtained by our
DeepLidar detector and a qualitative evaluation of the full
system that can be seen in Fig. 4.

The Kitti tracking benchmark is composed of a training set
of 8,000 Velodyne scans grouped into 21 different sequences
covering diverse urban environments. For these, 3D tracklets
defined over the corresponding RGB images are provided.
In addition, 11,095 scans are given in a test set grouped
into 29 sequences with no annotations provided. Velodyne
data timestamps are not given for any of the sequences
in the tracking benchmark. As our tracker integrates the
observations with the vehicle odometry, we therefore had
to create synthetic timestamps simulating the Velodyne data
at 10Hz as specified by the manufactures.

A. Full Working System

We designed and trained our Deep Learning models
using MatConvNet. Networks are initialized with the He’s
method [29] and use Adam optimization with the standard
parameters 51 = 0.9 and g2 = 0.999. Data augmentation
is done with a 50% chance by performing only horizontal
flips in order to preserve the geometry properties of the lidar
information. The training process is performed on a single
NVIDIA K40 GPU for 200, 000 iterations with a batch size
of 20 Velodyne scans per iteration. The learning rate is fixed
to 10~3 during the first 150,000 iterations after which, is
halved. We select the imbalance regularizator w as 25 and
the loss regularizers A, as 1, 0.7 and 0.5 respectively.

For the clustering step, we group 3D points imposing a
maximum distance of 1m. After that, clusters with less than
25 points or with a radio below than 50cms are discarded.
The remaining clusters and its respective bounding boxes are
then converted to ROS format and serve as input observations
for our tracker.

Each detected vehicle is assigned a bi-hypothesis MH-
EKF: one hypothesis assumes motion along the longest
rectangle dimension; the other across it. Each MH-EKEF is
set up as summarized in Tab. I, which shows (in order)
the number of hypotheses, the pruning threshold, the initial
means and sigmas of each hypothesis, and the process and
measurement noises’ sigmas. The orientation observation
noise is set to the maximum possible error for a rectangle,
5, and dynamically adjusted by a factor that depends on the
model fitting error and the cluster dimensions:

2
c= kw (11)
n(w +1)2

where 7, and r, are the ranges of the real points and the
virtual ones, n is the number of points, w and [ are the
width and length of the virtual rectangle, and % is a tuning
parameter experimentally set to 100. All metric units (r, 7y,
w, 1) are expressed in meters.

TABLE I
PARAMETER SETUP FOR ALL MH-EKFSs

param value | units / comment |

N 2 along and across

T 0.001

X1 zs,vys,0s,0,0 m, m, rad, m/s, 1/m
o1 2,2,7/2,20,0.2 m, m, rad, m/s, 1/m
X2 zs,Ys,0s +7/2,0,0 | m, m, rad, m/s, 1/m
o2 2,2,7/2,20,0.2 m, m, rad, m/s, 1/m
Ow 0.5,0.01 m/s, 1/m

Ov 0.9,0.9,cm/2 m, m, rad

B. Experiments

We first evaluate the performance of our point-wise convo-
lutional vehicle detector. In order to avoid over-fitting and au-
dit the generalization capacities of the proposed architecture,
we perform a 4-fold cross-validation step during training. In
this way, we train the same architecture selecting each time
different sequences to compose a validation set of around
1,000 samples in a manner that the vehicle vs non-vehicle
points ratio in the resulting sets remains similar. Averaged
results show that our detector is able to classify Velodyne
3D points from the validation sets with a mean precision of
82.3% and a recall of 87.6%. Notice that this measures are
point-wise, and do not refer to the number of vehicles, but to
the mean amount of points correctly classified for each scan.
However this results demonstrates the capacity of the trained
model to retain generalized information of vehicles according
to our input representations, which enables to train the final
model with the full 8,000 samples of the Kitti training set.

In addition, we measure the contributions of our DeepL.-
idar vehicle detector applied to the tracking task. For this
purpose, we evaluate the full system performance with three
different detection modules:

e Geometric: is our baseline detection approach which
uses the full raw Velodyne information as input. It
initially performs a ground floor removal, according
to [14] and applies a clustering algorithm over the
remaining points. Bounding boxes are then extracted
as described in Section III-C, to obtain the final detec-
tions. However, as there is not trustworthy information
about the vehicleness of the created clusters, additional
geometric constraints are introduced, e.g. no track is
created until a corner of the vehicle is identified.

o DeepLidar: is the proposed deep model trained over the
full training set. We therefore show the results obtained
over the testing dataset, which are provided by the Kitti
evaluation server.

e CNN-GT: its aim is to set the upper bounds of the
tracker capacities under ideally lidar vehicle detections.
For that, it simulates the perfect output of our convo-
lutional detector by using the ground-truth of our data
representation as predictions. As no noise is introduced
on the detection step with this approach, the threshold
discarding clusters with less than 25 points is lowered to
4. Tt is only evaluated in the training set, as ground-truth
is not provided for the test sequences.



TABLE I
QUANTITATIVE EVALUATION ON THE KITTI TRACKING BENCHMARK

Geometric DeepLidar CNN-GT

Train | Test || Train | Test Train

Mostly Tracked (%) 7.4 10.6 - 18.5 445
Partly Tracked (%) 56.5 45.1 - 52.2 47.7
Mostly Lost (%) 359 | 443 - 29.4 7.8
Recall (%) || 464 | 42.1 [ 554 79.0
Precision (%) || 44.1 | 375 - 63.8 73.9

False Alarm Rate 1.97 2.35 - 1.06 1.00
MOTA -25.7 | -38.9 - 15.5 41.9

The quantitative tracking results of the proposed system
are shown in Table II. Since there is no single ranking criteria
to evaluate the tracking task, we follow the Mostly-Tracked
(MT), Partly-Tracked (PT) and Mostly-Lost (ML) evaluation
measurements from [30], as we consider that it reflects better
the contributions of the different detector schemas over the
final tracking results. This criteria accounts as MT targets
those that are successfully tracked for at least the 80% of its
life span, whereas as ML the ones with less than 20%, and
PT the rest. In addition we include the CLEARMOT MOTA
metric [31]. It is commonly used due to its expressiveness,
as it combines in one single criteria three sources of errors
(False Negatives, False Positives and ID-Switches) over the
number of ground truth objects. It reports a percentage
between (— inf, 100], which takes negative values when the
number of errors made by the tracker exceeds the number of
total objects in the scene.

The importance of our detector is stated through the
noticeable improvements with respect to the geometric base-
line method in all the metrics. Our CNN configuration is
able to reduce by almost 15% the ML targets, providing
better target tracks, which is reflected as an increase of
the MT and PT values. The difference of our DeepLidar
approach with respect to the ideal CNN-GT detector is in fact
understandable. Considering that there is no noise introduced
by the ideal detector, there is no need for setting a minimum
cluster size and therefore farther vehicles can be tracked,
which directly reflects in a better MT and MOTA. On the
other hand, the fact that this ideal system does not achieve
perfect results is explained by the own Lidar technology
(very far vehicles are impacted by very few points or not
even impacted).

It is noteworthy to mention at this point that the eval-
uation measurements for the Kitty tracking benchmark are
performed on 2D bounding boxes over RGB images. When
working only with Lidar information we need to project our
3D tracked bounding boxes to 2D images, which results in
lower image pixel-level accuracy and therefore penalise our
Lidar-only systems. As a fact, Kitti RGB images contains
almost 1.4M (375 x 1242 x  3) colour samples. When
compared to image tracking methods our CNN inputs only
have 64 x 451 x 2, which means that we perform the full
vehicle detection and tracking pipeline with just a fraction
of 4.13% over the total values of the RGB methods.

V. CONCLUSIONS

In this work we presented a full vehicle detection and
tracking system based only on 3D lidar information. It
combines a convolutional neural network performing a point-
wise vehicle detection, with a multi-object tracker. Our
CNN-based detector classifies each 3D laser point as be-
longing to a vehicle or not by using a featured 2D-lidar
representation which involves both range and reflectivity
information. The resulting positively classified points are
then grouped together to create identification hypotheses,
and fed to a multi-hypothesis Extended Kalman Filter to
track their motion. We evaluated our system on the KITTI
tracking dataset, showing that the inclusion of the CNN-
based detection module improves systematically the whole
system performance.
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