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Abstract

This paper proposes a distributed model predictive control (MPC) ap-
proach designed to work in a cooperative manner for controlling flow-based
networks showing periodic behaviours. Under this distributed approach,
local controllers cooperate in order to enhance the performance of the whole
flow network avoiding the use of a coordination layer. Alternatively, con-
trollers use both the monolithic model of the network and the given global
cost function to optimize the control inputs of the local controllers but
taking into account the effect of their decisions over the remainder sub-
systems conforming the entire network. In this sense, a global (all-to-all)
communication strategy is considered. Although the Pareto optimality
cannot be reached due to the existence of non-sparse coupling constraints,
the asymptotic convergence to a Nash equilibrium is guaranteed. The re-
sultant strategy is tested and its effectiveness is shown when applied to
a large-scale complex flow-based network: the Barcelona drinking water
supply system.

Keywords: flow networks, distributed control, large-scale systems, eco-
nomic model predictive control



1 Introduction

Flow-based networks are a relevant example of complex and large-scale systems
being composed of multiple subsystems including communication and/or topo-
logical constraints. Hence, for such networks the overall management in a central-
ized implementation where a unique agent uses model predictive control (MPC)
might not be the best option regarding key features such as reliability of the sys-
tem operation and maintenance of the monolithic prediction model. For these
reason, the development of non-centralized control approaches have been the ob-
ject of study within the control community during the last few years. Some of
the existent approaches already proposed in the literature (Christofides, Scat-
tolini, de la Pena, & Liu, 2013; Negenborn & Maestre, 2014; Riverso, Farina, &
Ferrari-Trecate, 2013) consider that large-scale networks are either partitioned
into subsystems with individual local controllers or the plant-wide optimization
problem is split into a set of simpler and smaller optimization problems that are
coordinated by a supervisory layer afterwards. The relevant roles of both parti-
tioning and distributed optimization have been deeply discussed and highlighted
in key references for large-scale systems and decentralized control (Lunze, 1992;
éﬂjak7 1991) or decomposition of mathematical programming problems (Conejo,
Castillo, Minguez, & Garcia-Bertrand, 2006).

Several methods are reported in the literature to transform the centralized
optimization problem related to an MPC design to a distributed implementa-
tion such as optimality condition decomposition, Dantzig-Wolfe decomposition,
Bender’s decomposition, among others also based on primal decomposition ap-
proaches. These methods are highly dependent on the form of both the cost
function and the system constraints, being specific for certain problem struc-
tures that might not comprise most of the actual large-scale flow-based net-
works. Consequently, graph theory appears as a suitable tool for performing the
partitioning of such large-scale systems into subsystems. Flow-based network
partitioning consists in determining subsets from the set of global variables and
then assigning those subsets to local agents in charge of controlling the resultant
subsystems. Although the partitioning problem is a topic out of the scope of this
paper, the reader can find several approaches reported in the literature that cope
with this issue, e.g., Jilg & Stursberg (2013); Kamelian & Salahshoor (2015); Mo-
tee & Sayyar-Rodsari (2003); Ocampo-Martinez, Bovo, & Puig (2011). In this
paper, the corresponding partitioning of the considered network is supposed to
be given (as often assumed into the related literature). This way of treating the
large-scale networks correspond to the well-known concept of system-of-systems,
where there is a compositional set of partitions (subsystems) instead of splitting
the whole related optimization problem.

According to J. B. Rawlings & Stewart (2008), the proper exchange of in-



formation about the interaction among local controllers does not establish a
sufficient condition for neither guaranteeing closed-loop stability nor optimal per-
formance of the network system due to the existence of competitive behaviour.
Therefore, in order to reduce the sub-optimal operation of the network (also in
economical terms), a cooperative strategy among all the local controllers should
be included. Possible ways of reaching this cooperation are through coordi-
nated, cooperative or hierarchical MPC strategies, which are based on negotiation
and/or coordination mechanisms in order to get results close to the centralized
solution. However, both achieving and guaranteeing recursive feasibility are some
of the main issues to be addressed by all the decentralized /distributed control
schemes. From diverse approaches proposed in the literature (e.g., Negenborn
& Maestre (2014) and references therein), a differential classification feature is
the information that local agents/subsystems exchange (dual variables, prices,
predicted trajectories, among others). Without loss of generality, two cases can
be considered:

e schemes using local information with iterative communication in order to
enhance the performance but guaranteeing feasibility of the related opti-
mization problems subject to convergence to the global optimal solution;

e cooperative schemes based on the ideas reported in Stewart, Venkat, Rawl-
ings, Wright, & Pannocchia (2010), where, through centralized prediction
models and exchanging global information, recursive feasibility of the op-
timization problem is guaranteed (sometimes with non-iterative communi-
cation).

In the former cases, approaches such as the sharing of variables among the agents
as local disturbances (and then designing robust local controllers) are considered
in order to guarantee feasibility of the plant-wide optimization problem no matter
the performance of the system was worsen. Regarding the latter schemes, they
in general asymptotically converge towards a central optimum under particular
assumptions of structural nature (e.g., sparse couplings).

Within the framework of flow-based networks, the motivation of using non-
centralized control topologies is not always related to the time saving in control
input computation (computational burden) but oriented to gain key features
such as modularity and scalability of the control scheme. Furthermore, an im-
portant drawback of centralized control topologies relies on the fact of main-
taining a monolithic system model that cannot remain unchanged during long
time periods, as the case of certain critical infrastructure systems such as oil/gas
transport networks, urban water networks, among others. When a centralized
system model is available, it would be possible to design a controller by using
the ideas reported in Stewart et al. (2010) into the cooperative distributed MPC



considering standard cost functions. Unlike some distributed MPC approaches,
this cooperative-based control strategy does not demand the use of a coordina-
tion layer. Contrarily, subsystems share their local models and cost functions
among them, but computing only their control inputs based on the input predic-
tions from the remainder subsystems. Although the technique is based on the
iterative exchanging of local solutions to enhance the performance of the whole
system, it does not require reaching the optimality to guarantee recursive feasi-
bility. This fact is a quite significant feature of the considered approach because
the proper system operation does not depend on any sudden and/or early ending
of the optimization problems running in parallel.

This paper extends the the results presented in Lee & Angeli (2014) to the
cooperative MPC strategy for the case of flow-based networks with periodically
time-varying behaviour. Hence, the contribution of this paper is the formal design
of a cooperative distributed MPC strategy implemented in an iterative manner
in order to guarantee key properties such as recursive feasibility of the associ-
ated optimization problems and the convergence to a Nash equilibrium in case
of flow networks with both linear and periodic behaviour subject to both convex
constraints and strictly convex cost functions. The proposed approach aims at
distributing the optimization of centralized MPC problem among several local
controllers with their respective and simpler optimization problem. In such ap-
proach, each distributed controller solves a suboptimal centralized MPC problem
with periodic terminal cost/region but optimizing only the control inputs that
have been assigned to it in a previous decomposition of the vector of inputs. The
control input to be applied to the entire plant is then obtained through a convex
combination of solutions from distributed optimization problems. The resultant
cooperative MPC controller is able to guarantee the asymptotic stability of the
optimal periodic trajectory of the whole network.

For illustrating purposes, a real case study based on the Barcelona drinking
water supply system is used. This network can be modelled as a flow-based net-
work at the supply level (see Ocampo-Martinez, Puig, Cembrano, & Quevedo
(2013) for more details) since the control objectives are concerned about the
satisfaction of water-flow demands at the minimum cost without caring about
the pressure satisfaction (which is handled at the distribution level). Moreover,
both water demands and electricity prices present a daily periodic time-varying
behaviour that is also induced in the system dynamics when considering an eco-
nomic objective in the MPC controller fitting with the conditions assumed by
the proposed approach.

The remainder of this paper is organized as follows. Section 2 presents the
problem statement. Next, Section 3 collects the explanation and discussion of
the proposed cooperative distributed MPC approach for flow-based networks. In
Section 4, the effectiveness of the proposed approach is shown using the Barcelona



drinking water supply network as a large-scale complex case study. Moreover,
in the same section the assessment of the controller design is performed by com-
paring the performance of the closed loop when using other centralized and dis-
tributed MPC-based approaches reported in the literature. Finally, in Section 5
the main conclusions and future lines of research are drawn.

Notation

Throughout this paper, R, R", R™*™ and R, denote the field of real numbers,
the set of real column vectors of length n, the set of m by n real matrices and
the set of non-negative real numbers, respectively. Moreover, Z and Z, denote
the set of integer numbers and the set of non-negative integers including zero,
respectively. Define the set Zs. = {x € Z | x > ¢} for some ¢ € Z, and the set
Zicyes) ={x €Z| ¢y < <o} for some ¢y, ¢y € Z and ¢, > ¢;. For a symmetric
matrix Z € R™" let Z > 0(> 0) denote that Z is positive definite (semi-definite).
For a vector x € R", z(;) denotes the i-th element of x and || - ||z denotes the
weighted 2-norm, i.e., ||z|z = (27 Zx)"/? with Z = 0. Besides, 0 denotes a
zero column vector and [ the identity matrix, both of appropriate dimensions.
By superscript | transposition is denoted and the operators <, <,=,>,> are
element-wise relations of vectors. Additionally, |i]; = mod(7, j) is the module
operation between integers i,j € Z..

2 Problem Statement

In this paper, a flow-based network is considered to be described by a directed
graph formed by arcs that interconnect supply, intermediate and sink nodes
according to a given network topology that allows the flow of a certain commodity
through the network. The intermediate nodes can be dynamic or static nodes.
The dynamic nodes have non-zero storage capacity, while in the static ones the
transshipment of the commodity is immediate.

Specifically, this section addresses flow-based networks whose dynamics can
be described by a possibly time-varying discrete model of the form

Tpr1 = f(k, xp, up) = Apxy, + Bruy, + Exdy, (1)

where z € R”, u € R™ and d € RP represent the network state, control input
and exogenous input vectors at time step k € Z,, respectively. The exogenous
input d is assumed to be known and bounded for all k. The matrices A, € R™*",
B, € R™™ and E, € R"*? are also known for each time step.

Additionally, the flow-based network model is complemented by a constraint
set that compactly describes the storage and flow capacity constraints, as well



as possible operational constraints. For the class of networks considered in this
paper, the following constraint set is considered:

Y, = {(a:,u) EXXU|FkU+dek:0} VkeZ_;,., (2)

with X ={z e R" |0 <z < Zpa}, U={u € R" | 0 < u < upax}, Fr € R
and G € R?”?, where . € R is the vector of maximum capacity of storage
in dynamic nodes, um.x € R is the vector of maximum capacity of flow through
arcs and ¢ € Z, is the number of static nodes. Notice that requiring zero lower
bounds on x and u is not a restrictive assumption, since it is always possible to
perform a shift on the variables and modify their bounds (Blanchini, Rinaldi, &
Ukovich, 1997).

Assumption 1 There exist dominance conditions such that the set Yy in (2) is
non-empty for all d and all k € Z. \Y%

In the sequel, the system in (1) is considered to be decomposed in M € Z>,
coupled subsystems denoted by S;, i € Zy; ay. As discussed in the Introduction,
most cooperative distributed MPC approaches often require that the subsystems
use the same global model or share their local models, constraints and cost
functions with each other, in addition to communicate their future action plans.
Therefore, without loss of generality, it is assumed here that for all k£ € Z ., the
global vectors xy, ug, dy are formed by the permuted composition of the local
states, local control inputs and local exogenous inputs of each subsystem S;, and
are denoted as ZBE] e R™, ug} € R™ and dg] € RP respectively, i.e.,

xg] UE} dE]
Ty = : ;o Up = : , dp = : (3)
xLM] UECM] dECM]

The decomposition ensures that "M n; = n, M m; = m, S0 p; = p and
Zi]‘il ¢; = q for n;,m;,p;,q¢; € Z>;. Similarly, given that it is supposed that
the resultant decomposed system is input coupled, i.e., subsystems only shared

control inputs, matrices Ay, B, Ej, Fr and Gy are composed by block matrices
related to the local subsystems, i.e.,

[ Ing .- 0 [ Biix .- Biugk
A=l Be=| 1 ]
0 ... Iny L Bmi,k  --- Bummk
[ Ei1e - 0 T [ Fuie oo Fivg
0 N VSR L Fmie - Fumgk
T 0
Gp = : : ,
0 oo Gume




where block matrices Bj;, € R"%*™i E;; € R%>*™i 0 Fl € R9*™ and Gy, €
R%>Pi for all 4,j € Zp, and all k € Z,. Since the couplings in the network
exist via shared control inputs only, matrices Bj;x € and Ej;y, with j € Zp
and j # 4, describe the effect that the input vector qu} of subsystem &; has on
all the subsystems S; at time step k.

Furthermore, it is considered that each subsystem S; has attached a local
(agent) controller Cy, i € Zp a, which is equipped with the plant-wide model
rewritten in the following form:

M
Tpy1 = f(/{;, T, uk) = Akxk + Bi,ku,[z] + Z BMULJ] + Ekdk7 (4)

=1

i
where, for all k& € Z,, the global state x; and global exogenous input d; vec-
tors satisfy point-wise constraints as does (1), while the local control actions

satisfy constraints ug] € U; € R™ for all © € Zp py. All the sets are assumed

compact and particularly the local input sets are considered disjoint, satisfying
U= Hf\il U;. Therefore, the constraint set of each controller C; is rewritten as
follows:

Y, = {(a: u)EXxHU |Ekuk +Fk+Ed,kdk:0}7 (5)

=1
forall k € Z,, with I'y = Z] 1 kuk . Matrices B, and E;; in (4) and (5) are
given by the columns of the comp0:31te matrices B, and E}, respectively, i.e.,

Bk Eqik

for all i@ € Zp -

Assumption 2 The state x;, and the exogenous input dy. are fully measured at
any time instant k € 7., . \Y

Having the general system description in place, the rest of this paper spe-
cializes on periodically time-varying systems. The control goal is to minimize a
(possibly time-varying) stage cost function ¢ : Z, x R" x R™ — R, which ideally
is related to the economics of the considered system.

Definition 1 System (1) is called T-periodic if there exists a T € Z>y such that
for all (k,x,u) € Zy x R™ x R™ it holds that f(k,x,u) = f(k+ T,x,u). The
smallest such T is called period of system (1).

7



Assumption 3 (Properties of constraint sets) The constraint set is periodically-
time varying, i.e., Yo v = Yy, and satisfies in addition Y, C C for all k € Z,
and some compact set C containing the origin. \Y%

Assumption 4 (Periodicity and continuity) The functions f and { are con-
tinuous and twice continuously differentiable on Yy for all k € Z,. More-
over, both functions are T-periodic, i.e., f(k,-,-) = f(k+1T,-,-) and {(k,-,-) =
Uk+T,- ). \Y

Given the definition of f in (1) and Assumption 4, this paper considers that
in a periodic flow-based network, the exogenous input vector and all the system
matrices are T-periodic and known for each time instant k, that is, dp = diir,
A = Apyr, Bip = Bipir, Bx = Epyr, Fr = Feyr and Gy = Gy, with
T € Z>, the period of the system as mentioned in Definition 1. Notice that a
time-invariant system is a T-periodic system with period T" = 1.

In view of Assumption 4, an optimal scheduling of the system operation can
be computed by solving a T-horizon optimization problem. To this end, consider
the following definitions.

Definition 2 A set of state/input pairs I = {(Zo, o), ..., (Tr_1,Ur—_1)} with
T € Zsy is called a feasible T-periodic orbit of system (1) if (Zy,u) € Yy for all
te Z[O,T—I]; «ft—l—l == f(t, .ft, ﬁt) fOT all t € Z[O’T_Qb and fo = f(T — 1, «fT—la ﬂT—l)-
It is called a minimal T'-periodic orbit if Ty, # Ty, for all ki, ks € Zjo -1 with
ki # ks.

Definition 3 The optimal minimal T-periodic orbit is obtained by solving the
following optimization problem with known periodic sequence dp = {dt}teZ[

0,T—1]
and known parameter pr = {pt}tEZ[O,T—l] :
T-1
VJ[“)(kadTapT) = I_nl[l g(k +taftaat)7 (73)
om0
subject to
it-{-l - f(t, jft, ﬂt), Vt € Z[()’T_l] (7b)
(,’ft, ﬂt> € Yt, YVt € Z[O,T—l] (7(3)
To = I, (7d)

from which the optimal state and input periodic trajectories can be constructed
from the solution of (7) as X* == {Z}}ezyy,_, and 0 = {U; bezy ), respec-
tively. Each d, element is the affine term corresponding to the function f(t,-,-),



and each p; element defines the cost ((t,-,-). Hence, the best T-periodic orbit is
given by

(de,pr) = ({20 ®)

In general, ¢(k,-,-), k € Z,, need not satisfy strict convexity or positive
definiteness with respect to any set-point and there does not necessarily exist a
unique optimal solution (x*,@*). In the following, one of the feasible solutions
can be arbitrarily selected or the cost function can be regularized to obtain a
unique optimal solution. In this latter case, from optimality and periodicity of
the solution, it holds V2(0,dr, pr) = V2(k,dr, pr) for all k € Z,..

In order to induce cooperation between the local controllers, each of them
is equipped with the same cost function used in a centralized MPC approach
for the periodically time-varying case with a related finite-horizon optimization
problem of the form

Pn(k, g, dr, pr):

N-1
I{lliﬂ Vn(k, 2, 0g) = Z Ok +t, Tpy iy Unrolr)
=0
+ Vi(k + N, 2y nik) (9a)
subject to
Tiyrrilk = f (K + 1, Thogei, Ungei),  VE € Zpn-1) (9b)
(Thstlr Ungtp) € Y, VEE Zgn_y (9c)
TrrNk € Xp(k + N, 2in ) (9d)
Tglk = Tk, (9e)

where dr = {dkﬂ}tezm’ N1 is a known T-periodic demand sequence involved in
the definition of the dynamics function f and pr = {pk—&-t}teZ[Q ~_y 18 a known
T-periodic parameter defining the time varying nature of the stage cost. The
function Vy : Z, x R™ — Ry is a time-varying penalty on the terminal state, and
the set Xy(k + N, Z};, x),) € Xptn is a time-varying compact terminal region
containing the periodic target state Zj; | v in its interior. It is quite important
to highlight that although each controller Cj, ¢ € Zp ) is equipped with the
same optimization problem (i.e., (9) seems to be related to a centralized MPC),
it can adjust only the inputs under its control authority for the corresponding

subsystem ;. The rest of the elements of the composite input vector in the i-th



local problem are assumed to be fixed parameters that are determined by subsys-
tems S, j € Zp,ay, J # @ It is also important to highlight that this cooperative
scheme requires further that all the local controllers have to be synchronized to
update simultaneously the global state, input, and demand vectors. Although
this requirement could be seen as a strong condition that limits the applicability
of the approach, nowadays industrial automation systems require high availabil-
ity for both time and signals synchronization with zero grandmasters take-over
time or zero sync path switch-over time in case of master or communication link
failures. This fact makes the proposed approach feasible to be considered for
being implemented in real case studies.

Denote by X, C R™ and U, C R™ the projections of Y, at each time step k
on the state and input domains, respectively. Let {St}tEZ[O,Tfl] denote a sequence
of sets with S; C X, for all ¢ € Zjgr_1), T € Z,. Then, the following definitions
are introduced.

Definition 4 The sequence {St}tEZ[O,T—l] 15 called periodically positively invari-
ant (PPI) for an autonomous system of the form xyy = f(k,xx) if for each
k€ Z, 1t holds that x € S(i|, implies Trpy1 € Sipy1)y-

Definition 5 System (1) is called strictly dissipative with respect to a T-periodic
supply rate function s : Z, x R™ x R™ — R if there exists a T-periodic storage
function A : Z; x R" — Ry, and a K function p(-) such that the following
inequality holds for all (x,u) € Yy and all k € Z,:

s(k, x,u) + Mk, ) = Ak + 1, f(k,2,0)) 2 p(|(2,w)|n@r pr)- (10)

3 Proposed Approach

This paper proposes a cooperative distributed MPC scheme for periodic flow-
based networks. The formulation of the local optimization problems considered
in this section is based on the periodic terminal penalty and region used in (9).
Hence, the design of the MPC strategy relies on the satisfaction of Assumptions
5 to 7 below.

Assumption 5 (Strict dissipativity) The periodic system (1) is strictly dissi-
pvatz've with respect to the supply rate defined as s(k, x,u) = (k, z,u)—L(k, Tk)po ﬂTkJT).

Assumption 6 (Continuity of functions) Both the terminal penalty function
Vi(k,-) and the storage function \(k,-) are T-periodic and continuous on the sets
Xy (, i’kaT) and Yy, for all k, respectively. \Y

10



Assumption 7 (Periodic positive invariance) There exists a T-periodic se-
quence of convex compact terminal regions {Xy(t, T7) Yezy oy, with each Xy (¢, 77) C
X; containing the point Ty in its interior, a periodic terminal cost function
Vi Zy x R® = Ry, and a periodic auxiliary control law ky : Zy x R® — R™
such that the following conditions hold for all k € Z and all x € Xy (k, a’ckaT):

Vf(k + 17 f(k,ﬂi‘, Hf(k‘,l‘))) < Vf(k‘,l‘) - g(k,il?, K,f(/{,l’)) + g(k7fthT,ﬂthT),

(11a)
f(k?,x,lif(k‘,l')) eXf<k+1’ftk+1JT)v (11b)
(x,kp(k,x)) € Y. (11c)

\%

3.1 Proposal Insights

In detail, each local controller Cj, ¢ € Zp ), computes the control actions by
solving the following optimization problem:

PJ[@(k; Ty, dr, pr):

N-1
Hllll]n Vv (k, zp, ug) = Z Uk + T, Tk, Wrerey)
uy t=0
+ Vi(k + N, T nii), (12a)
subject to:

Thptrie = f (K + 1 T, Ugeie), V€ Zpo 1 (12b)
(ki Ukttk) € Yige, VEE Zjo -1 (12¢)
Tk+N|k EXf<k+N7itk+NjT)7 (12d)
Tk = Tk, (12e)

il

Ml
U.Lj] — ugg]’p’ \V/j = Z[LM] \ {Z} (12g)

[Z] — [7’] 1 1a1 []]7]) — [J]vp
where w;” = {w’ bz, v ) is the decision vector and w™ = {u;7, hez v

for all j € Zp ag \ {i} is the current input sequence computed and transmitted
by the j-th subsystems at the p-th iteration. The rest of variables, parameters

11



and functions in the optimization problem are the same as in (9). Additionally,
a formulation based on a periodic terminal equality constraint can be obtained
from (12) by setting Vy(k + N, zx+npk) = 0 and defining Xy (k + N, 27, v,) =
{f[k-;-NJT}'

As shown in Stewart et al. (2010) and Lee & Angeli (2014) for invariant sys-
tems, generally the cooperative distributed MPC designs rely on a set of local
optimization problems that follows the model structure of a centralized MPC
formulation, whose theoretical results (i.e., asymptotic average performance, re-
cursive feasibility and stability) rely on convexity or dissipativity assumptions
and the existence of sub-optima but feasible shifted candidate solutions. Thus,
it might be expected for periodically time-varying flow-based networks that the
cooperation between local controllers in a distributed fashion inherits the benefits
of the terminal penalty /region based MPC approach (Angeli, Amrit, & Rawlings,

2012).
Hereafter, consider (with some abuse of notation) that the vector uy of input
sequences can be denoted as (ug], uf], cee ung]). Then, the principle of operation

of the proposed cooperative distributed MPC strategy is summarized by Algo-
rithm 1. The inner loop of Algorithm 1 is based on iterative parallel optimization
of the Gauss-Jacobi type, which for convex problems generates feasible iterates
with non-increasing objective function values. Contrary to the distributed ML-
DMPC scheme presented in Ocampo-Martinez, Puig, Grosso, & Montes-de-Oca
(2014), the cooperative distributed MPC scheme discussed above does not in-
clude a coordination layer and subsystems just need to exchange under a global
communication strategy the information regarding their predicted inputs. Ad-
ditionally, recursive feasibility can be ensured from the first iteration, and even
though the subsystems can stop after any number of iterations the stability of
the closed-loop system is still guaranteed.

3.2 Properties of the Cooperative Distributed MPC

Similarly to the non-periodic case discussed in Lee & Angeli (2014), the inner
loop of Algorithm 1 leads to three important properties which are stated below
for the periodic formulation.

12



Algorithm 1 Cooperative Distributed MPC with Terminal Penalty

1: Inputs: Current state x, initial feasible (not necessarily optimal) sequence
g, network decomposition A, periodic sequences dr and pr, periodic ma-
trices Ay, Bk, Bak, Euk, Edk, Pmax > 1, a; € (0,1) such that sz\il o; = 1.

2: Output: Closed-loop trajectories (zy,ux), k € Z>1

3: Set k<« 0

4: while k£ > 0 do

5: Set p <0, = <z}

6wl all for all i € Zy

7: Transmit the inputs ul? from current subsystem to the rest of subsystems
8: while p < p do '

9: Solve problem (12) to obtain ug]* Vi € Zp,m
10: Set ug]’pﬂ — aiug]’p +(1— ai)ug]* Vi € Zp
11: Set p+p+1
12: end while
13: Set uy, <+ (ug]’p, uf]’p, . ,uLM]’p) and obtain gy < f(N; zg, uy, dr)
14: Obtain uy = (u14, Usy, ..., uny) < Kp(k + N, Tpne)
15: Compute next warm start ﬁﬂl = (ug}fiw, ugﬁlk, Uiy ) Vi€ Zip v
16: Set input as uy, = (u%},;p, uE'],;p, . ,u%]’p)
17: Apply input u; to the system to obtain xy,

18: k< k+1
19: end while

3.2.1 Recursive feasibility
Given the feasibility set Fy (k) defined as

]:N(k) = {(l“k,uk) \ Tk = Tk,
Trperik = f(5 + 1 Tpgon, Uerok),
(T ksl Ukptk) € Yipe, VEE Lo n—1],
TNk € Xp(k+ N, 2y, ) (13)

and any feasible initial condition (zy, (uE],uE], . ,uLM])p) € Fn(k) for some
p € Z., then the pair obtained from the same current state and any future
input iterate obtained as specified in Step 10 of Algorithm 1 is also feasible.
That is, (v, (ugj],u,[f], . ,uECM})pH) € Fn(k) for all | € Z,. This follows from
convexity of the set U and the fact that any convex combination of states and
input sequences in Fy (k) also belong to the set.

13



3.2.2 Convergence

The cost Vi (k, xy, uf) decreases on each iteration and is convergent as p — oc.
This property can be shown from the monotonicity of the cost, which follows
according to

VN(ka Ll uZ];"rl) =

M
Y (k Th D0 (ug},p7 o uECM]’P)>

i=1

M
< Z a; Vy (k, Tp, <u£€1]’p, . ,u%]*, . ,uLM]’p>>
i—1

M
< Z a;Vn (k:,xk, (ol ,uLM]’p)>

i=1
= VN (k, Tk, ui) .

The first equality follows from Step 10 of Algorithm 1. The first inequality
follows from convexity of the function Vj, while the second inequality follows
from optimality of ul’*, i € Zp - The last equality follows from the condition
of the convex combination of weights «;, i.e., Zf\il «; = 1. Because the cost is
lower bounded, it converges.

3.2.3 Optimality

The iteration (u,[j]’p e, qu“’ s u/[,CM}’p ) converges to the set of Nash equilibria as

p — oo and not to a Pareto (centralized) solution. This means that the iterated
cost ends up in deadlock situations where, for a set of strategies (ﬁg], e ,ﬁ,E:M]),

it holds

VN(ka Tk, (ﬁggl}7 s 7ﬁLM])> S

vN(k’ Lk, (ﬁ£€117 Ty ﬁgj_l}: ﬁgcl]v ﬁg+1]7 e 71~1E€M}))7

for all ug]. This property was formally proved in Lee & Angeli (2014).

In the class of systems addressed in this paper, the convergence to the so-
lution of the centralized problem by means of the aforementioned cooperative
distributed MPC strategy is hampered mainly due to two reasons: (i) the input-
coupled constraints that describes the mass balance in static nodes and, (ii) the
couplings introduced by the terminal constraint (12d) used in the proposed ap-
proach. If only sparse input-coupled constraints are present, a method to recover
the Pareto optimality in a standard tracking MPC scheme has been proposed
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in Stewart et al. (2010). Nevertheless, since the terminal state constraint in
Problem (12) is strongly coupled, convergence to Pareto optimality is still not
attainable with the approach presented in this paper.

Regarding the outer loop of Algorithm 1, recursive feasibility follows from the
terminal equality constraint (12d) and the existence of a suboptimal but feasible
candidate solution for the next time instant (obtained from Steps 14 and 15 of
Algorithm 1). This latter warm start, in addition to Assumptions 1 to 7, allow
to establish the following result.

Theorem 1 (Stability) Consider a T-periodic flow-based network described in
the form of (1) subject to (2), and the local controllers C; equipped with (4)
and (5) for all i € Zpay. Let Assumptions 1 to 7 hold and II(dr,pr) be
the best feasible T-periodic orbit of the system obtained by solving (7). Then,
IIx(dr,pr) = {Zo,...,Tr_1} is Lyapunov stable for all feasible initial state
rog € Xy for the distributed closed-loop system. The periodically time-varying
Lyapunov function is Vy(k,xy), and satisfies

Vi (k, zx) > oo (lzw — 7)), (14)
Vi (k, zx) < ao(llow — 7)), (15)
ng(k + 1vxk+1) - V]?/(kvxk) < _al(”xk‘ - J_"ZH)? (16)

Vo, € Xy, k € Zso, with oy and oy being class K functions.

Proof 1 This result follows directly the stability analysis for a centralized eco-
nomic MPC' scheme together with the convergence and optimality properties dis-
cussed in Section 3.2. Regarding such stability analysis, consider the optimal
modified cost function for xy € Xy, i.e.,

N-1

Vy(k,ay) = Z Lk +t, 2 g W) + Vi(k + Ny vig)s

t=0
according to (21) and (22) in Appendiz A. The lower bound imposed by inequality
(14) follows directly from Lemma A.4. The upper bound in (15) follows from
Lemma A.2, Lemma A.4 and Proposition 2 in J. Rawlings & Mayne (2011).
Finally, condition (16) can be proved following the same analysis used in the
proof of Theorem A.1 for the original cost. Specifically, from Assumption 7 and
Lemma A.1, it follows for the rotated cost function (9a) that

Vn(k+1, Thy 1k Wi1) < Vy(k, ay) — Lk, x, UZUJ (17)

By optimality, VI(k + 1,041, Ugy1) < Vin(k + L@}, ,). Hence, from (17) and
Lemma A.4, it holds that

Valk +1,2501) — Va(k, 2) < —aq(||zr — 23]), Vo € Xp, (18)

which guarantees the satisfaction of the conditions in the theorem.
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4 Application Results

To assess the effectiveness of the approach proposed in Section 3, a case study
based on the aggregate model of the Barcelona drinking water supply network
(DWSN) is considered as already discussed in the introduction.

4.1 Case Study Description

The Barcelona DWSN is currently operated by AGBAR!. This network supplies
drinking water to the Metropolitan Area of Barcelona (Catalonia, Spain). The
considered part corresponds to the water supply network in charge of extracting
water from the sources (rivers), transporting it towards the storage tanks, for
final delivering it to users through the water distribution network.

The aggregate network model considered in this paper is a simplification of
the entire system, where groups of elements have been merged (Figure 1). In
particular, the case study has 17 tanks (i.e., n = 17), 61 pumps and valves (i.e.,
my = 61), 25 demand sectors (i.e., ¢ = 25), 11 nodes (splitting and merging
water) and 9 water sources (rivers, aquifers and wells). See Ocampo-Martinez et
al. (2013) for further details.

The main control objective to be achieved in the Barcelona DWSN is to
guarantee the satisfaction of consumer demands while minimizing the economic
cost of water production and transport. This fact is achieved by including in the
objective function of the MPC controller the following performance criteria® for
all discrete-time instants k € Z:

Cp (X, Uk Cukey Co k) = clkWe up At + cl’kthk, (19a)
— s5) Wiz — if 25, <
Us(wy; sx) = {(xk ) (e = se) i @ __Sk (19b)
0 otherwise,

The first goal, {p(Tk, Uk; Cuk, Czr) € Rsg, corresponds to the economic cost of
operation at time instant &, which has two parts ¢, = (¢1 + cox) € R, Those
parts include both water production and electricity costs associated to water
pumping. The former is included in ¢; € R, while the latter is included in
cox € RT. Electrical cost varies during the day according to the tariff (usually

with a daily periodicity). On the other hand, the cost ¢, € R"} is associated to

! Aguas de Barcelona, S.A. is the company in charge of the management of the drinking
water network in Barcelona (Spain).

2These performance criteria are quite general in the management of DWSN although from
network to network some variations might be needed.
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Figure 1: Barcelona DWSN aggregate diagram

keep the water in the storage tanks. All prices are expressed in economic units
per cubic meter (e.u./m?).

The second goal, lg(xy;sk) € Rsq for all k, aims at maintaining the water
tank volume up to a pre-established safety threshold s, € R”, expressed in m?.
This objective can be defined as (s(&; xy, sx) = & Wi &, plus two additional
convex constraints, i.e., xy > s, — & and § € R7, for all k. The last goal,
Ua(Aug) € Rso, penalizes the control signal variations Auy, = up — ug—y € R™
to guarantee a smooth operation of actuators, preserving their life as much as
possible. The prioritization of these goals is established by means of a set of
weights W, € ST, W, € ST, W, € S, and W, € ST, in their corresponding
cost function.

The inclusion of these goals into the MPC controller leads to state a multi-
objective stage cost function for all k € Z,

Uk, Tg, ur, Ek) = 71lE(Tk, Uk Cug, Coge) + Yola(Aug) + v3ls (ks iy sk),  (20)

where 1,72, 73 € Ry are weighting factors that allow to prioritize the impact of
each goal over the network performance. Weight tuning is out of the scope of
this paper, but the reader is referred to Barreiro-Gomez, Ocampo-Martinez, &
Quijano (2015); Toro, Ocampo-Martinez, Logist, Van Impe, & Puig (2011) for
systematic MPC tuning procedures.
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Figure 2: Open-loop cost decreasing of Vy as function of the number of Gauss-
Jacobi iterations

The MPC controller exploits the daily periodicity induced in the network
dynamics by the daily periodic behaviour of the water demand and electricity
prices. This is done by considering a prediction horizon N = 24 with a sampling
time of one hour. This MPC controller represents the supervisory control layer of
the water network, providing optimal flow set-points at the regulatory layer (PID
and PLCs controlling the respectively valves and pump stations, which operate
with a smaller sampling time).

4.2 Results Discussion

Figure 2 illustrates the convergence of Algorithm 1 at £ = 0 using N = 24 hours.
Note that open-loop cost is decreasing, showing a convergent behaviour as the
number of iterations increases.

Concerning the closed-loop performance, evaluated for a simulation horizon
of 96 hours, Figure 3 presents some selected tank and pump behaviours achieved
with the application of the proposed control approach summarized in Algorithm
1 for p = {1,5,10} and the corresponding evolution of the same elements when
using the centralized standard MPC with terminal equality constraint reported in
Grosso, Ocampo-Martinez, Puig, Limon, & Pereira. (2014) and the hierarchical-
like decentralized MPC proposed in Ocampo-Martinez et al. (2011). These con-
trollers are named CDMPC, CMPC and DMPC, respectively. From Figure 3,
it can be seen that the approach proposed in this paper, i.e., CDMPC, achieves
quite close behaviours to those obtained with the CMPC and clearly outperform-
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Figure 3: Comparisons of behaviours from selected tanks and pumps

ing the DMPC approach.

Likewise, Table 1 presents the quantitative comparison among CDMPC (us-
ing p = {1,5,10}), CMPC, DMPC and, for completeness of the performed as-
sessment, the multi-layer decentralized MPC (ML-DMPC) reported in Ocampo-
Martinez et al. (2014) is also included into the comparisons. In this case, the
closed-loop performance is compared in terms of both computational and eco-
nomic costs. For each MPC approach, the average computational time (in s)
needed to solve the optimization problems, as well as water, electricity and total
costs (in e.u.) are presented. From these results, DMPC performs better that
all other approaches in terms of average computational time but leading to a
higher sub-optimality (compared to CMPC as a baseline) due to the loss of eco-
nomic information inherent to the decentralization process. On the other hand,
ML-DMPC presents better results than DMPC due to the use of an upper coor-
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Table 1: Performance comparisons

Controller Water  Electricity  Total CPU

approach Cost Cost Cost Time
CMPC 96.468 86.317 182.785  17.493
DMPC 171.136 63.940 235.076  5.787

ML-DMPC 110.720 86.659 197.379  5.819

CDMPC,—;  106.455 82.900 189.355 19.910
CDMPC,—5 106.443 82.907 189.350  100.588
CDMPC,—19 106.444 82.905 189.349 201.218

dination layer, which updates (in a non-iterative manner) the cost of the shared
control variables such that each local controller has an approximated global eco-
nomic information. Finally, for the case of CDMPC, the overall closed-loop per-
formance improves increasing the intermediate Gauss-Jacobi iterates but without
converging to the MPC results. In particular, for the considered case study, the
improvement rate is slow. The overall cost of CDMPC does not decrease con-
siderably using p = 5 or p = 10, but without increasing the computational time
remarkably. Thus, there exists a trade-off between the level of sub-optimality
and the number of p-iterations. CDMPC presents a better performance than
ML-DMPC considering the economic cost due to the use of a centralized model
at each local CDMPC controller (no coordination layer is required). Moreover,
ML-DMPC is non-iterative and its recursive feasibility is guaranteed by using
adequate robustness constraints at the expense of reducing the economic per-
formance. However, the average computational time related to ML-DMPC is
considerably reduced compared to the CDMPC strategy. Thus, ML-DMPC is
an appealing solution for large-scale networks because of its low complexity, its
level of sub-optimality, and its computational time.

5 Conclusions

This paper presents an iterative distributed MPC formulation for its application
to periodically time-varying generalized flow-based networks including convex
constraints and strictly-convex economic cost functions. The distributed algo-
rithm relies on the cooperation of local controllers. Such controllers use the
centralized model and objective function of the system but optimizing only their
corresponding control inputs. The communication strategy between subsystems
is performed all-to-all. Thus, a reliable communication network is required. This
approach has as main advantage the possibility of easily coping with the interac-
tions related to both dynamic and static nodes of the network, without getting
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complex the feasibility analysis. Different from other approaches reported in the
literature, recursive feasibility of the cooperative algorithm does not rely on ro-
bustness constraints. Alternatively, it is based on convex combinations of the
local solutions, which follow the suboptimal MPC philosophy, allowing the early
termination of the distributed optimization before convergence. The scheme uses
a periodically time-varying terminal penalty/region that forces the state to be
within the optimal nominal periodic orbit at the end of the prediction horizon.
This mechanism allows obtaining a priori bounds of the average performance of
the closed-loop system. Specifically, the system performs better in average than
the best periodic orbit. Moreover, the stability of the optimal periodic orbit can
be guaranteed and, in case that the algorithm converges, a Nash equilibrium is
achieved. As future work, the analytical reduction in the number of interme-
diate iterations should be developed since the rate of convergence towards the
Nash equilibrium could be slow in some cases, implying higher computational
times. Additionally, the extension of the proposed approach for being applied to
non-linear systems and the deep study of systems with delays and robust control
schemes (see, e.g., Bououden, Chadli, & Karimi (2016); Yao, Karimi, Sun, & Lu
(2014)) will be also considered.
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A Auxiliary developments for the proof of Theo-
rem 1

In order to analyse the asymptotic stability of the closed-loop system, the fol-
lowing periodically time-varying rotated stage and terminal costs are considered:

L(k,z,u) =0k, z,u) — Uk, z},u;) + ANk, x) — Mk + 1, f(k,x,u)), (21)
Vf<k7x) = Vf(kvx) - Vf<k7j2) + )‘(kvx) - )‘<k7i;) (22)

Theorem A.1 Consider the economic MPC formulation of problem (9) with
a gwen period T € Z>y. If Assumptions 3 to 7 hold, the asymptotic average
performance of the closed-loop system

Tht1 = f(k:7$k7/{N(kaxk)) (23)
1s better than the performance of the optimal periodic trajectories derived from
(7), i.e.,

M T-1 .
limsup k=0 E(kj7xkvuk) < Zk:o g(hxk?uk).

(24)

Proof. This result follows from the combination of preliminary results on MPC
with periodic terminal equality constraint (Angeli et al., 2012) and MPC with
fixed terminal region constraint (Amrit, Rawlings, & Angeli, 2011). Assume
that Py (k, zg, dr, pr) has a feasible solution for the current state z € Xy(k),
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which gives optimal input and state sequences denoted respectively as uj =
{wh i tiezg y_y and xi = {2}, biez, ). Choose a candidate input sequence
and its associated state sequence admissible in Fy(k + 1) for the next time step,
as follows:

~ o * * *
Ug4+1 = {uk-i-l\ka s U N1k ry(k+ N, xk+N|kz)}a
> _ * * *
Xk+1 = {xk+1|k7 “o o Ty N|ks xk—l—N—Hlk}a
* — * * 3
where z3 v = Sk + Noap, vy rp(k + N, 23, v)). Due to the terminal

constraint (9d) and the periodic invariance property stated in Assumption 7, it
holds @}, vy, € Xy(k+ N + 1,27, ). Moreover, the cost (9a) evaluated along
these feasible candidate state/input sequences is given by

N-1
Vn(k+ 1,20 e Qet1) = Z Ok + 1, Ty W) + 0+ N2l By (B + N2 ne)
=1
+Vik+ N+ 1 2% vy
= Vy(k, xx) — €0k, e, uiy,) + Lk + N, 2fy e wp(k+ N2 wn)
= Vik+ Nyaiynp) + Vilk + N+ 12k vap)-

From (11a) in Assumption 7, it follows that
VN(k + 17 x;+1|k7 ﬁk-H) S ng(kv xk) + E(k’ fza fLZ) - E(h T, UZ\k>

By optimality, Vy(k+1,7141) < Vy(k+1, Th 1k Uy 1). Therefore, for all states
x € Xn(k), it holds that

V]?/(k +1, xk-i—l) - V]S(k?, xk) < g(k;7 jZa EZ) - E(ka Tk uak) (25)
Taking averages on both sides of (25) gives

22/1:0 Vls(k + 17 karl) — ngf(k’xk)

0= liminf M+1 (262)
co. Zﬁog(ka*%ZaaZ) _g(kkaauk)
< _
< lim inf M+1 (26b)
T-1 _ _ M
o Uk, T, ar) . S Uk, xp, ug)
k=0 » Mk Yk k=0 ) )
= —1 . 26
T im sup == (26¢)

The left-hand side equality of (26) comes from Assumptions 3, 4 and 6, which
imply that V(k + 1,z 1) — Vo (k, x1) is bounded. The right-hand side equality
of (26) comes from the fact that the pair (7, u}) is T-periodic for all k, then,
the infinite horizon average cost is equal to the average cost of a single period
(see (Angeli et al., 2012, Theorem 4)). Rearranging, one obtains the desired
inequality (24), which completes the proof. O
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Lemma A.1 (Stability condition of the modified costs) Let Assumption 7
hold. The modified costs L and V; satisfy the following property for all k € Z,
and all x € X¢(k,z}):

Vilk+1, f(k,x, ks (k,2))) < Vi(k, ) — L(k, 2, 5 (k, 7). (27)

Proof. Similarly to the proof of (Amrit et al., 2011, Lemma 9), the desired
inequality comes from adding to both sides of (22) the term A(k,z) + A(k +
1, f(k,z,k¢(k,z))), rearranging and considering V;(k,z}) = 0 and A(k,2}) = 0
forall k € Z,. O

Lemma A.2 (MPC cost is less than terminal cost) Let Assumptions 3 to
7 hold, and denote by VY (k,xy) the optimal solution to (9a) subject to (9b) and
(9e) at time step k € Z,.. Then,

Vjs(k,ﬂik) < Vf(k,l‘k), Vg € Xf(k,i’i), Vk € Z,. (28)

Proof. From Assumption 7, there exists a control law s¢(k,z;) € Uy such that
f(k o, kp(k,21)) € Xp(k+1,27,,) for all z, € Xy¢(k,77) and all k € Z,. Due
to the periodic positive invariance of the sequence of terminal regions, every
k¢(t,z;)) for time steps ¢ > k is a suboptimal but feasible control action that
keeps the state within the feasible set. Therefore, for all £ € Z, and all x; €
Xy (k, 73) it follows by optimality that
N-1
Ve (k) <) L(k 4t wpa, g (k + £ 2pe)) + Vi(k + N, 2ppy)
i=0
- N-1 (29)
= Vy(k,zx) + Z(L(k g, g (K + 1t Tpr))
i=0

+Vilk +t 4+ 1, 2pp01) = Vi(k + 1 2h40))

Then, applying (27) consecutively to the terms in the last summation of (29)
leads to (28) and the claim is proved. O

Lemma A.3 (Bounds on positive definite functions (Kellett, 2014)) Let
p(x) : A — Rsq be a positive definite function defined on a compact set A, i.e.,
zero at zero and strictly positive on x # 0. Then, there exist functions oy, s € IC,
such that

a1(z) < p(x) < ag(x), Vee A kelZ,. (30)

Lemma A.4 (Bounds on modified stage and terminal costs) Let Assump-
tions 3 to 7 hold, and let oy and ay be Ko functions. The rotated stage cost L
and terminal cost Vy satisfy, for all k € Z, the following inequalities:
Lk, z,ur) > an (o — Tpll), Var € Xn(k), Yup € Uy, (31)
ar(l|zr — Z5ll) < Vi(k, an) < aolllzr — Zll),  Var € Xp(k, 7). (32)
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Proof 2 From (10), (21) and Assumption 5, it holds that L(k, xy,ux) > p(||zx —
z||) for all (g, ux) € Yg, which in addition to Lemma A.3, leads to (31). Con-
sider now a trajectory starting in the terminal region, that is, x, € X¢(k,z}),
and driven by the terminal controller ky. Following the line of arguments in
(Amrit et al., 2011, Lemma 11 and 12), it can be shown from (27) and (31) that
Vilk,z1) > 32020 Lk, zy, ki (k, 1)) Hence, from (31) it follows that Vi (k,x),) >
a1 (||lzr — ZE||) > 0 for all k € Z... In addition, from Assumption 6, Vi(k,xy) is
locally bounded and by definition Vf(k, z}y) = 0, thus, it can be upperbounded by
a class Ko function, i.e., Vi(k,zy) < aol||lzx — Z5||) for all x € X;(k,Z}) and
all k € ZZO'
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