
Factor descent optimization for sparsification in graph SLAM

Joan Vallvé, Joan Solà, Juan Andrade-Cetto

Abstract— In the context of graph-based simultaneous lo-
calization and mapping, node pruning consists in removing a
subset of nodes from the graph, while keeping the graph’s in-
formation content as close as possible to the original. One often
tackles this problem locally by isolating the Markov blanket
sub-graph of a node, marginalizing this node and sparsifying
the dense result. It means computing an approximation with
a new set of factors. For a given approximation topology,
the factors’ mean and covariance that best approximate the
original distribution can be obtained through minimization of
the Kullback-Liebler divergence. For simple topologies such as
Chow-Liu trees, there is a closed form for the optimal solution.
However, a tree is oftentimes too sparse to explain some
graphs. More complex topologies require nonlinear iterative
optimization. In the present paper we propose Factor Descent,
a new iterative optimization method to sparsify the dense
result of node marginalization, which works by iterating factor
by factor. We also provide a thorough comparison of our
approach with state-of-the-art methods in real world datasets
with regards to the obtained solution and convergence rates.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
problem of building a representation of the environment
while getting localized in it. Without any strategy to face
it, the longer the experiment, the larger the problem to solve.
Efforts to reduce resource demands have been focused
mainly in two directions: by facing the computational
complexity of the algorithms, or by tackling the problem
size. Even though several improvements have been made
in the first direction [1, 2], the later is still of concern, as
the solution is always linked to the length of the experiment.
This claims for suboptimal strategies that reduce problem
size but still keep as much information as possible.

Several SLAM methods include mechanisms to limit
problem size growth. One of the simplest approaches
consists in considering a temporal or spatial window and
discarding the landmarks and/or poses that lie outside this
window. This implies giving up loop closures, such as in
visual and visual-inertial odometry methods [3, 4]. In Pose
SLAM [5], new observations and robot poses are only
added to the problem if their entropy-based information
content is significant. In contrast, in [6] a hierarchical graph
structure is devised. The graphs higher up in the hierarchy
represent marginalized sub-graphs and if the error is low
enough, only part of the problem is solved. Johannsson et
al. [7] propose a reduced pose graph that only grows with
the size of the environment being mapped by marginalizing
poses with regards to distance. Chouldhary et al. [8] on the
other hand propose an information-based reduced landmark
SLAM system. The method proposes a trade off between

The authors are with the Institut de Robòtica i Informàtica In-
dustrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain.
{jvallve,jsola,cetto}@iri.upc.edu.

This work has been supported by the Spanish Ministry of Economy and
Competitiveness under Project ROBINSTRUCT (TIN2014-58178-R), by
the EU H2020 Project LOGIMATIC (H2020-Galileo-2015-1-687534) and
by the María de Maeztu Seal of Excellence to IRI MDM-2016-0656.

(a) Original graph. In
grey, node to be re-
moved.

(b) CLT topology. (c) Sub-graph topology.

(d) Sparsity patern af-
ter node marginaliza-
tion.

(e) Sparsity pattern of
CLT topology.

(f) Sparsity pattern of
sub-graph topology.

Fig. 1. Tree topology can be too sparse to accurately approximate the
dense distribution resulting of a node marginalization.

memory footprint and accuracy using an entropy-based cost
function to decide which landmarks should be discarded.

One important characteristic of SLAM is sparsity: the
network of geometrical constraints corresponding to sensor
measurements between robot trajectory and/or environment
representation is only a small subset of all the possibilities.
Graph-SLAM methods take profit of this sparsity to speed
up the computation of the optimal solution.

Moreover, SLAM is a non-linear problem that is faced
by linearizing it. The capability of relinearization greatly
improves the accuracy of the solution.

Normally, the only way of reducing the problem size
without loss of information is marginalization. However,
marginalization induces fill-in, increasing computational
cost, and does not allow for relinearization, deriving in
accuracy loss.

Several works have been published with methods for
finding the best sparse and relinearizable approximation of
the dense and not-relinearizable result of a marginalization.
This is known as sparsification, and is the focus of the
present paper. Kretzschmar and Stachniss [9] present an
information-theoretic compression method for pose graph
SLAM that selects the nodes containing the most informa-
tive laser scans. They find the subset of measurements that
maximize the mutual information of the map for that subset.
More recently, [10]–[12] approach the problem by finding
the sparse approximation that minimizes the Kullback-
Liebler divergence (KLD) with the dense distribution re-
sulting from the node marginalization. While there is a
closed form for the simplest topology, e.g. the Chow-Liu
tree (CLT), an iterative optimization is needed for richer
topologies.

In the majority of cases, and as we reveal in the experi-
mental section, a tree topology is too simple to accurately
approximate the dense result of a node marginalization
(see Fig.1). Hence, in this paper we focus on iterative
optimization for sparsification. We introduce Factor Descent
optimization for sparsification. Given a non-dense factor
topology, we iteratively optimize each of the factors leaving
fixed the rest. For each factor, we compute its parameters
(mean and information matrix) that minimize the KLD
given the rest of topology factors’ parameters.

The paper is organized as follows. The next section
includes the problem formulation and existing methods.
Section III presents our novel factor descent method. Sec-
tion IV presents the results, and conclusions and future work
are exposed in the last section.

II. NODE REMOVAL AND SPARSIFICATION IN GRAPH
SLAM

Graph-based SLAM methods represent the problem as a
set of variables (nodes) and a set of geometrical constraints
(factors). The state x includes nodes representing poses
of the vehicle along its trajectory and/or some map rep-
resentation. Each factor expresses the discrepancy or error
e between a measurement z and its expectation,

e(x) = h(x)− z + v, v ∼ N (0,Ω−1) (1)

being h(x) the sensor’s measurement model and Ω the
information matrix of the measurement Gaussian noise v.

The problem is solved iteratively by minimizing the
Mahalanobis squared norm of all linearized errors

∆x∗ = arg min
∆x

∑
k

‖hk(x)− zk + Jk∆x‖2
Ω−1

k

(2)

being x the state estimate at the current iteration, and Jk

the Jacobian of the k-th measurement. 1 Imposing null
derivative of the cost in (2) w.r.t ∆x, the optimal step
∆x∗ is found and used to update the estimate. Current
methods for solving for ∆x∗ use Cholesky [2, 14, 15] or
QR [1, 16, 17] matrix factorizations. Important speed-ups
are obtained with incremental methods [1, 2, 15, 17], which
update the problem directly on the factorized matrix.

Reducing the problem size in graph SLAM is usually
approached in two steps: node marginalization and sparsi-
fication (see Fig. 2). These two stages do not necessarily
have to be immediately consecutive, and the second one
can be postponed depending on computational availability
[11].

Having selected a node to prune (Fig. 2.a), the process is
faced locally. A local problem around the node (Fig. 2.b) is
defined by cropping the node’s Markov blanket (all nodes
at distance 1) and all its intra-factors (the factors involving
only nodes in the Markov blanket). Optionally, this cropped
problem can be solved. Then, all factors can be relinearized
using the new solution before proceeding, yielding slightly
better results especially in on-line cases [12].

After that, marginalization of the selected node is per-
formed via Schur complement. This marginalization can be

1In case of manifolds, (1) and the squared Mahalanobis norm in (2)
become e(x) = h(x) 	 z ⊕ v and ‖hk(x) 	 zk + Jk∆x‖2

Ω−1
k

,

respectively, with Jk = ∂(hk(x) 	 zk)/∂∆x. The ⊕ and 	 are the
addition and subtraction operators on the manifold, as described in [13].

understood as adding a dense factor (Fig. 2.c) that substi-
tutes all intra-factors that involve the removed node. This
new dense factor has no measurement model associated to;
hence, its error cannot be re-evaluated, and re-linearization
is not possible.

The goal of the sparsification process is to approximate
the dense distribution p(x) ∼ N (µ,Σ), resulting from
node marginalization, with a sparse distribution q(x) ∼
N (µ̆, Σ̆) defined by a new set of (relinearizable) factors
(Fig. 2.d). This is usually split in two phases: building a
topology (i.e. define a set of factors with their measurement
model) and computing their mean and information that best
approximate the original distribution.

A. Topology

The topology defines the arrangement between the
Markov blanket nodes and the new set of factors, each factor
with a measurement model. Typically, the factors are made
up of relative measurements between pairs of nodes. The
simplest topology using relative measurements is a spanning
tree. The Chow-Liu tree (CLT) defines a tree topology with
factors between the most correlated nodes (i.e. the ones with
most mutual information).

However, even taking the maximum mutual informative
factors, a tree topology is usually too sparse to approximate
the original distribution. For this reason, the so-called sub-
graph topology departs from the CLT and adds (a few) more
factors, also based on the nodes’ mutual information [12].
Alternatively, the cliquey topology [12] takes the CLT and
converts pairs of independent factors into one single factor
by correlating them.

Differently to the CLT-based methods, a `1-regularized
KLD minimization can be used to compute the topology
that will encode the most information [11].

B. Sparsification through KLD minimization

Given the topology, we want to compute its factors’
means z̆k and information Ω̆k that minimize the KLD
between the dense p(x) and sparse q(x) distributions. This
can be posed as

DKL =
1

2

(
〈Λ̆,Σ〉 − ln |Λ̆Σ|+ ‖µ̆− µ‖2

Λ̆−1 − d
)
, (3)

where 〈·, ·〉 denotes the matrix inner product and Λ̆ = Σ̆−1

is the information matrix of q(x).
This expression can be minimized as follows. The di-

mension d of both distributions and Σ are constant w.r.t
the information of each measurement Ω̆k. The squared
norm term ‖µ̆ − µ‖2

Λ̆
is null if the means of all mea-

surements are set using the dense distribution mean z̆k =
hk(µ). Then, introducing the block diagonal matrix Ω̆ =
diag(Ω̆1 . . . Ω̆k . . .) containing all new factors’ information
matrices, and the Jacobian J̆ = [J̆>1 . . . J̆

>
k . . .]

> stacking
all new factors’ Jacobians, the sparse information matrix of
the approximate distribution is Λ̆ = J̆>Ω̆J̆. Considering
the above, the factors’ information that minimize the KLD
in (3), can be written as the constrained problem

Ω̆∗ = arg min
Ω̆

〈J̆>Ω̆J̆,Σ〉 − ln |J̆>Ω̆J̆|

s.t. Ω̆ ∈ D, Ω̆ � 0 (4)

where D refers to the set of block-diagonal matrices.

(a) (b) (c) (d) (e)

Fig. 2. Example of a pruning sequence of actions. The removed node is depicted in grey. (a) Initial graph. (b) Markov blanket and intra-factors are
kept. (c) Node marginalization produces a dense factor (the central factor). (d) Sparsification computes an approximation with a set of new factors. (e)
Substitution of the sparse approximation into the initial graph.

In some cases such as dense problems with only relative
measurements, the dense problem has a rank-deficient in-
formation matrix Λ, and the covariance matrix Σ is not
defined. In that case, we can apply a projection Λ =
UDU> such that D is invertible. Then, all formulation
derived from (4) holds by substituting

J̆ 7→ J̆U

Σ 7→ D−1. (5)

This projection can be obtained by re-parametrizing the
problem to relative poses w.r.t an arbitrarily chosen
node [10, 11] or using a rank-revealing eigen decompo-
sition [12].

C. Sparsification in closed form

Certain topologies admit a closed form solution to (4).
When J̆ is invertible, imposing null derivative of (4) w.r.t.
all factor information matrices yields

Ω̆k = (J̆kΣJ̆>k)−1. (6)

This is the case of the tree topology in SLAM of relative
measurements, using a projection as (5). However, and as
has been said, this topology can be too sparse to accurately
approximate the exact dense distribution. Also, (6) holds
for the cliquey topology. However, it can carry convergence
issues to the SLAM problem solution [12]. Moreover, the
cliquey forms break the homogeneity of factors, which is
valuable in many cases.

D. Sparsification via iterative optimization

Other topologies with non-invertible Jacobian J̆ do not
admit a closed form solution and the problem (4) has to
be solved using iterative optimization. The state-of-the-art
literature proposes two different optimization algorithms:
Interior Point (IP) and Limited-memory Projected Quasi-
Newton (PQN) [18]. IP includes the constraint of positive
definiteness of the solution in the cost function

〈J̆>Ω̆J̆,Σ〉 − ln |J̆>Ω̆J̆| − ρ ln |Ω̆|. (7)

The log barrier parameter ρ is iteratively decreased towards
0. It requires an initial guess for ˘̆

Ω that strictly accom-
plishes the positive definite restriction, such as the identity
matrix [12]. IP has quadratic convergence, but requires
the (costly) computation of the Hessian and gradient of
(7). A stricter constraint can be applied in (7) instead
of the log barrier term to guarantee the conservativeness:
ρ ln |Λ− J̆>Ω̆J̆| [11].

On the contrary, PQN does not require the computation of
the Hessian (it still needs the gradient), nor a feasible initial
guess. The positive definiteness constraint is accomplished

through the projection P(Ω̆) onto the positive semi-definite
subspace, by setting all negative eigenvalues to zero,

P(Ω̆) = V diag(max{0, λi})V>, (8)

being Ω̆ = V diag(λi)V
> the eigen decomposition. PQN

has a slower convergence than IP, but it can be initialized
closer to the optimal solution using an initial guess based
on the off-diagonal blocks of the dense information matrix,
as proposed in [19],

Ω̆k = J−>k1
Λk1,k2J

−1
k2

(9)

being k1, k2 the two nodes involved in the factor k (so
Jk1

,Jk2
are the non-zero blocks of Jk) and being Λk1,k2

the off-diagonal block corresponding to the involved nodes.
Such initial guess is normally not symmetric nor positive
semi-definite, and one usually takes its closest symmetric
positive semi-definite approximation [20]. Since this may
result in a semi-definite positive guess (or close), it cannot
be used in the IP method.

III. FACTOR DESCENT OPTIMIZATION FOR
SPARSIFICATION

We propose Factor Descent sparsification (FD), a novel
optimization approach for solving (4) that takes inspiration
in coordinate descent optimization. FD is a cyclic block-
coordinate descent method; each step of the cycle consists
in solving for a (small) block of variables (those defining
one factor’s information matrix Ω̆i) while fixing the rest.

Consider a given topology and an initial guess Ω̆. The
derivative of (4) w.r.t the i-th factor’s information matrix
Ω̆i is

∂DKL

∂Ω̆i

= J̆iΣJ̆>i − J̆i(Ῠi + J̆>i Ω̆iJ̆i)
−1J̆>i , (10)

where Ῠi is the information matrix of the problem consid-
ering only the rest of factors,

Ῠi =
∑
j 6=i

J̆>j Ω̆j J̆j . (11)

Imposing null derivative and applying the Woodbury matrix
identity twice,2 we get the closed form,

Ω̆i = (J̆iΣJ̆>i)−1︸ ︷︷ ︸
Φi

−(J̆iῨ
−1
i J̆>i)−1. (12)

This is the optimal i-th factor’s information matrix in terms
of KLD if the rest of factors are fixed.

Descent of the full KLD cost of (4) is achieved factor
by factor, and hence the Factor Descent name. This can be

2applying the Woodbury matrix identity forwards and backwards from
D(A+BCD)−1B = D(A−1−A−1B(C−1+DA−1C)−1DA−1)B

= DA−1B−DA−1B(C−1+DA−1C)−1DA−1B
= ((DA−1B)−1 + C)−1

Algorithm 1 Factor descent sparsification
Input: Dense mean µ and covariance Σ, topology Z

// Precompute constant variables
for zi ∈ Z do

Ji ← evaluateJacobian(zi,µ)
Φi ← (J̆iΣJ̆>i)−1

end for
i := 1
while not endConditions() do

// Compute the information of the rest of factors
Ῠi ←

∑
j 6=i J̆>j Ω̆j J̆j

// i-th factor descent
Ω̆i ← Φi − (J̆iῨ

−1
i J̆>i)−1

// Ensure positive semi-definite solution
if Ω̆i ≺ 0 then

V,λ← eigenDecomposition(Ω̆i)
Ω̆i ← Vdiag(max(0,λ))V>

end if
// Cycle for all factors
i++
if i > N then

i := 1
end if

end while

iterated as many times as desired. While the second term
of (12) should be computed at each iteration, the first one
Φi is constant for each factor and should be computed only
once. The method is described in algorithm 1. The first term
Φi can be interpreted as the information of the dense exact
distribution projected in the measurement space of the i-th
factor. Analogously, the second term is the projection of the
information of the rest of the factors onto the measurement
space of the i-th factor.

We want to emphasize that (12) is a generalization of (6).
The conditions in which (6) is applicable are the same in
which the second term in (12) is null. For example, in the
tree topology, the projection of the information of the rest
of the factors to each factor’s measurement space is null.

As in other methods, in case of rank-deficient Λ, the
method holds using the projection (5). Note that the rest of
new factors must be projected too, with Ῠ 7→ U>ῨU.

Since the optimal solution in the factor’s subspace is
computed in closed form (12), iterations in FD refer to
the fact that we iterate on the factors, not on finding the
optimal for each factor through repeated linearizations. In
other words, a clear benefit of FD is that there is no fitting
to any linear or quadratic function. The convergence rate
mainly depends on how much the direction to the optimal
solution is aligned with the sub-spaces corresponding to
each factor (see Fig. 3 for an illustrative example).

A. Positive-definiteness

It follows from (12) that Ω̆i is positive definite only if

(J̆nΣJ̆>n)−1 � (J̆nῨ−1J̆>n)−1. (13)

This happens when the projection of the information of
the dense distribution to the measurement space is ’bigger’
than that of the rest of the factors. A zero eigenvalue of Ω̆i

implies that the rest of new factors already explain com-
pletely the original distribution in some direction. Further,
a negative eigenvalue implies that the approximation is not

cost

t

Fig. 3. Examples of convergence of the cyclic coordinate descent
optimization for two different alignments of the coordinates w.r.t. the
direction to the optimal solution (green dot).

conservative (without considering the i-th factor) and the
optimal factor would subtract this excess of information.
After each iteration, we impose positive semi-definite result
applying (8).

B. Initial guess

Since the positive semi-definite constraint is imposed
after solving, the initial guess is not required to be in a
strictly feasible point. Thus, we can use the off-diagonal
blocks based initialization (9).

Alternatively, FD can be used to get an initial guess by
just applying the first cycle of (12). During this first cycle,
only the previously computed factors must be considered
in Ῠi, and therefore it can be computed incrementally,

Ῠi = Ῠi−1 + J̆>i−1Ω̆i−1J̆i−1. (14)

IV. RESULTS

In order to test the performance of the FD sparsification
method just presented and to compare it with the state-of-
art IP and PQN methods, we implemented all methods in
Matlab. To prevent linearization errors to be confused with
sparsification inaccuracy, we relinearize the whole SLAM
problem and solve it at each new trajectory pose using our
own implementation of

√
SAM [16]. We implemented the

IP method using the gradient and Hessian in [12]. For PQN,
we used the authors’ Matlab implementation [21]. Finally,
we build the sub-graph topology as explained in section II-A
with a number of factors doubling that of the tree topology.

A. Initial guess and convergence rate

We want to test the different combinations of opti-
mization method and initial guess on several sparsification
problems. The methods PQN and FD are combined with
three different initial guesses: the identity matrix (Id) as
proposed in [12], the one based on the off-diagonal blocks
(ODB) as proposed in [19], and our First FD cycle (FFD)
of Sec. III-B. The method IP is only combined with Id, as it
diverges otherwise. This gives a total of seven combinations.

We executed a SLAM for the Manhattan M3500
dataset [22] with 80% of node removal. To guarantee equal
conditions for all the methods under test, all sparsification
problems after node marginalization are stored. Then, we
compare all methods by solving the stored problems. In all
cases, we solve and relinearize the cropped problems before
marginalization.

First, we analyze the relation between the type of initial
guess used and problem size. Fig. 4 depicts the mean and
variance of the KLD between each initial guess and the
dense exact distribution, as a function of the sparsification
problem size, i.e. the number of nodes in the Markov
blanket. As expected, in all cases the smaller the size of
the Markov blanket, the better. ODB initialization performs

3 4 5 6 7

Markov Blanket size

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

K
L

D

Identity ODB FFD

Fig. 4. Mean and variance (dashed line) of all three initial guess KLD
vs. the Markov blanket size of for sparsification processes made in the
Manhattan experiment with 80% node removal.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

K
L
D

IP-Id PQN-Id FD-Id PQN-ODB FD-ODB PQN-FFD FD-FFD

Fig. 5. Mean KLD evolution of all sparsification combinations (methods
and initial guesses), for problems with Markov blanket size = 3 in the
Manhattan experiment with 80% of node removal.

better for small Markov blankets whereas the proposed FFD
works better for larger problems. The identity initial guess
(Id) is significantly inferior than the other two initialization
methods (notice the vertical log axis).

We analyze now the convergence rate for all seven
combinations of initial guess and methods. In Matlab, the
most computationally expensive operations are optimized,
and therefore CPU time measures are not reliable. Also,
since the size of the sparsification problems is small and
independent of the full problem size, the complexity of each
method w.r.t. the Markov blanket size is not necessarily
representative. Then, the evaluation of the convergence rates
is based on the number of optimization iterations.

Fig. 5 depicts the evolution of the mean KLD for all
method-initial guess combinations, for Markov blankets of
size 3. Although IP converges faster, PQN and FD take
profit of a (much) better initial guess at the initial iterations,
becoming better alternatives for implementations with low
computational resources that do not allow for many iter-
ations. If the number of iterations is not a constraint, IP
reaches the best results.

As well as the initial guess, the convergence of the
methods depends also on the size of the sparsification
problem. We show in Fig. 6 the mean KLD evolution for all
problem sizes. While in small problems FD-ODB is the best
combination up to 15 iterations, for larger Markov blanket
sizes IP becomes the best choice from a smaller amount of
iterations.

B. Application

We tested all methods on three different datasets [22]
to evaluate their performance. The typology of the chosen
datasets is very different. The Manhattan M3500 sequence
is a large problem and, since it is highly connected, it has
large Markov blankets. On the contrary, the MIT Killian
Court sequence has few loop closures and small Markov
blankets. The Intel Research Lab sequence is somewhere
in between.

In all cases, the same 80% volume of nodes were
marginalized. Since node selection is out of the scope of
this paper, we applied the simple strategy of keeping one
node every 5.

The following combinations of optimization method and
initial guess were tested: IP-Id, PQN-ODB, FD-ODB, FD-
FFD. We ran four independent SLAM solutions for each

TABLE I
FINAL KLD AFTER 80% OF NODE REMOVAL

Method Iterations
0 5 10 15

M
an

ha
tta

n IP-Id 1285 110.6 4.967 4.786
PQN-ODB 7.36 6.424 5.587 5.399
FD-ODB 7.36 5.469 5.291 4.852
FD-FFD 81.09 11.46 7.617 5.82

CLT 25.84 - - -

In
te

l

IP-Id 314.8 85.07 8.083 7.293
PQN-ODB 18.19 16.33 9.35 8.423
FD-ODB 18.19 7.962 7.247 7.027
FD-FFD 29.26 10.47 7.574 6.902

CLT 27.68 - - -

K
ill

ia
n

IP-Id 429.4 210.1 76.73 77.29
PQN-ODB 78.59 78.07 78.28 78.39
FD-ODB 78.59 77.21 77.4 77.37
FD-FFD 70.11 78.37 77.49 77.59

CLT 82.92 - - -

combination fixing different number of optimization itera-
tions: 0, 5, 10 and 15. For greater completeness, we also
ran a CLT using the closed form solution.

The baseline for evaluation is the batch optimization
of the original SLAM graph without removing any node.
Following [12], factors involving previously removed nodes
were redirected to the closest existing node. This was also
done for the baseline graph in order to evaluate only the
sparsification performance.

To evaluate the performance of the different approaches,
we computed its KLD with the baseline using (3), but this
time evaluating for the whole SLAM problem instead of
just the Markov blanket.

Table IV-B shows the final KLDs of all 17 experiments
for the three datasets. In the table, KLD for CLT is
reported only for zero iterations since it has a closed form
solution. The comparison between CLT and all methods
evidences the limitation of the tree topology for accurately
approximating the dense distribution. For highly connected
problems (Manhattan and Intel), the use of a sub-graph
topology produces a much smaller KLD. And for sparser
cases such as the Killian dataset, the sub-graph topology
slightly outperforms CLT. This is not surprising, since the
average Markov blanket sizes are small in this case.

Note that, even without any optimization iteration, using

10
-6

10
-5

0

10
-4

10
-3

10
-2

10
-1

K
L

D
10

0

5

10
1

10
2

Iterations 10
7

6

Markov Blanket size

5
15 4

3

IP-Id PQN-Id FD-Id PQN-ODB FD-ODB PQN-FFD FD-FFD

Fig. 6. Mean KLD evolution of all sparsification combinations (methods and initial guesses) for different Markov blanket sizes corresponding to all
problems in the Manhattan experiment with 80% of node removal.

the ODB initialization always yields a better approximation
than CLT.

The presented results validate the initial hypothesis:
the tree topology is too sparse to accurately approximate
the dense distribution. A more complex topology can ap-
proximate the original graph better without computational
burden.

V. CONCLUSIONS AND FUTURE WORK

Sparsification is a useful mechanism to maintain the
SLAM problem bounded. The topology chosen determines
the existence of a closed form solution and strongly affects
the accuracy of the approximation.

Tree topologies admit a closed form solution but are
usually too simple to approximate the original graph. On the
contrary, more populated topologies lose the applicability of
closed form solution but can encode more information of
the original graph.

We presented the novel Factor Descent optimization
method for sparsification that provides more accurate ap-
proximations with less iterations than other state-of-the-
art sparsification methods. When combined with the off-
diagonal block initialization, Factor Descent gives the best
results in a larger number of situations.

In addition, we observed that the existence of a closed
form solution is not a sufficient argument for choosing a
tree topology instead a more complex one. Better approx-
imations in terms of KLD can be reached using a more
complex topology with few or no optimization iterations.

In future work we consider the implementation in C++
of all analyzed sparsification methods to be able to compare
them also with regards to computational time. Also, a non
cyclic version of Factor Descent can be explored to further
improve convergence.

REFERENCES

[1] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
bayes tree,” Int. J. Robotics Res., vol. 31, no. 2, pp. 216–235, 2011.

[2] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM++-A highly
efficient and temporally scalable incremental SLAM framework,” Int.
J. Robotics Res., vol. 36, no. 2, pp. 210–230, 2017.

[3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” Int. J. Robotics Res., vol. 34, no. 3, pp. 314–334, 2015.

[4] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based
visual-inertial odometry,” Int. J. Robotics Res., vol. 32, no. 6, pp.
690–711, 2013.

[5] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based com-
pact Pose SLAM,” IEEE Trans. Robotics, vol. 26, no. 1, pp. 78–93,
Feb. 2010.

[6] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2D and 3D
mapping,” in Proc. IEEE Int. Conf. Robotics Autom., Anchorage,
May 2010, pp. 273–287.

[7] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Proc. IEEE
Int. Conf. Robotics Autom., Karlsruhe, May 2013, pp. 54–61.

[8] S. Choudhary, V. Indelman, H. Christensen, and F. Dellaert,
“Information-based reduced landmark SLAM,” in Proc. IEEE Int.
Conf. Robotics Autom., Seattle, May 2015, pp. 4620–4627.

[9] H. Kretzschmar and C. Stachniss, “Information-theoretic compres-
sion of pose graphs for laser-based SLAM,” Int. J. Robotics Res.,
vol. 31, no. 11, pp. 1219–1230, 2012.

[10] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node
removal for factor-graph SLAM,” IEEE Trans. Robotics, vol. 30,
no. 6, pp. 1371–1385, 2014.

[11] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent node
removal and edge sparsification for graph-based SLAM,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Daejeon, Oct. 2016, pp.
3275–3282.

[12] M. Mazuran, W. Burgard, and G. D. Tipaldi, “Nonlinear factor
recovery for long-term SLAM,” Int. J. Robotics Res., vol. 35, no.
1-3, pp. 50–72, 2016.

[13] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, 1990, pp.
167–193.

[14] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. IEEE
Int. Conf. Robotics Autom., Shanghai, May 2011, pp. 3607–3613.

[15] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental
block Cholesky factorization for nonlinear least squares in robotics,”
in Robotics: Science and Systems, Berlin, Jun. 2013.

[16] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Int.
J. Robotics Res., vol. 25, no. 12, pp. 1181–1204, 2006.

[17] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, 2008.

[18] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, “Optimizing
costly functions with simple constraints: A limited-memory projected
quasi-newton algorithm,” in Artificial Intelligence and Statistics,
2009, pp. 456–463.

[19] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear
graph sparsification for SLAM,” in Robotics: Science and Systems,
Berkeley, Jul. 2014, pp. 1–8.

[20] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear algebra and its applications, vol. 103, pp. 103–118,
1988.

[21] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, “Matlab PQN
toolbox,” https://www.cs.ubc.ca/~schmidtm/Software/PQN.html.

[22] L. Carlone, http://www.lucacarlone.com/index.php/resources/
datasets.

